Search for Charged Higgs using Boosted Top Techniques

Geoffrey Herbert, Elin Bergeaas Kuutmann, Heiko Lacker, Martin Zur Nedden.

ATLAS

Humboldt Universität 2013

Motivation for a Charged Higgs

Standard Model Higgs Sector

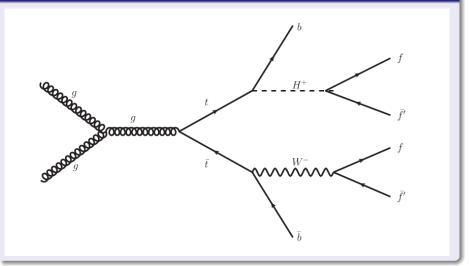
- Minimal Higgs model.
- \bullet One Higgs Doublet \rightarrow One neutral Higgs Boson.
- Minimal choice is most economic, but arbitrary.

Constraints on Higgs Sector

- Experimental: $ho=m_W^2/(m_Z^2\cos^2(heta_W))\simeq 1$
- Theoretical: (Non-)Existence of tree level FCNCs.

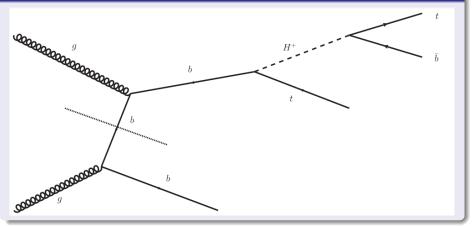
Two Higgs Doublet Model

Motivation

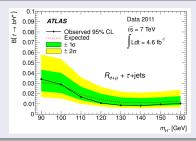

- Minimal Extentsion Higgs model.
- Fulfills Higgs Sector Constraints.
- Required in some SuperSymmetric Models.
- Keeps Fourth Generation hopes alive!

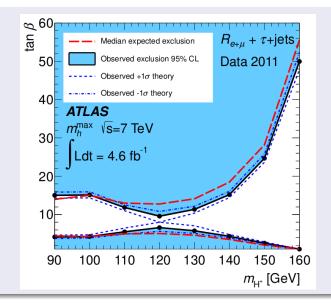
Higgs Sector

- A Charged Higgs Pair H^{\pm} .
- Two Neutral CP-even Higgs H^0 and h^0 .
- One Neutral CP-odd Higgs A⁰.
- Six free parameters: Four Higgs Masses, $\tan \beta = v_2/v_1$ and a Higgs Mixing angle α .

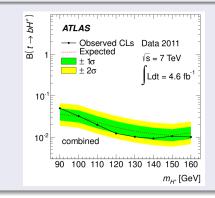

Charged Higgs Production at the LHC

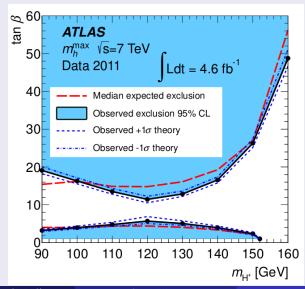
Light Charged Higgs $M_{H^{\pm}} < m_t$


Charged Higgs Production at the LHC


Heavy Charged Higgs $M_{H^{\pm}} > m_t$

Search for charged Higgs bosons through the violation of lepton universality in $t\bar{t}$ events using pp collision data at $\sqrt{s} = 7$ TeV with the ATLAS experiment.


- JHEP03(2013)076 arXiv:1212.3572
- Assume: $B(H^+ \rightarrow \tau \nu) = 100\%$
- Searches for H^+ in mass range 90 160 GeV
- Measures the Ratio: $R_\ell = {B(t \overline{t} o b \overline{b} + \ell au_{had} + N
 u) \over B(t \overline{t} o b \overline{b} + \ell \ell' + N
 u)}$



Search for charged Higgs bosons decaying via $H^{\pm} \rightarrow \tau \nu$ in $t\bar{t}$ events using pp collision data at $\sqrt{s} = 7$ TeV with the ATLAS detector.

- JHEP1206(2012)039 arXiv:1204.2760
- Assume: $B(H^+ \rightarrow \tau \nu) = 100\%$
- Searches for H^+ in mass range $90 160 {
 m GeV}$

Geoffrey Herbert (ATLAS)

Date 8 / 17

Brief Aside: Jet Clustering Algorithms

General Algorithm

Jet Algorithms run over lists of topological clusters. (Energy, Eta, Phi).

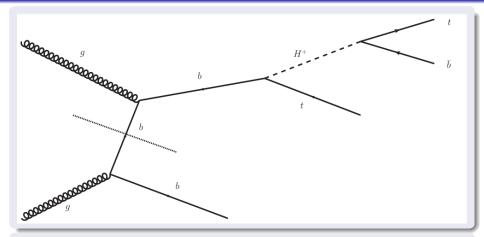
- For each cluster (i) define the variable: $d_i = p_{T,i}^{2n}$
- For each pair of clusters (i, j) define the variable: $d_{ij} = \frac{\Delta R_{ij}^2}{\Delta R^2} min(p_{T,i}^{2n}, p_{T,j}^{2n})$
- Find $min(d_i, d_{ij})$
- If the minimum is a d_{ij}: merge the entries i and j
- If the minimum is a d_i: save the entry as a jet and remove it from the list.
- Repeat all steps until all entries are saved as jets and initial list is empty.

Specific Algorithms


- n = 1: k_T Algorithm Clusters lowest p_T entries first.
- n = 0: Cambridge/Aachen Algorithm Purely geometric.
- n = -1: Anti- k_T Algorithm Clusters highest p_T entries first.

Planned Search Strategy for Heavy Charged Higgs

Boosted Topologies


- Good Rule of Thumb for opening angle between constituents of two body decay: Radius_{jet} < 2M_(parent)/p_{T,(parent)}.
- Decay products coming from a Top quark with $P_T \approx 350 \text{GeV}$ potentially able to be reconstructed in a single Fat-jet with $\Delta R = 1.5$.
- Merging of Top quark decay products occurs with increasing Top quark Momentum.
- Jet algorithms using jets with small radii will become inefficient with increasing particle momentum.

Planned Search Strategy for Heavy Charged Higgs

Figure taken from slides of C.Eckardt.

Planned Search Strategy for Heavy Charged Higgs

- One Top-Tag.
- One Lepton plus Missing E_T (MET).
- Up to 4 b-tags.

Baseline Analysis

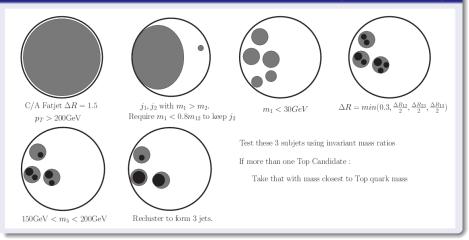
Cuts

- Exactly One Lepton with $E_T > 25 \text{GeV}$.
- Five Jets with $P_T > 25 {
 m GeV}, \eta < 2.5, |{
 m JVF}| > 0.5.$
- Three b-tags.
- MET > 30 GeV(el), > 20 GeV(mu)
- MTW > 30GeV(el), MTW + MET > 60GeV(el)

ATLAS(/Another) Top Tagger (ATT) Analysis

Cuts

- JHEP1209(2012)041. arXiv:1207.2409.
- Exactly One Lepton with $E_T > 25 {
 m GeV}$
- MET > 30 GeV(el), > 20 GeV(mu)
- MTW > 30 GeV(el), MTW + MET > 60 GeV(el)
- Three b-tags.
- Anti-kT10 jet with $p_T > 300 \text{GeV}, m > 100 \text{GeV}, d_{12} > 40 \text{GeV}, \Delta \phi (\text{jet, lepton}) > 2.3, \Delta R (\text{jet, lepton}) > 1.5$
- Lepton Associated Anti-kT4 jet with $p_T > 25 \text{GeV}$ and $\Delta R(\text{jet}, \text{lepton}) < 1.5$.


HepTopTagger (HTT) Analysis

Cuts

- ATLAS-CONF-2012-065
- Exactly One Lepton with $E_T > 25 \text{GeV}$
- MET > 30 GeV(el), > 20 GeV(mu)
- MTW > 30 GeV(el), MTW + MET > 60 GeV(el)
- Three b-tags.
- At Least one HepTopTag.
- Lepton Associated Anti-kT4 jet with $p_T > 25 \text{GeV}$ and $\Delta R(\text{jet}, \text{lepton}) < 1.5$.

HepTopTagger

Theory Paper: Stop Reconstruction with Tagged Tops (arXiv:1006.2833)

Future work to focus on how boosted search techniques can complement/improve upon resolved reconstruction search strategies.