

MillePede-II short review

C. Kleinwort - DESY

EUTelescope Workshop 26.03.13

MP - Introduction

- * Millepede is a software package for linear least squares fits with a large number of parameters
- * Developed and implemented in FORTAN77 by Volker Blobel (Univ. Hamburg)
- * Used by several experiments for track based alignment and calibration

MP basics
$$\chi^{2}(\Delta \mathbf{p}, \Delta \mathbf{q}) = \sum_{j}^{\text{tracks}} \sum_{i}^{\text{hits}} \frac{1}{\sigma_{ij}^{2}} \left(\mathbf{m}_{ij} - \mathbf{f}_{ij} \left(\mathbf{p}_{0}, \mathbf{q}_{j0} \right) - \frac{\partial \mathbf{f}_{ij}}{\partial \mathbf{p}} \Delta \mathbf{p} - \frac{\partial \mathbf{f}_{ij}}{\partial \mathbf{q}_{j}} \Delta \mathbf{q}_{j} \right)^{2}$$

- * Track based alignment (and calibration)
 - Minimizing χ^2 sum
 - + for large number of global (alignment) parameters $\Delta \mathbf{p}$
 - + from large number of local fits (tracks Δq_j)
 - + with model f linearized at initial parameters ($\mathbf{p}_0, \mathbf{q}_0$)
 - Linear equation system with bordered band matrix
 - + Border populated due to global derivatives $\partial f/\partial p$
 - + Block diagonal by (independent) local derivatives $\partial f/\partial q_i$
 - Local fits $(\partial \chi^2/\partial \Delta q_i=0)$ done with $p=p_0$
 - + Size of lin. eqn. system reduced to number of global par.
 - + Correlations of global trough local parameters maintained

Millepede basics (II)

* Procedure

- Local (track) fits
 - + For all tracks 'j' solve linear equation system $A_j \cdot \Delta q_j = b_j$
 - + With solution and A_j^{-1} fill global matrix A_g and vector \mathbf{b}_g

Global fit

- + Optionally add constraints ($C \cdot \Delta p = c$, e.g. implement hierarchy)
- + Solve linear equation system $A_g \cdot \Delta p = b_g$
- + Update alignment parameters: $p=p+\Delta p$

Iteration

- + For outlier rejection repeat previous steps
- * χ^2 cut for local fit changed from soft to hard

Millepede history (I)

* Millepede-I

- Development started 1996
- One set of (FORTRAN) subroutines
- Since 1997 main user has been H1 for calibration and alignment of the central drift chambers
 - + Online calibration: mean drift velocity, Lorentz angle vs t
 - + Offline calibration: vd, alor vs R, φ, B(Z,R), E, P, ...
- Applicable for up to several thousand parameters
 - + Matrix inversion as only solution method, CPU time $\sim n_{par}^3$

MillePede history (II)

* MillePede-II

- Development started 2005 for LHC experiments
 - + Allow for 100 000 parameters
- Split into two parts
 - * Mille: create binary files with measurements, errors and derivatives from user code (C/C++ or FORTRAN)
 - * Pede: standalone FORTRAN executable, steering text file and binary files as input
- Main user is CMS for alignment of the Si tracker
 - + 25k (curved) Si sensors

MillePede history (III)

- * New features with MillePede-II
 - Matrix storage
 - + Sparse: only nonzero matrix elements Mij stored
 - In alignment typically only 10-30% of M_{ij} <>0 (i,j connected by track(s))
 - Solution method
 - + MINRES: stepwise minimize $|A_g \cdot \Delta p b_g|$ to obtain Δp
 - A_g^{-1} is not calculated \rightarrow no errors for results
 - CPU time dominated by product 'matrix times vector': ~npar2·nstep

V. Blobel: Track based alignment, Nuclear Instruments and Methods A, 566 (2006), pp. 5-13)

MillePede today

* MillePedeII@svnsrv.desy.de

- Maintenance and development by Statistics Tools group of Analysis Center in Helmholtz Terascale Alliance
- * Moved to FORTRAN90, 64bit (doxygen documentation)
- * Optimization of (Pede) resource usage
 - Memory: matrix compression
 - ▶ CPU: parallelization with <u>OpenMPTM</u>
 - Fit 200k parameters from 10⁷ tracks in 32GB in 10h