TTD plan for telescope test

Mikihiko Nakao (KEK-IPNS) mikihiko.nakao@kek.jp

April 9, 2013 現場 (Gemba) meeting at DESY

Task of TT at telescope-test

- Receive trigger from EUDET / TLU
- Trigger-Timing (TT) control of Belle II subsytems
 - Target: 1x DHH, 1x SVD-FADC-master, ?x SVD-FTB, 1x(?) COPPER
 - Generate self-running 127 MHz system clock from FTSW oscillator
 - Distribute trigger and related info in Belle II TT format
 - Trigger flow control

Run number / event number / timestamp

Hardware list

Minimum list from KEK

- 1x FTSW board (version 3.1, any type)
- VME CPU
- CAT7 cables (10m, 5m, 3m, 1m)

Shared/optional items

- VME crate (4 free 6U slots in COPPER crate?)
- PC to boot VME CPU (shared with COPPER boot host)
- Network switch, LAN cables
- JTAG program cable
- TT-IO board to accept NIM/LEMO signals
- Spares (FTSW, VME CPU)

Connection between TLU and FTSW

(based on TLU v0.2c document)

- TLU uses 4-pair LVDS on Ethernet standard RJ-45 pin assignments, fully compatible with FTSW
- CAT7 cable (\leq 15 m?) to be used (shielded cable is needed)
- Pin assignment:
 - 1-2: data-clock to TLU, 3-6: busy to TLU,
 - 5-4: reset from TLU, 7-8: trigger from TLU
 - polarity of data/busy/trigger is opposite of FTSW (no problem) polarity of reset is same as FTSW
- On FTSW side, AUX port will be used
- System clock: TLU has no clock input, and FTSW can't use TLU's clock output (40 MHz? 48 MHz?) as the system clock
- By the way, who will be in charge of operating TLU?

Trigger timing from TLU to FTSW

- **Trigger timing** from TLU is **asynchronous** to any clock
- Trigger timing as 31ps RMS-jitter
- FTSW will quantize it to
 - 8ns LSB coarse trigger-timing (if nobody complains)
 - or to 2ns LSB fine trigger-timing if necessary
- Time stamp is attached at TLU in unit of 40/8=5 MHz clock, another time stamp is attached at FTSW in unit of 127 MHz clock,
 + 2-bit fine trigger timing info if needed
- FTSW would like to receive TLU clock output for TLU time-stamp
 - TLU's LVDS LEMO 0B output connector to RJ-45? Easy if such a cable already exists
 - TLU's TTL LEMO 00 output: Add a LEMO 00 connector on FTSW? Easy if 3.3V LVTTL, but need a level-shifter if 5V TTL
 - Do we measure the trigger time with a better precision?

Timing signals between TLU and FTSW

🔵 Busy handshake

- FTSW asserts a BUSY signal (dedicated LVDS pair)
- FTSW drives data-clock to get 16-bit trigger counter

- ▶ 8 MHz Trigger-Clock (127M/16) to be used (has to be \sim 10 MHz)
- Minimum deadtime \sim 2 μ s

Trigger timing:

- Trigger latency by TLU: 27ns. Do we need to generate 5 μs latency?
- Time stamp: no good way to synchronize TLU timestamp and FTSW timestamp

Layout and cable connection

- Is 10m cable between FTSW and DHH/FADC/FTB long enough? or can it be even shorter (5m)?
- Short (1m or 3m) cable from FTSW to COPPER/HSLB (same or neighbour crate)
- Is COPPER / FTSW area accessible during beam?
- COPPER / VME CPU host PC near the crate to connect JTAG cable

FTSW hardware status

- FTSW 2.1 60 boards were produced, 34 are needed (~10 were distributed, + 10x(?) boards for trigger systems)
- **FTSW 3.1 89** boards were produced, **95** are needed
- **FTOP 12** boards were produced, **12** are needed (no spare)
- FTOR 2 boards were produced, 54 are needed
- **COPPER3 + TT-RX v5 190** boards were produced
- **TT-RX v6(?)** for COPPER2(?) may be needed, R&D item of FY2013
- Board test
 - All FTSW 2.1 boards (except for -noVME) were tested at KEK
 - All FTSW 3.1 boards (including -noVME) are being tested at KEK (helped by Yonsei students, Cholong Lim and Kyongho Kim)

Final production — 30x FTSW3.1, 10x FTOP, 60x FTOR in FY2013

FTSW firmware development

- β -version protocol to be implemented (discussed in 2012 July B2GM)
- All functions should be there, telescope test is to identify the final step to the t_0 version
- Status:
 - prototype version hasn't been touched for long time
 - β -version protocol implementation has been suspended for long time
 - firmware development resumed from end-March
 - firmware for board-test was developed (with a 16-page instruction)
 - source-level unification between FTSW2.1 and FTSW3.1

Firmware types:

- ~10 different firmware types
- Relevant firmware types: Master and Frontend-emulator

Schedule

- Dec-Mar 2012-3: NSM alpha version development
- Feb-Mar 2013: FTSW version 3.1 mass production 1
- Mar 4–14 2013: B(2)GM PAC KEKFF
- Mar-Apr 2013: FTSW module test
- Mar-Jun 2013: FTSW beta version firmware development
- Apr-Jun 2013: Pocket-DAQ/FTSW/Belle2link test for CDC
- May-Jul 2012-3: NSM beta version development
- anytime 2013: FTSWx30, FTOPx19, FTORx50 final production
- Jul 2013: B(2)GM at VPI
- Sep? 2013: CDC beam-test
- **sometime 2013:** Dry run setup at DESY
- Nov 4–15 2013: Hadron 2013/B(2)GM
- Jan 2014: DESY telescope test

Backup

Some History

- Jun/2011: FTSWv2.1 was designed and made
- Aug/2011: used in BPID test in Nagoya, B2link test in IHEP
- Oct/2011: About 60 modules of FTSWv2.1 was produced
- Feb/2012: All 60 modules of FTSWv2.1 were tested (fine tuning is needed to keep the clock jitter to a tolerable level)
- Nov/2012: While planning for making more FTSWv2.1, decided to make version 3 to separate the clock driver with a dedicated Spartan 3AN
- Jan/2012: FTSWv3.0 test production (3 boards)
- **Feb/2012**: FTSWv3.1 test production (1 board)
- Feb/2012: FTORv1 test production 1 (2 boards)
- **Feb/2012**: FTSWv3.1 mass production 1 (88 boards)

FTSW(v3)-concept

CLK line and other TT lines are separated, new JTAG ordering

New JTAG cable definition

 $(TCK,TMS,TDI,TDO) \Rightarrow (TDO,TDI,TMS,TCK),$ to unify the 7-8 pair usage to be LVDS output in FTSW

Boards with old JTAG definition?

- In principle FTSW firmware modification is possible, but...
- There are not many of such boards, can be just cross cables

- Parts and tools are in hand for CAT5E round cable
- One cable was made and used in my FTSW2/3 mixed crate Is there any boards planned with the old JTAG definition?

New CAT7 cable?

- 14% thinner flat CAT7 cable is now available from the same company Company: SANWA SUPPLY, Part no: KB-FLU7-10BK (for 10m black) http://www.sanwa.co.jp/product/network/list/kb-flu7.html
- 10m / 15m cables were ordered, to be tested soon

TT-network

single type of FTSW PC-board

- FMC connector for an optical add-on board
- 2 types because of coexistence of FTSW2.1 / FTSW3.0

3(+2) types of FTSW

- type-S for 20 CAT7 ports
- type-P for 12 CAT7 + 8 optical ports with an FTOP add-on
- type-R for 16 CAT7 + 2 optical ports with an FTOR add-on
- -no5V option by cutting out 5V / -noVME option by removing VME J1

FTSW-noVME option

Outcome of offline/email discussion at the Hanyang TDAQWS with G.Varner, B.Kunkler, G.Visser

- FTSWs for BPID and EPID are inserted in BKLM 6U crates, but...
 - No load should be there for VME J1 connectors as they are used as custom high-speed bus
 - +5V power is VERY limited in these crates
- FTSW-noVME option with no J1 connector as a solution
 - +3.3V (or +5V) power (and ground) taken from the power supply lines to the front-end boards
 - Isolate the front-panel/CAT7 ground from the VME frame ground
- Problem: less easy to test

Things to be done

Hardware:

- FTSW module v2.1 (done, will be used)
- FTSW module v3.1 (in mass prodcution)
- FTOP add-on boards (done, more boards to be assembled)
- FTOR add-on boards (test production)
- TT-RX v5 (done, found that TT-RXv4 can't be used)
- **Protocol:** (firmware described later)
 - Cable definition (new JTAG pin assignment, sorry!)
 - Trigger distribution protocol (firmware exists)
 - Flow control protocol (some firmware exists, still a lot to be done)
 - JTAG signal embedding (not yet)
 - SEU detection (not yet)
- **Software:** (not much except for a few basic programs)
- **Documents:** (not much done)

(part layer)

(solder layer)

FTSWv3.1 board was delivered on Feb.27

3 FTSW types

(type S)

FTOR (two port optical receiver) boards were delivered on Feb.21

FTSW 3.0 → 3.1

- A Micrel any-level receiver chip needed a bias voltage when an AC-coupled LVDS input is used
 - No such thing was needed when AC coupled LVDS is received by an FPGA, as a bias voltage is apparently generated inside the FPGA
 - A possible bias voltage fluctuation may be the reason why the CLK jitter is affected by the phase between CLK and TRG in an FPGA
 - Adding a 1:2 fanout before FPGA to RocketIO refclk and general I/O is probably a better idea (done for CDCv4, SVDv2)

Both of CAT7 and optical input (SFP transceiver is internally AC coupled)
3 FTSW 3.0 boards were hand-patched, will be still used at the test stand

FTSW 3.1 test results

- All the signal connections are tested within a very short time to meet the FY deadline
- All clock ports can deliver and receive a 127MHz clock with less than 20ps jitter, including the optical ports, without tuning the phase between CLK and TRG
- Some port and firmware dependence exists, there is room for improvement
- LAN port is not tested yet, but anyway there's no plan to use (at least LAN signal is detected by the scope)

Hardware plan

FTSW

- about 60 modules of FTSW v2.1 are there
- 3 modules of FTSW v3.0 were
- 89 more FTSW v3.0 modules to be produced by March 2013, if no problem is found in first 3 modules
- 30 more FTSW v3.0 will be needed, to be produced in FY2013

FMC modules

- A few receiver connector board (FTOR) to be produced soon
- FTOR mass production in FY2013
- Several more FTOP modules will be needed, to be assembled soon (PC board and most of parts are in hand)

Crates

A cheap/simple crate to be used on the detector has been ordered

Firmware and software

- No progress since last July B2GM
- Status and plan in backup (shown at TDAQWS at Hanyang in Jan)

Cabling and crates

- FTSW near the detector, crates and power are needed
- Max length of 10m is prefered, 15m is the absolute maximum
 - 1m: 290mV swing, 7–8ps jitter
 - 10m: 240mV swing, 8–10ps jitter
 - 15m: 190mV swing, 10–15ps jitter
- TT cable and JTAG cable are side-by-side on FTSW
- JTAG for FTSW modules are also routed in the same way

Rough cable connection layout is proposed (shown in backup)

- Connector joint for EPID is not defined yet
- Detailed cable layout (with 10m cable) has to be defined by subdetectors

FTSW/crate counting

- **PXD:** 8 boards (8 ports) \Rightarrow 1 type-R (in SVD)
- **SVD:** 48+1 boards (97 ports) \Rightarrow 7 type-R (+1 crate)
- CDC: 302 boards (604 ports) \Rightarrow 4 type-R + 32 type-S (+4 crates)
- EPID: 72 boards (144 ports) \Rightarrow 2 type-R-novme + 8 type-S-novme BPID: 64 boards (128 ports) \Rightarrow 8 type-R-novme (in BKLM6U)
- ECL: 52 boards (104 ports) \Rightarrow 8 type-R with no 5V (in ECL)
- **BKLM:** 16+8+32 boards (112 ports) \Rightarrow 8 type-R (in BKLM9U)
- EKLM: 112+16 boards (280 ports) \Rightarrow 16 type-R (in EKLM9U)

On detector: 46 type-R + 40× type-S + 8× type-R-no5V (+5 crates) **Grand total:** 46 type-R + 60× type-S + 8× R-no5V + 15 type-P

Total: 129 boards (95 FTSW3.1 + 34 FTSW2.1)

33 type-S, 8 type-S-novme, 36 type-R, 10 type-R-novme, 8 type-R-novme 6 MOre FTSW3.1 is needed, 30 more to be produced including spares

Readout board id?

- Does everybody has a way to identify a board number?
- ATMEL AT24C01B EEPROM was suggested by Wacek long time ago
- FTSW v3.0 and HSLB have CPLD where such info can be stored (CPLD is not affected by different predefined register contents)
- FTSW v2.1 has no EEPROM/CPLD, but a 16-bit dip-sw can be used to store the board-id

Firmware

Minimal number of firmware types

FTSW3.0 firmware

- 1. TT-Master
- 2. 10x clock+TT+JTAG + 4x optical clock+TT distributer
- 3. receiver firmware for test

FTSW2.1 firmware

- 4. Optical 8x TT distributer with FTOP (small mod. of 2.)
- 5. Optical 8x clock distributer with FTOP (easy)
- 6. COPPER handler (no JTAG)

Others

- readout board firmware on test boards (CDC board for Virtex5, SP605 for Spartan6, ML605 for Virtex6) (mod. of 3.)
- 8. TT-RXv5 firmware

TT-protocol (1)

Trigger-octet (8-bit, 8b10b encoded) at 5 clock (40 ns) boundary

- 1-bit trigger decision
- 3-bit coarse timing within 40 ns (0..4)
- 4-bit trigger-type/fine-timing

Trigger-type/fine-timing allocation (16 patterns)

- 4 patterns with fine-timing (BPID trigger) in this way, the fine-timing info (2ns LSB) is merged into trigger-type
- 4 patterns with non-fine-timing triggers (including random)
- 4 patterns for local triggers
- 4 patterns for spare (can be another fine-timing trigger type)

TT-protocol (2)

- Other signals are embedded into a "frame" of 10μ s long (revolution)
- Used for synchronization, control, etc
- Trigger id / time / bunch number assignment is done locally
- JTAG signals are also implemented into the frame
- Broadcast (12-bit types) or point-to-point (8-bit types + 20-bit address)
- 64-bit data (broadcast) or 48-bit data (point-to-point)

	0	10	20													159
idle packet	comma K28.1	idle K28.3	idle K28.3	idle K28.3	idle K28.3	idle K28.3	idle K28.3	idle K28.3	idle K28.3	idle K28.3	idle K28.3	idle K28.3	idle K28.3	idle K28.3	idle K28.3	idle K28.3
data packet with no trigger	comma K28.1	data (11	octet, MSB=0	77 bit)									idle K28.3	idle K28.3	idle K28.3	idle K28.3
data packet with 1 trigger	comma K28.1	data (11	octet, MSB=0	77 bit)	trig MSB=1									idle K28.3	idle K28.3	idle K28.3
data packet with 3 triggers	trig MSB=1	comma2 K28.5	data (11	octet, MSB=0,	77 bit)	trig MSB=1			ľ			trig MSB=1				idle K28.3
	0 160 320 480 255															2559
	revo/sync exp/run/trig-id time • • • •															
	•					1 k	peam revo	olution of	SuperKE	КВ						

TT-protocol (3)

- Minimum trigger separation of 190 ns (24 clocks) generates 0.57% "deadtime" at 30 kHz trigger rate
- 1.14% deadtime if 380 ns (48 clocks),
 or 1.14% events have event pileup (and unusable in offline?)
- Anyway without fine-timing info, 380 ns gap is needed as SVD readout takes twice longer time

Software

Master TT crate

- FTSW boards on the master TT crate are controled by a VME-CPU
- No VME-CPU is planned for FTSW boards on the other crates
- NSM program
- JTAG programming of remote FTSW/readout boards

NSM program

- Configuration of remote FTSW boards: ports, JTAG
- Run control through master FTSW
- Local run control through detector-master FTSW

User interface

- Need to visualize the distribution tree
- Monitoring of the buffer depth and other performances

Firmware status

Prototype firmware

- has no flow control and other fancy featuers
- but has been used to distribute clock, revo signal and trigger for BPID, SVD, DHH tests
- Available in bdaq for Virtex5 as a part of the CDC code (~nakao/work/cdc48b2link/belle2link/TT/)
- Also available in bdaq for Spartan6 (for SP605 evaluation board) (~nakao/work/sp605tt_bpid)
- Transplanted for Virtex6 by Igor's group for DHH (not in a public repository)

Beta-version firmware

- for telescope test, should have most of the features
- protocol redesigned and reported in July B2GM

But no progress since last July B2GM

CDC

4 crates at 2 places, in Nikko side, using ECL racks

CDC

- 4 full FTSW crates for 302 readout boards
- Each crate: 70–80x (TTD + JTAG + Belle2link) + 1 TTD (10U)
- 2 crates in a pair to make a loop of JTAG in / JTAG out (left-most FTSW has no other way to reprogram) (total 20U × 2 places)
- Location: anywhere Nikko-side, free ECL rack space (inspected at 2012.Nov Gemba meeting, need to confirm with A.Kuzmin)

BPID

64 SCRODs in total

- One FTSW handles 8 SCRODs
- Each FTSW placed in existing BKLM 6U crate (Nikko-side)
- Need 1U more slot at each place for optical fiber patch panel

EPID

- One FTSW handles 9 mergers
- It has to be type-S, so one more step (2 type-R boards) is needed
- Each FTSW type-S placed in existing BKLM 6U crate (Oho-side)
- Two FTSW type-P also in BKLM 6U, if power supply is not limiting
- Need 1U more slot at each place for optical fiber patch panel

52 collectors in total

- One FTSW handles 6 or 7 collectors
- Each FTSW type-S placed in existing BKLM 6U crate (Oho-side)
- Need 1U more slot at each place for optical fiber patch panel

- Total 8 FTSW are needed at 4 crates
- 2× FTSW type-R in each crate
- Mixed 6U/9U slots in a 9U crates

- Total 16 FTSW are needed (bad...)
- 2 FTSW per COPPER crate (forward/backward quardrants) perfectly fits
- But one of FTSW should be the next step of the other FTSW
- To put two type-R at each crate requires 2 more type-P at master-TT