
NSM2 for Telescope Test

Mikihiko Nakao (KEK-IPNS)

mikihiko.nakao@kek.jp

April 10, 2013

現場 (Gemba) meeting

at DESY

N
S
M
2
fo
r
T
el
es
co
p
e
T
es
t
—

M
.
N
ak

ao
—

p
.1

“Master Control” to control everybody
TTD, COPPER, EVB and HLT (NSM2 native speakers)

PXD, SVD (EPICS speakers)

EUDET (foreign language)

Control means
Set up and start subsystem in the correct sequence

Actions to be made by the Master Control is high-level ones only

Correct all the log messages with proper time stamp (msec unit) to
understand the sequence and origin of a problem

“Logging Database”
Events initiated by the Master

Log messages from subsystems

Beta-testing for the Belle II control system

N
S
M
2
fo
r
T
el
es
co
p
e
T
es
t
—

M
.
N
ak

ao
—

p
.2

NSM2 alpha release (2013.3)

Low-level technology choices were made and implemented (corelib)

Very preliminary Belle II dedicated library is made (b2lib)

NSM2 beta release plan
Database interface for log messages and NSM shared memory data

mysql at the beginning, to be switched to what database group offers

Belle II dedicated library for state handling

First target system: CDC/Belle2link/COPPER system at KEK

Currently lower priority w.r.t. FTSW firmware development

N
S
M
2
fo
r
T
el
es
co
p
e
T
es
t
—

M
.
N
ak

ao
—

p
.3

Get the zip file and unzip (I had a problem in getting from SVN)

cd main and make (to compile GUI, go to gui and make)

Open four terminals, and cd bin

Make an empty configuration file: touch ../conf/default.conf

Run ./TestRunControl.exe, ./TestLogCollector.exe,
./TestDataCollector.exe, ./TestProducer.exe (in this order)

In run control window, type c to config, then b to begin run

In producer window, type r to generate one event

GUI version (run control and log collector) looks similar

N
S
M
2
fo
r
T
el
es
co
p
e
T
es
t
—

M
.
N
ak

ao
—

p
.4

TestRunControl.exe TestLogCollector.exe

TestProducer.exe

TestDataCollector.exe
single host, 4 processes

N
S
M
2
fo
r
T
el
es
co
p
e
T
es
t
—

M
.
N
ak

ao
—

p
.5

NSM2 to control EUDET
CUI version of EUDET run control is easy to understand and modify

EUDET can control NSM2, too, but in my point of view, EUDET is a
much simpler program and there’s no reason to do so

A quick hack
CONFIG/START/STOP from NSM2 to EUDET was coded in 1 hour

It is not yet working in a coordinated way, e.g., run numbers or error
messages, but no technical problem forseen

N
S
M
2
fo
r
T
el
es
co
p
e
T
es
t
—

M
.
N
ak

ao
—

p
.6

NSM2RunControl.exe NSM2 master

nsminfo2

nsmd2 daemon

7 processes (4 above +3 EUDET processes)

N
S
M
2
fo
r
T
el
es
co
p
e
T
es
t
—

M
.
N
ak

ao
—

p
.7

Proper response and error forwarding back to NSM2

Log message forwarding to NSM2

Configuration parameters passed from NSM2

Rest of the world is kept as it is from NSM2 point of view, but
DataCollector will be modified to connect to EB2

N
S
M
2
fo
r
T
el
es
co
p
e
T
es
t
—

M
.
N
ak

ao
—

p
.8

EUDAQ Run Control system is easy to understand (to me)

EUDAQ Run Control can be easily controlled by NSM2,
while leaving the rest of the EUDAQ world as it is

Still a lot more to do on NSM2 side

N
S
M
2
fo
r
T
el
es
co
p
e
T
es
t
—

M
.
N
ak

ao
—

p
.9

Backup

N
S
M
2
fo
r
T
el
es
co
p
e
T
es
t
—

M
.
N
ak

ao
—

p
.1
0

(please see my 2012 March B2GM slides, too)

nsmd2
(master)

client1

client2

client3

shared
memory

nsmd2

shared
memory

shared
memory

nsmd2

shared
memory

client4
client5

nsmd2
(deputy)

nsmd2 daemon process is running on each host

user (client) program communicate with other user program through
nsmd via NSM API

network shared memory is visible as POSIX shared memory

N
S
M
2
fo
r
T
el
es
co
p
e
T
es
t
—

M
.
N
ak

ao
—

p
.1
1

Full rewriting, instead of modifying existing code

Aims of changes

Making the system more robust against a flood of messages

Reducing / removing hard coded features

Make the behaviour more deterministic

Make the allowed node-name longer, memory size bigger, etc

Multi-network in one process: supporting a network bridge

Factorize NSM-generic code and Belle(-II) specific features

(A better support on database, GUI)

Still minimizing the look-and-feel difference from NSM1

Make it free from 2038 (unix-year) problem — 64-bit time t

Code writing started in November/2012

Today, alpha version of NSM2 package is released.
https://belle2.cc.kek.jp/∼twiki/bin/view/Detector/DAQ/NSM2N

S
M
2
fo
r
T
el
es
co
p
e
T
es
t
—

M
.
N
ak

ao
—

p
.1
2

https://belle2.cc.kek.jp/~twiki/bin/view/Detector/DAQ/NSM2

NSM2 has two library layers: corelib and belle2lib

NSM1 has some Belle-dependent features embedded in the library

corelib

Nothing is assumed about usage, message or node type

All functions start with nsmlib

Flexibility at the cost of allowing wrong combinations

b2lib

Heavily assumes the run/slow control model of Belle II

All functions start with b2nsm

All necessary functions are (re)defined to avoid direct call to corelib

Limited flexibility to minimize mistakes

N
S
M
2
fo
r
T
el
es
co
p
e
T
es
t
—

M
.
N
ak

ao
—

p
.1
3

How to represent a message

A message code is a text-string, with a 16-bit hash code
(In NSM1, it was a hard-coded symbol in an include file)

In NSM2, the node name also has a hash code
(in NSM1, a linear search was used)

Hash is maintained in the MASTER nsmd, similarly to the nodename

How does it work (implemented, slightly modified since Jan)

Message is define on-the-fly, by registering a callback function

Number of parameters is variable (before it was fixed to 2)

(master)

int p[2];

p[0] = runno;

p[1] = runtype;

b2nsm_sendreq("CDC","START",2,p);

(CDC)

void startfunc(NSMmsg *m,NSMcontext *c) {

:

b2nsm_ok(m,"RUNNING","run %d",m->pars[0]); }

:

b2nsm_callback("START", startfunc);

N
S
M
2
fo
r
T
el
es
co
p
e
T
es
t
—

M
.
N
ak

ao
—

p
.1
4

Signal handler (default)

User program can do anything else while waiting (e.g. GUI)

May receive another message while processing the previous one

This was the only method in NSM1

Wait function (by explictly calling b2nsm wait)

Cannot do anything else until timeout

Message order is guaranteed

Has to be decided when calling nsm init2

Writing a code to use select

Socket is available in the NSMcontext object (returned by nsm init)

One can wait for NSM and something else at the same time

Once there’s something to read, one can call b2nsm wait

Need a bit more programming skill

N
S
M
2
fo
r
T
el
es
co
p
e
T
es
t
—

M
.
N
ak

ao
—

p
.1
5

data structure definition (implemented)

In NSM1, it was a hard-coded struct in an include file

In NSM2, the include file is parsed on the fly
(only a simple struct definition can be used)

NSM has to know it to convert into network-byte-order

Revision number to make sure the same data structure is used

(ttd data.h)

const int

ttd data revision = 1;

struct ttd_data {

int32 runno;

int32 evtno;

double trigrate;

byte status[128];

};

(main.c)

#include "ttd_data.h"

:

float update_freq = 5; // every 2 sec

struct ttd_data *datap = allocmem("ttd_data",

"TTD", ttd_data_revision, update_freq);

(other.c)

#include "ttd_data.h"

:

struct ttd_data *datap

= openmem("ttd_data", "TTD", ttd_data_revision);N
S
M
2
fo
r
T
el
es
co
p
e
T
es
t
—

M
.
N
ak

ao
—

p
.1
6

UDP broadcast (implemented)

Allocated data structure is shared between nsmd nodes

Single UDP packets if the size is below 1484 bytes,
very minimal header, 8-byte for UDP and only 8-byte for NSM
(but non-8-byte-boundary may cause a problem, probably will switch to 1480 byte)

Above this size, data update time may not be uniform, but time stamp
difference is recorded and can be monitored
(it was not clear in NSM1 when a particular part of data is updated)

Data size in 16-bit word, up to 65,296 byte (44 × 1484)

N
S
M
2
fo
r
T
el
es
co
p
e
T
es
t
—

M
.
N
ak

ao
—

p
.1
7

2 hosts (2 nsmd2), 3 processes (master, client, readdat)

N
S
M
2
fo
r
T
el
es
co
p
e
T
es
t
—

M
.
N
ak

ao
—

p
.1
8

Missing library functions (e.g., nsmlib closemem, . . .)

Remote logging function (e.g., b2nsm warning, . . .)

Belle II run scheme design

Various stress tests

Many nodes (up to limit)

Large datasize, fast data update

DoS attack-like flood-of-message handling

Colliding two NSM networks

Handling incorrect network setting, disconnecting network, etc

Full document (especially reference manual for the library section)

N
S
M
2
fo
r
T
el
es
co
p
e
T
es
t
—

M
.
N
ak

ao
—

p
.1
9

b2nsm_ready()

READY

(process-start)

b2nsm_init()

NOTREADY

lots of things could be here...

message: START

STARTING

b2nsm_ok()

! READY

message: START

b2nsm_error()

(invalid message)

b2nsm_failed()

RUNNING

! RUNNING

message: STOP

b2nsm_error()

b2nsm_fatal()

message: STOP

b2nsm_ok()

STOPPING b2nsm_failed() ?

Acknowledge the NSM message by one of
b2nsm ok, b2nsm failed, b2nsm error

State transitions, but states are kept inside belle2nsm library

The system can be controlled by somebody other than MASTER

Making a subsystem READY is the nasty part of the procedure. . .

N
S
M
2
fo
r
T
el
es
co
p
e
T
es
t
—

M
.
N
ak

ao
—

p
.2
0

(process-start)

b2nsm_init()

setup_tx()

check_tx()

check_fifo()

clear_fifo()

check_fpga() boot_fpga()

check_fpga()

NOTREADY / 0=starting

NOTREADY / -1=tx error

b2nsm_notready(-1)

NOTREADY / -2=fifo error

b2nsm_notready(-2)

NOTREADY / -3=fpga error

b2nsm_notready(-3)

check_link() reset_link()

check_link()

NOTREADY / 1=link error

b2nsm_notready(1)

message: RESET_LINK(need extra info from timing system)load_param()

check_fee()

b2nsm_ready()

READY

start_readout()

B2NSM functions and messages
Other local functions for actions
Other local functions for decisions

B2NSM state

NOTREADY / 2=fee error

b2nsm_notready(-2)

no

no

no

no

no

no

no

yes

yes

yes

yes

yes

yes

yes

message: RESET_LINK

Two types of NOTREADY:
recoverable / non-recoverable

A cold start-up procedure
is needed in addition

N
S
M
2
fo
r
T
el
es
co
p
e
T
es
t
—

M
.
N
ak

ao
—

p
.2
1

Constraints

Cold start, firmware programming, parameter downloading, link
establishing have to be done

Wish

Readout cycle to be all the time running, regardless the HV /
accelerator condition (idle running)

In case of an error in one sub-system, the rest should not stop

Transition from idle running to real running is a quick run number and
run type change in the fast TT link command

“Problems”

Detectors are willing to initialize everything every time regardless the
deadtime caused by it

Not easy to synchronize at the event builder

FPGA reprogramming has to be included as we expect SEU

N
S
M
2
fo
r
T
el
es
co
p
e
T
es
t
—

M
.
N
ak

ao
—

p
.2
2

Now testing with 4 PCs on general network
(a few more can be quickly added if needed)

Many new key features are now implemented, but still not
ready for a test use

Target dates

January DAQ WS for alpha release (for PocketDAQ) did not happen

March B2GM for beta alpha release

March B2GM for a first proposal of the state model and run start
sequence or something alike for Pocket-DAQ

After March B2GM

Throughput measurement with a dedicated fast (GbE) network

Serious error handling tests with a large system (≫ 10 nodes)

Master COPPER/HSLB/FTSW control for PocketDAQ

N
S
M
2
fo
r
T
el
es
co
p
e
T
es
t
—

M
.
N
ak

ao
—

p
.2
3

