Exercises to Lectures on Baryogenesis

W. Bernreuther April 9, 2013

1. Baryon number operator \hat{B}

Let $q(\mathbf{x}, t)$ be the Dirac field operator that describes a quark of flavor $q=u, \ldots, t, q^{\dagger}(\mathbf{x}, t)$ denotes its Hermitean adjoint, and $\bar{q}=q^{\dagger} \gamma^{0}$. The baryon number operator is

$$
\hat{B}=\frac{1}{3} \sum_{q} \int d^{3} x: q^{\dagger}(\mathbf{x}, t) q(\mathbf{x}, t):
$$

and the colons denote normal ordering. Let C, P denote the unitary and T the anti-unitary operator which implement the charge conjugation, parity, and time reversal transformations, respectively, in the space of states.
a) Show that \hat{B} is even under P and odd under C and $C P$.
b) How does $\hat{B}(t)$, respectively $\hat{B}(0)$ transform under $\Theta \equiv C P T$?

Use that the action of P, C, T on the quark fields is, adopting standard phase conventions,

$$
\begin{aligned}
P q(\mathbf{x}, t) P^{-1} & =\gamma^{0} q(-\mathbf{x}, t) \\
C q(\mathbf{x}, t) C^{-1} & =i \gamma^{2} q^{\dagger}(\mathbf{x}, t) \\
T q(\mathbf{x}, t) T^{\dagger} & =\gamma_{5} \gamma^{0} \gamma^{2} q(\mathbf{x},-t)
\end{aligned}
$$

where γ^{0}, γ^{2}, and $\gamma_{5}=i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}$ denote Dirac matrices.

2. The 3. Sakharov condition

A system which is in thermal equilibrium is described in quantum theory by a density operator $\rho=\exp (-H / T)$, where H is the Hamiltion operator of the system. The thermal average of an observable \mathcal{O} is given by $\langle\mathcal{O}\rangle_{T}=\operatorname{tr}(\rho \mathcal{O})$.
Show that $\langle\hat{B}(t)\rangle_{T}=0$ if the system is in thermal equilibrium and H ist $C P T$-invariant.

3. Weyl and Majorana fields

Consider a Dirac field

$$
\psi(x)=\binom{\xi(x)}{\eta(x)}
$$

where ξ, η are 2 -component spinor fields. In the chiral representation of the γ matrices, using the convention where $\gamma_{5}=\operatorname{diag}\left(\mathrm{I}_{2},-\mathrm{I}_{2}\right)$, we have $\xi=\psi_{R}, \eta=\psi_{L}$, where ψ_{R}, ψ_{L} are the right-chiral and left-chiral Weyl fields. In the chiral representation the charge conjugated spinor field ψ^{c} reads

$$
\begin{equation*}
\psi^{c} \equiv i \gamma^{2} \psi^{\dagger}=\binom{i \sigma_{2} \eta^{\dagger}}{-i \sigma_{2} \xi^{\dagger}} \tag{1}
\end{equation*}
$$

and σ_{2} is the second Pauli matrix.
a) Use the Weyl fields in 4 -component form, $\psi_{R}=(\xi, 0)^{T}, \psi_{L}=(0, \eta)^{T}$, and determine, using (1), their charge-conjugates:

$$
\psi_{L}^{c} \equiv\left(\psi_{L}\right)^{c} \quad \text { and } \quad \psi_{R}^{c} \equiv\left(\psi_{R}\right)^{c} .
$$

b) Interpret the Weyl fields $\psi_{L}, \psi_{R}, \psi_{L}^{c}, \psi_{R}^{c}$; that is, which L - and R-chiral states are created/annihilated by these fields?
c) Obtain $\overline{\psi_{L}^{c}}$ and $\overline{\psi_{L}^{c}}$ in terms of the fields ξ and η.
d) A Majorana field is defined by the condition

$$
\psi^{c} \stackrel{!}{=} r \psi,
$$

where $|r|=1$ is a phase chosen by convention. Determine, for $r=+1$, the two solutions of this equation in terms of Weyl fields.

4. Lepton number violation, seesaw mechanism

The mass term for neutrino fields ν_{L} and ν_{R} with a Dirac term and a Majorana term for ν_{R} is in the 1-flavor case:

$$
-\mathcal{L}_{D+M}=m_{D} \bar{\nu}_{R} \nu_{L}+\frac{M}{2} \overline{\nu_{R}^{c}} \nu_{R}+\text { h.c. }
$$

We use real masses m_{D} and M.
a) Show that this Lagrangian violates lepton number.
b) Compute the eigenvalues and the eigen-fields of the mass matrix for $M \gg m_{D}$.

Solution to problem 1:

a) From the above P, C, T transformations of q we get

$$
\begin{aligned}
P q^{\dagger}(\mathbf{x}, t) P^{-1} & =q^{\dagger}(-\mathbf{x}, t) \gamma^{0} \\
C q^{\dagger}(\mathbf{x}, t) C^{-1} & =i q(\mathbf{x}, t) \gamma^{2} \\
T q^{\dagger}(\mathbf{x}, t) T^{\dagger} & =-q^{\dagger}(\mathbf{x},-t) \gamma^{2} \gamma^{0} \gamma_{5}
\end{aligned}
$$

Then

$$
\begin{array}{r}
P: q^{\dagger}(\mathbf{x}, t) q(\mathbf{x}, t): P^{-1}=: q^{\dagger}(-\mathbf{x}, t) q(-\mathbf{x}, t): \\
C: q^{\dagger}(\mathbf{x}, t) q(\mathbf{x}, t): C^{-1}=: q(\mathbf{x}, t) q^{\dagger}(\mathbf{x}, t):=-: q^{\dagger}(\mathbf{x}, t) q(\mathbf{x}, t): \\
T: q^{\dagger}(\mathbf{x}, t) q(\mathbf{x}, t): T^{-1}=: q^{\dagger}(\mathbf{x},-t) q(\mathbf{x},-t):
\end{array}
$$

With these relations we immediately obtain:

$$
\begin{aligned}
& P \hat{B} P^{-1}=\hat{B} \\
& C \hat{B} C^{-1}=-\hat{B}
\end{aligned}
$$

b) As shown in the lectures the baryon number operator is time-dependent due to non-perturbative effects. Using translation invariance we have $\hat{B}(t)=e^{i H t} \hat{B}(0) e^{-i H t}$, where H is the Hamiltonian of the system. The operator $\hat{B}(0)$ is even with respect to T and odd with respect to $\Theta \equiv C P T$:

$$
\Theta \hat{B}(0) \Theta^{\dagger}=-\hat{B}(0)
$$

Solution to problem 2:

Recall that a system which is in thermal equilibrium is stationary and is described by a density operator $\rho=\exp (-H / T)$. Using $\hat{B}(t)=e^{i H t} \hat{B}(0) e^{-i H t}$ we have

$$
<\hat{B}(t)>_{T}=\operatorname{tr}\left(e^{-H / T} e^{i H t} \hat{B}(0) e^{-i H t}\right)=\operatorname{tr}\left(e^{-i H t} e^{-H / T} e^{i H t} \hat{B}(0)\right)=<\hat{B}(0)>_{T}
$$

If the Hamiltonian H is $\Theta \equiv C P T$ invariant, $\Theta^{\dagger} H \Theta=H$, we get for the equilibrium average of $\hat{B} \equiv \hat{B}(0)$:

$$
\begin{aligned}
<\hat{B}>_{T} & =\operatorname{tr}\left(e^{-H / T} \hat{B}\right)=\operatorname{tr}\left(\Theta^{\dagger} \Theta e^{-H / T} \hat{B}\right) \\
& =\operatorname{tr}\left(e^{-H / T} \Theta \hat{B} \Theta^{\dagger}\right)=-<\hat{B}>_{T}
\end{aligned}
$$

where we used that \hat{B} is odd under CPT. Thus $\left\langle\hat{B}>_{T}=0\right.$ in thermal equilibrium.

Solution to problem 3:

Consider a Dirac field

$$
\begin{equation*}
\psi(x)=\binom{\xi(x)}{\eta(x)} \tag{2}
\end{equation*}
$$

where ξ, η are 2-component spinor fields. In the chiral representation of the γ matrices, using the convention where $\gamma_{5}=\operatorname{diag}\left(\mathrm{I}_{2},-\mathrm{I}_{2}\right)$, we have $\xi=\psi_{R}, \eta=\psi_{L}$, where ψ_{R}, ψ_{L} are the right-handed and left-handed Weyl fields. In the chiral representation the charge conjugated spinor field ψ^{c} reads

$$
\begin{equation*}
\psi^{c} \equiv i \gamma^{2} \psi^{\dagger}=\binom{i \sigma_{2} \eta^{\dagger}}{-i \sigma_{2} \xi^{\dagger}} \tag{3}
\end{equation*}
$$

and σ_{2} is the second Pauli matrix.
a) Let's use the Weyl fields in 4-component form, $\psi_{R}=(\xi, 0)^{T}, \psi_{L}=(0, \eta)^{T}$, and determine, using (3), their charge-conjugates:

$$
\begin{align*}
\psi_{L}^{c} & \equiv\left(\psi_{L}\right)^{c}=\binom{i \sigma_{2} \eta^{\dagger}}{0} \tag{4}\\
\psi_{R}^{c} & \equiv\left(\psi_{R}\right)^{c}=\binom{0}{-i \sigma_{2} \xi^{\dagger}} . \tag{5}
\end{align*}
$$

b) From this equation we can also read off the relation between the 2 -component Weyl fields and their charge conjugates. Eq. (5) tells us that $\psi_{L}^{c}\left(\psi_{R}^{c}\right)$ is a right-handed (left-handed) Weyl field. Thus the Weyl field operator $\psi_{L}\left(\psi_{R}\right)$ annihilates a fermion state $\mid \psi>$ having $\mathrm{L}(\mathrm{R})$ chirality and creates an antifermion state $\mid \bar{\psi}>$ with $\mathrm{R}(\mathrm{L})$ chirality.
$\psi_{L}^{c}\left(\psi_{R}^{c}\right)$ annihilates $\mid \bar{\psi}>$ having $\mathrm{R}(\mathrm{L})$ chirality
and creates a state $\mid \psi>$ with $\mathrm{L}(\mathrm{R})$ chirality.
c) Moreover, we immediately obtain that

$$
\begin{align*}
& \overline{\overline{\psi_{L}^{c}}} \equiv\left(\psi_{L}^{c}\right)^{\dagger} \gamma^{0}=\left(0, i \eta^{T} \sigma_{2}\right), \tag{6}\\
& \overline{\psi_{R}^{c}} \equiv\left(\psi_{R}^{c}\right)^{\dagger} \gamma^{0}=\left(-i \xi^{T} \sigma_{2}, 0\right)
\end{align*}
$$

d) A Majorana field is defined by the condition

$$
\begin{equation*}
\psi^{c} \stackrel{!}{=} r \psi \tag{8}
\end{equation*}
$$

where $|r|=1$ is a phase chosen by convention. For $r=+1$ the four-component field $\psi_{1}=$ $\left(i \sigma_{2} \eta^{\dagger}, \eta\right)^{T}$ is a solution of this equation. In terms of Weyl fields this solution reads

$$
\begin{equation*}
\psi_{1}=\psi_{L}+\psi_{L}^{c} \tag{9}
\end{equation*}
$$

The other solution of eq. (8) with $r=1$ is

$$
\begin{equation*}
\psi_{2}=\psi_{R}+\psi_{R}^{c} \tag{10}
\end{equation*}
$$

Solution to problem 4:

a) Recalling the connection between symmetries and conservation laws we see that the nonconservation of L-number is related to the fact that \mathcal{L}_{D+M} is not invariant under the global $U(1)$ transformation $\nu_{L, R} \rightarrow e^{i \omega} \nu_{L, R}, \bar{\nu}_{L, R} \rightarrow e^{-i \omega} \bar{\nu}_{L, R}$. The Majorana mass term violates the L-number by 2 units, $|\Delta \mathrm{L}|=2$. For instance $<\bar{\nu}_{R}\left|\overline{\nu_{L}^{c}} \nu_{L}\right| \nu_{L}>\neq 0$; i.e., the Majorana term flips a left-handed $\mid \nu_{L}>$ into a right-handed $\left|\bar{\nu}_{R}\right\rangle$.
b) It is useful to put the mass matrix into the following form:

$$
\begin{aligned}
-\mathcal{L}_{D+M} & =\frac{M}{2} \overline{\nu_{R}^{c}} \nu_{R}+m_{D} \bar{\nu}_{R} \nu_{L}+\text { h.c. } \\
& =\frac{1}{2}\left(\bar{\psi}_{1}, \bar{\psi}_{2}\right)\left(\begin{array}{cc}
0 & m_{D} \\
m_{D} & M
\end{array}\right)\binom{\psi_{1}}{\psi_{2}}
\end{aligned}
$$

where

$$
\begin{aligned}
& \psi_{1}=\nu_{L}+\nu_{L}^{c}, \\
& \psi_{2}=\nu_{R}+\nu_{R}^{c}
\end{aligned}
$$

are Majorana fields. The mass parameters are taken to be real.
In order to obtain this representation of the mass matrix, one uses that $\bar{\psi}_{A} \psi_{A}=\overline{\psi_{A}^{c}} \psi_{A}^{c}=0$ for $\mathrm{A}=\mathrm{L}, \mathrm{R}$,
$\overline{\nu_{R}^{c}} \nu_{L}^{c}=\bar{\nu}_{R} \nu_{L}$,
$\bar{\nu}_{R} \nu_{L}^{c}+\bar{\nu}_{R}^{c} \nu_{L}=0$.
Let's diagonalize the mass matrix for the case $M \gg m_{D}$. We obtain in the mass basis

$$
-\mathcal{L}_{D+M}=\frac{m_{\nu}}{2} \bar{\nu} \nu+\frac{m_{N}}{2} \bar{N} N,
$$

where

$$
\begin{aligned}
-m_{\nu} & \simeq \frac{m_{D}^{2}}{M} \ll m_{D} \\
m_{N} & \simeq M+\frac{m_{D}^{2}}{M}
\end{aligned}
$$

and the eigen-fields are, up to terms of order m_{D} / M :

$$
\nu \simeq \psi_{1}, \quad N \simeq \psi_{2}
$$

The eigenvalue m_{ν} can be made positive by an appropriate change of phase of the field ν. For $M \gg m_{D}$ the neutrino mass eigenstates consist of a very light left-handed state $\mid \nu>$ and a very heavy right-handed state $\mid N>$. This constitutes the seesaw mechanism for generating a very small mass for a left-handed neutrino from $m_{D}=\mathcal{O}\left(h_{\ell} v\right)$ and from a large M.

