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1. Baryon number operator B̂

Let q(x, t) be the Dirac field operator that describes a quark of flavor q = u, ..., t, q†(x, t)
denotes its Hermitean adjoint, and q̄ = q†γ0. The baryon number operator is

B̂ =
1

3

∑
q

∫
d3x : q†(x, t)q(x, t) : ,

and the colons denote normal ordering. Let C, P denote the unitary and T the anti-unitary
operator which implement the charge conjugation, parity, and time reversal transformations,
respectively, in the space of states.

a) Show that B̂ is even under P and odd under C and CP .

b) How does B̂(t), respectively B̂(0) transform under Θ ≡ CPT?

Use that the action of P,C, T on the quark fields is, adopting standard phase conventions,

Pq(x, t)P−1 = γ0q(−x, t) ,

Cq(x, t)C−1 = iγ2q†(x, t) ,

T q(x, t)T † = γ5γ
0γ2q(x,−t) ,

where γ0, γ2, and γ5 = iγ0γ1γ2γ3 denote Dirac matrices.

2. The 3. Sakharov condition

A system which is in thermal equilibrium is described in quantum theory by a density
operator ρ = exp(−H/T ), where H is the Hamiltion operator of the system. The thermal
average of an observable O is given by 〈O〉T = tr(ρO).
Show that 〈B̂(t)〉T = 0 if the system is in thermal equilibrium and H ist CPT -invariant.

3. Weyl and Majorana fields

Consider a Dirac field

ψ(x) =

(
ξ(x)
η(x)

)
,

where ξ, η are 2-component spinor fields. In the chiral representation of the γ matrices,
using the convention where γ5 = diag(I2,−I2), we have ξ = ψR, η = ψL, where ψR, ψL are
the right-chiral and left-chiral Weyl fields. In the chiral representation the charge conjugated
spinor field ψc reads

ψc ≡ iγ2ψ† =

(
iσ2η

†

−iσ2ξ†
)
, (1)

and σ2 is the second Pauli matrix.
a) Use the Weyl fields in 4-component form, ψR = (ξ, 0)T , ψL = (0, η)T , and determine,
using (1), their charge-conjugates:

ψcL ≡ (ψL)c and ψcR ≡ (ψR)c .



b) Interpret the Weyl fields ψL, ψR, ψ
c
L, ψ

c
R; that is, which L− and R-chiral states are cre-

ated/annihilated by these fields?

c) Obtain ψcL and ψcL in terms of the fields ξ and η.

d) A Majorana field is defined by the condition

ψc
!

= rψ ,

where |r| = 1 is a phase chosen by convention. Determine, for r = +1, the two solutions of
this equation in terms of Weyl fields.

4. Lepton number violation, seesaw mechanism

The mass term for neutrino fields νL and νR with a Dirac term and a Majorana term for νR is in
the 1-flavor case:

−LD+M = mDν̄RνL +
M

2
νcRνR + h.c.

We use real masses mD and M .

a) Show that this Lagrangian violates lepton number.

b) Compute the eigenvalues and the eigen-fields of the mass matrix for M � mD.



Solution to problem 1:
a) From the above P,C, T transformations of q we get

Pq†(x, t)P−1 = q†(−x, t)γ0 ,

Cq†(x, t)C−1 = iq(x, t)γ2 ,

T q†(x, t)T † = −q†(x,−t)γ2γ0γ5 .

Then

P : q†(x, t)q(x, t) : P−1 = : q†(−x, t)q(−x, t) : ,

C : q†(x, t)q(x, t) : C−1 = : q(x, t)q†(x, t) : = − : q†(x, t)q(x, t) : ,

T : q†(x, t)q(x, t) : T−1 = : q†(x,−t)q(x,−t) : .

With these relations we immediately obtain:

PB̂P−1 = B̂ ,

CB̂C−1 = −B̂ .

b) As shown in the lectures the baryon number operator is time-dependent due to non-perturbative
effects. Using translation invariance we have B̂(t) = eiHtB̂(0)e−iHt, where H is the Hamiltonian
of the system. The operator B̂(0) is even with respect to T and odd with respect to Θ ≡ CPT :

ΘB̂(0)Θ† = −B̂(0) .

Solution to problem 2:
Recall that a system which is in thermal equilibrium is stationary and is described by a density
operator ρ = exp(−H/T ). Using B̂(t) = eiHtB̂(0)e−iHt we have

< B̂(t) >T = tr(e−H/T eiHtB̂(0)e−iHt) = tr(e−iHte−H/T eiHtB̂(0)) =< B̂(0) >T ,

If the Hamiltonian H is Θ ≡ CPT invariant, Θ†HΘ = H, we get for the equilibrium average of
B̂ ≡ B̂(0):

< B̂ >T = tr(e−H/T B̂) = tr(Θ†Θe−H/T B̂)

= tr(e−H/TΘB̂Θ†) = − < B̂ >T ,

where we used that B̂ is odd under CPT. Thus < B̂ >T= 0 in thermal equilibrium.

Solution to problem 3:
Consider a Dirac field

ψ(x) =

(
ξ(x)
η(x)

)
, (2)

where ξ, η are 2-component spinor fields. In the chiral representation of the γ matrices, using the
convention where γ5 = diag(I2,−I2), we have ξ = ψR, η = ψL, where ψR, ψL are the right-handed
and left-handed Weyl fields. In the chiral representation the charge conjugated spinor field ψc

reads

ψc ≡ iγ2ψ† =

(
iσ2η

†

−iσ2ξ†
)
, (3)



and σ2 is the second Pauli matrix.

a) Let’s use the Weyl fields in 4-component form, ψR = (ξ, 0)T , ψL = (0, η)T , and determine, using
(3), their charge-conjugates:

ψcL ≡ (ψL)c =

(
iσ2η

†

0

)
, (4)

ψcR ≡ (ψR)c =

(
0

−iσ2ξ†
)
. (5)

b) From this equation we can also read off the relation between the 2-component Weyl fields and
their charge conjugates. Eq. (5) tells us that ψcL(ψcR) is a right-handed (left-handed) Weyl field.
Thus the Weyl field operator
ψL(ψR) annihilates a fermion state |ψ > having L (R) chirality

and creates an antifermion state |ψ̄ > with R (L) chirality.
ψcL(ψcR) annihilates |ψ̄ > having R (L) chirality

and creates a state |ψ > with L (R) chirality.
c) Moreover, we immediately obtain that

ψcL ≡ (ψcL)†γ0 = (0, iηTσ2) , (6)

ψcR ≡ (ψcR)†γ0 = (−iξTσ2, 0) . (7)

d) A Majorana field is defined by the condition

ψc
!

= rψ , (8)

where |r| = 1 is a phase chosen by convention. For r = +1 the four-component field ψ1 =
(iσ2η

†, η)T is a solution of this equation. In terms of Weyl fields this solution reads

ψ1 = ψL + ψcL . (9)

The other solution of eq. (8) with r = 1 is

ψ2 = ψR + ψcR . (10)

Solution to problem 4:

a) Recalling the connection between symmetries and conservation laws we see that the non-
conservation of L-number is related to the fact that LD+M is not invariant under the global U(1)
transformation νL,R → eiωνL,R, ν̄L,R → e−iων̄L,R. The Majorana mass term violates the L-number
by 2 units, |∆L| = 2. For instance < ν̄R|νcLνL|νL >6= 0; i.e., the Majorana term flips a left-handed
|νL > into a right-handed |ν̄R >.

b) It is useful to put the mass matrix into the following form:

−LD+M =
M

2
νcRνR +mDν̄RνL + h.c.

=
1

2
(ψ̄1, ψ̄2)

(
0 mD

mD M

) (
ψ1

ψ2

)
,



where

ψ1 = νL + νcL ,

ψ2 = νR + νcR

are Majorana fields. The mass parameters are taken to be real.
In order to obtain this representation of the mass matrix, one uses that
ψ̄AψA = ψcAψ

c
A = 0 for A=L,R,

νcRν
c
L = ν̄RνL,

ν̄Rν
c
L + νcRνL = 0.

Let’s diagonalize the mass matrix for the case M � mD. We obtain in the mass basis

−LD+M =
mν

2
ν̄ν +

mN

2
N̄N ,

where

−mν ' m2
D

M
� mD ,

mN ' M +
m2
D

M
,

and the eigen-fields are, up to terms of order mD/M :

ν ' ψ1 , N ' ψ2 ,

The eigenvalue mν can be made positive by an appropriate change of phase of the field ν. For
M � mD the neutrino mass eigenstates consist of a very light left-handed state |ν > and a very
heavy right-handed state |N >. This constitutes the seesaw mechanism for generating a very
small mass for a left-handed neutrino from mD = O(h`v) and from a large M .


