General Broken Lines (GBL) for track fitting and alignment

C. Kleinwort - DESY

EUTelescope Workshop 26.03.13

Overview

* General Broken Lines
- Based on original broken lines by V. Blobel (UHH)
- Concepts
- Definition, construction of trajectory
- Local track parameters, implementation of fit
+ Comparison with Kalman filter
* GBL software package, use cases
+ Simple track fitting
+ Tracker alignment with Millepede-II
* Summary

Definition

* Trajectory based on 'general broken lines'
- Track refit to add with local offsets $u_{i}\left(s_{i}\right)$ the description of multiple scattering to an initial trajectory ('seed') based on the propagation in a magnetic field (and energy loss)

Construction (I)

* Trajectory based on 'general broken lines'
- Refit for set of ($n_{\text {meas }}$) measurements m on a track based on sequence of ($n_{\text {scat }}$) thin scatterers
+ Material between adjacent measurements is in general a thick scatterer, represented by (up to) 2 thin scatterers with similar mean and RMS of material
- Dummy thin scatterers at first and last measurement
+ Offsets u in local system ($\left.u_{1}, u_{2}, w\right)$ at each scatterer
- Measurements can coincide with a scatterer or are described by interpolation of adjacent scatterers
- List of points (meas., scat.) ordered in arc-length

Construction (II)

- Prediction $u_{i n t}$ at measurement m from interpolation of adjacent scatterers (\rightarrow residuals $\mathbf{r}_{m}=\mathbf{m}-\partial \mathbf{m} / \partial \mathbf{u} \cdot \mathbf{u i n t}$)
- Triplets of consecutive scatterers define kinks \mathbf{k}
+2 multiple scattering angles at central scatterers
- Expectation value zero, variance V_{k} according to central scatterer
+Additional $n_{\text {scat }}-2$ 2D residuals $r_{k}=k$ ($+k_{0}$ if iterating)

measurement
thin scatterer
measurement
tincar

Construction (III)

- Track (fit) parameters
+ One common 'curvature' correction
$+n_{\text {scat }}$ 2D (small) offsets $u, n_{\text {scat }} \leq 2 n_{\text {meas }}$
- Seeding
+ Internally from (fit of) same measurements
+ Externally from (fit of) independent measurements

Local track parameters (I)

* Local track parameters p_{i}
- Defined (by user) in orthonormal system ($\left.u_{1}, U_{2}, w\right)$ at each point 'i'
+ Offsets $\mathbf{u}=\left(u_{1}, u_{2}\right)$ in local system
+ Direction: angles or slopes (e.g. $u^{\prime}=\partial u / \partial w$) or ..
+ Curvature: q/p or ..
- Use ($q / p, u^{\prime}, u$) in the following
- Technical constraint
+ Multiple scattering covariance matrix must be diagonal (at least one ui perpendicular to track direction)

Local track parameters (II)

- Curvilinear system (x_{T}, y_{T}, Z_{T}) well suited
+ Constructed from flight direction T (from seed) at point: $W=Z_{T}=T, U_{1}=X_{T}=Z \times T /|Z \times T|, U_{2}=Y_{T}=T \times X_{T}$
+Curvilinear track parameters $\left(\frac{q}{p}, \lambda, \phi, x_{\perp}, y_{\perp}\right)$
- Refit determines at each point corrections to the local track parameters (from the seed)
* Propagation on initial trajectory needs jacobian for transformation of local parameters
- $\mathbf{T}_{i}^{+}=\partial \mathbf{p}_{\mathrm{i}} / \partial \mathbf{p}_{\mathrm{i}-1}\left(, \mathrm{~T}_{\mathrm{i}}^{-}=\partial \mathbf{p}_{\mathrm{i}} / \partial \mathbf{p}_{\mathrm{i}+1}=\left(\mathrm{T}_{\left.\left.\mathrm{i}+\mathrm{I}^{+}\right)^{-1}\right)}\right)\right.$

Implementation (I)

* Linear least squares fit of $x=\left(\Delta q / p, . ., u_{j}, ..\right)$
- Minimize $\chi^{2}\left(\Delta \frac{q}{p}, \mathbf{u}_{1} \ldots \mathbf{u}_{n_{\text {nea }}}\right)=\sum_{i=1}^{n=1}\left(\mathbf{m}_{i}-\mathbf{H}_{i} \cdot \mathbf{p}_{\text {intiti, }}\right)^{l} \mathbf{V}_{\text {mesas } i}^{-1}\left(\mathbf{m}_{i}-\mathbf{H}_{i} \cdot \mathbf{p}_{\text {ituti }}\right)$

$$
\begin{aligned}
& +\sum_{i=2}^{n \text { men }}=\left(\mathbf{k}_{i}+\mathbf{k}_{0, i}\right)^{\prime} \mathbf{V}_{k, i}^{-1}\left(\mathbf{k}_{i}+\mathbf{k}_{0, i}\right) \quad\left(+\Delta \mathbf{p}_{\text {seed }}^{\prime}{ }_{\text {sece }}^{-1} \Delta \mathbf{p}_{\text {seed }} \text { for ext. seed }\right) \\
& \mathbf{p}_{\text {itt }}=\left(\Delta \frac{q}{\rho}, \mathbf{u}_{\dot{t}+\mathrm{t}}^{\prime}, \mathbf{u}_{\mathrm{itt}}\right), \mathbf{H}=\frac{\partial \mathbf{m}}{\partial \mathbf{p}_{\text {itt }}} \text { (up to 5D measurement } \boldsymbol{m} \text {) }
\end{aligned}
$$

- Need local derivatives $\partial p_{\text {int }, i} / \partial x, \partial \mathbf{k}_{\mathrm{i}} / \partial x$ to ge \dagger corresponding linear equation system $\mathbf{A} \cdot \boldsymbol{x}=\mathbf{b}$
$+u_{i n t, i}^{\prime}, u_{i n t, i,}, k_{i}$ depend only on few ((3) adjacent u_{j}
+ Matrix \mathbf{A} has band structure with band width $m \leq 5$ and
+ from general $\Delta q / p$ dependence (full) border of size $b=1$

Implementation (II)

- Bordered Band Matrix

$$
A_{i j}=0 \text { for } \min (i, j)>b \wedge|i-j|>m
$$

- Fast (band) solution by root free Cholesky decomposition
- $A_{u}=L^{+} L^{\dagger}$ (L triangular band, D diagonal)
- fwd/bwd substitution $L z=b_{u}, L^{+} x_{u}=D^{-1} z$
+ Full solution by block mat. algebra
+ Effort to calculate
- Solution $x\left(\rightarrow \Delta p_{i}\right): \sim n_{\text {par }} \cdot(m+b)^{2}$
$\left(\begin{array}{c|ccccccc}d & b & b & b & b & b & b & b \\ \hline b & d & m & m & 0 & 0 & 0 & 0 \\ b & m & d & m & m & 0 & 0 & 0 \\ b & m & m & d & m & m & 0 & 0 \\ b & 0 & m & m & d & m & m & 0 \\ b & 0 & 0 & m & m & d & m & m \\ b & 0 & 0 & 0 & m & m & d & m \\ b & 0 & 0 & 0 & 0 & m & m & d\end{array}\right)$
- Bordered band part of $\boldsymbol{A}^{-1}\left(\rightarrow \operatorname{cov}\left(p_{i}\right)\right): \sim n_{\text {par }} \cdot(m+b)^{2}$
- Full $\boldsymbol{A}^{-1}(\rightarrow$ Millepede $): \sim n_{\text {par }}{ }^{2} \cdot(m+b)$
- Inversion would be $\sim n_{\text {par }}{ }^{3}$
- For track fit $\left(\Delta p_{i}, \operatorname{cov}\left(p_{i}\right)\right)$ time linear in $n_{\text {meas }}$

Implementation (III)

\star Local track parameters $\mathbf{p}=\left(\frac{q}{p}, \mathbf{u}^{\prime}, \mathbf{u}\right), \mathbf{u}=\left(u_{1}, u_{2}\right), \mathbf{u}^{\prime}=\frac{\partial \mathbf{u}}{\partial w}$

* Propagation of offset Δu using local linearization
- with initial offset Δu_{0}, slope $\Delta u^{\prime}{ }_{0}$, curvature $\Delta q / p_{0}$:

$$
\begin{equation*}
\Delta \mathbf{u}=\frac{\partial \mathbf{u}}{\partial \mathbf{u}_{0}} \Delta \mathbf{u}_{0}+\frac{\partial \mathbf{u}}{\partial \mathbf{u}_{0}^{\prime}} \Delta \mathbf{u}_{0}^{\prime}+\frac{\partial \mathbf{u}}{\partial \frac{q}{p_{0}}} \Delta \frac{q}{p_{0}}=\mathbf{J} \Delta \mathbf{u}_{0}+\mathbf{S} \Delta \mathbf{u}_{0}^{\prime}+\mathbf{d} \Delta \frac{q}{p_{0}} \tag{2}
\end{equation*}
$$

$(\mathbf{d}, \mathbf{S}, \mathbf{J})=\frac{\partial \mathbf{u}}{\partial \mathbf{p}_{0}}$ taken from jacobian $\frac{\partial \mathbf{p}}{\partial \mathbf{p}_{0}}$

* Solve for slope $\Delta u^{\prime}{ }^{\prime}$:

$$
\begin{equation*}
\Delta \mathbf{u}_{0}^{\prime}=\mathbf{S}^{-1}\left(\Delta \mathbf{u}-\mathbf{J} \Delta \mathbf{u}_{0}-\mathbf{d} \Delta \frac{q}{p_{0}}\right) \tag{3}
\end{equation*}
$$

Implementation (IV)

\star With triplet $\mathbf{u}_{-}, \mathbf{u}_{0}, \mathbf{u}_{+}$of offsets: $\left(\Delta \mathbf{u}_{0} \rightarrow \mathbf{u}_{0}, \Delta \mathbf{u} \rightarrow \mathbf{u}_{ \pm}\right)$
(4) $\mathbf{u}_{+}=\mathbf{J}_{+} \mathbf{u}_{0}+\mathbf{S}_{+} \mathbf{u}_{+}^{\prime}+\mathbf{d}_{+} \Delta \frac{q}{p}, \mathbf{u}_{0(+)}{ }^{\prime}=\mathbf{W}_{+}\left(\mathbf{u}_{+}-\mathbf{J}_{+} \mathbf{u}_{0}-\mathbf{d}_{+} \Delta \frac{q}{p}\right), \mathbf{W}_{+}=\mathbf{S}_{+}^{-1}$
(5) $\mathbf{u}_{-}=\mathbf{J}_{-} \mathbf{u}_{0}+\mathbf{S}_{-} \mathbf{u}_{-}^{\prime}+\mathbf{d}_{-} \Delta \frac{q}{p}, \mathbf{u}_{0(-)}^{\prime}=\mathbf{W}_{-}\left(\mathbf{J}_{-} \mathbf{u}_{0}-\mathbf{u}_{-}+\mathbf{d}_{-} \Delta \frac{q}{p}\right), \mathbf{W}_{-}=-\mathbf{S}_{-}^{-1}$ * Kink kat uo
(6) $\mathbf{k}=\mathbf{u}_{0_{(+)}}^{\prime}-\mathbf{u}_{0_{(-)}}=\mathbf{W}_{+} \mathbf{u}_{+}-\left(\mathbf{W}_{+} \mathbf{J}_{+}+\mathbf{W}_{-} \mathbf{J}_{-}\right) \mathbf{u}_{0}+\mathbf{W}_{-} \mathbf{u}_{-}-\left(\mathbf{W}_{+} \mathbf{d}_{+}+\mathbf{W}_{-} \mathbf{d}_{-}\right) \Delta \frac{q}{p}$ * Interpolation

- solve (6) for $u_{\text {int }}=u_{0}$ with $k \equiv 0$, (4 or 5) using $u_{0}=u_{\text {int }}$
(7) $\mathbf{u}_{\text {int }}=\mathbf{N}\left(\mathbf{W}_{+} \mathbf{u}_{+}+\mathbf{W}_{-} \mathbf{u}_{-}\right)-\mathbf{N}\left(\mathbf{W}_{+} \mathbf{d}_{+}+\mathbf{W}_{-} \mathbf{d}_{-}\right) \Delta \frac{q}{p}, \quad \mathbf{N}=\left(\mathbf{W}_{+} \mathbf{J}_{+}+\mathbf{W}_{-} \mathbf{J}_{-}\right)^{-1}$
(8) $\mathbf{u}_{\text {int }}{ }^{\prime}=\mathbf{W}_{-} \mathbf{J}_{-} \mathbf{N W} \mathbf{W}_{+} \mathbf{u}_{+}-\mathbf{W}_{+} \mathbf{J}_{+} \mathbf{N W} \mathbf{W}_{-} \mathbf{u}_{-}-\left(\mathbf{W}_{-} \mathbf{J}_{-} \mathbf{N W}_{+} \mathbf{d}_{+}-\mathbf{W}_{+} \mathbf{J}_{+} \mathbf{N W} \mathbf{W}_{-} \mathbf{d}_{-}\right) \Delta^{q}$

Broken lines vs Kalman filter (I)

* General Broken Lines with

- One measurement only $\quad \chi^{2}\left(\mathbf{p}_{b l}\right)=\mathbf{r}_{1}\left(\mathbf{p}_{b l}\right)^{\prime} \mathbf{V}_{\text {meas }}^{-1}, \mathbf{r}_{1}\left(\mathbf{p}_{b l}\right)$
- External seed

$$
+\mathbf{p}_{b l}^{\prime} V_{\text {seed }}^{-1} \mathbf{p}_{b l}
$$

* Normal equations

$$
\begin{equation*}
\left(\mathbf{V}_{\text {seed }}^{-1}+\mathbf{H}_{1}^{t} \mathbf{V}_{\text {meas }, 1}^{-1} \mathbf{H}_{1}\right) \mathbf{p}_{b l}=\mathbf{H}_{1}^{t} \mathbf{V}_{\text {meas }, 1}^{-1} \mathbf{r}_{1}, \tag{9}
\end{equation*}
$$

$$
\mathbf{H}_{1}=\left(\frac{\partial \mathbf{r}_{\mathbf{1}}}{\partial \mathbf{p}_{b l}}\right)
$$

* Solution

$$
\begin{align*}
& \mathbf{p}_{b l}=\mathbf{V}_{b l}\left(\mathbf{H}_{1}^{t} \mathbf{V}_{\text {meas },}^{-1} \mathbf{I}_{1}\right) \tag{10}\\
& \mathbf{V}_{b l}=\left(\mathbf{V}_{\text {seed }}^{-1}+\mathbf{H}_{1}^{t} \mathbf{V}_{\text {meas }, \mathbf{1}}^{-1} \mathbf{H}_{1}\right)^{-1}
\end{align*}
$$

Kalman filtering (weighted mean formalism)
Fit parameter corrections: prediction $x_{k}^{k-1}=0$

$$
\begin{aligned}
& x_{k}=\mathbf{C}_{k}\left[\left(\mathbf{C}_{k}^{k-1}\right)^{-1} x_{k}^{k-1}+\mathbf{H}_{k}^{t} \mathbf{V}_{k}^{-1} m_{k}\right] \\
& \mathbf{C}_{k}=\left[\left(\mathbf{C}_{k}^{k-1}\right)^{-1}+\mathbf{H}_{k}^{t} \mathbf{V}_{k}^{-1} \mathbf{H}_{k}\right]^{-1}
\end{aligned}
$$

Broken lines vs Kalman filter (II)

* Track fitting
- Kalman filter is externally seeded General Broken Lines fit with single (additional) measurement
- General Broken Lines fit is optionally seedless Kalman filter adding all measurements in one filtering step
* Millepede
- Simultaneous fit of all measurements as local fit
- Can't use consecutive Kalman filter, need GBL

GBL software package

* Available from DESY SVN server
* Implementations in C++, Python, fortran
* Contains interface to Millepede-II
- Write trajectories to MPII binary file
* For application examples use:
- C++ version (V01-15-00, doxygen documentation)
+ Simple (track) and complex (decay) trajectories available
- Curvilinear system for all points

$$
\mathbf{U}_{1}=\mathbf{X}_{\perp}=\left(\begin{array}{c}
-\sin \varphi \\
\cos \varphi \\
0
\end{array}\right), \mathbf{U}_{2}=\mathbf{Y}_{\perp}=\left(\begin{array}{c}
-\cos \varphi \sin \lambda \\
-\sin \varphi \sin \lambda \\
\cos \lambda
\end{array}\right), \mathbf{W}=\mathbf{Z}_{\perp}=\mathbf{T}=\left(\begin{array}{c}
\cos \varphi \cos \lambda \\
\sin \varphi \cos \lambda \\
\sin \lambda
\end{array}\right)
$$

Track fitting (I)

* For all points on trajectory
- Create GblPoint with
- Propagation jacobian T^{+}from previous point (1 for first)
- Optionally add 2D measurement m with
- Projection matrix P= $\partial m / \partial u$
- with measurement directions $\mathbf{M}_{\mathbf{i}}: \quad \mathbf{P}^{-1}=\frac{\partial \mathbf{u}}{\partial \mathbf{m}}=\left(\begin{array}{ll}\mathbf{U}_{1} & \mathbf{U}_{2}\end{array}\right)^{t} \cdot\left(\begin{array}{ll}\mathbf{M}_{1} & \mathbf{M}_{2}\end{array}\right)$
+ Residual vector r_{m} (measurement - prediction)
- Precision matrix Vm^{-1}
- can be singular (e.g. for 1D measurements)
- internally diagonalized if necessary

Track fitting (II)

- Optionally add scatterer with
+ Initial kinks ko, usually zero
+ Diagonal of precision matrix $\mathbf{V}^{-1}, \quad \mathbf{V}_{k}=\left(\begin{array}{cc}\theta_{0}^{2} & 0 \\ 0 & \theta_{0}^{2}\end{array}\right)$
- Add point to list (std: :vector)
* GblTrajectory
- Created from list of GblPoints (and ext. seed)
- Fitted with fit method
+ M-estimators available for outlier down-weighting
- Optionally retrieve track parameter corrections or residuals and errors for GblPoints

Tracker alignment (I)

\star Global derivatives $\partial r / \partial g$

- Variation of measurement residuals with global (=alignment) parameters
- Needed by MPII to determine alignment par.
- Have to be added to GblPoints with measurements
+ Labels: positive integers identifying parameters
+ Values: (non-zero) derivatives
- Example: planar detector as rigid body
+ 3 displacements, 3 rotations,
+ $g=(\Delta x, \Delta y, \Delta z, a, \beta, y)$, labels $=1$.. 6

Tracker alignment (II)

+ Depend on prediction p, track slope t and (plane) normal n

$$
\frac{\partial \mathbf{r}}{\partial \mathbf{g}}=\frac{\partial \mathbf{r}}{\partial \tilde{\mathbf{m}}} \frac{\partial \tilde{\mathbf{m}}}{\partial \mathbf{g}}, \quad \frac{\partial \mathbf{r}}{\partial \tilde{\mathbf{m}}}=\mathbf{1}-\frac{\mathbf{t} \cdot \mathbf{n}^{t}}{\mathbf{t} \cdot \mathbf{n}}=\left(\delta_{i j}-\frac{t_{i} \cdot n_{j}}{\mathbf{t} \cdot \mathbf{n}}\right) \quad \frac{\partial \tilde{\mathbf{m}}}{\partial \mathbf{g}}=\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & -z_{p} & y_{p} \\
0 & 1 & 0 & z_{p} & 0 & -x_{p} \\
0 & 0 & 1 & -y_{p} & x_{p} & 0
\end{array}\right)
$$

+ Local system (u,v,w) in plane: $\mathbf{w}=\mathbf{n}, \mathbf{w}_{\mathrm{p}}=0$ (corresponds to $\left.\mathrm{z}_{\mathrm{p}}\right) \quad \frac{\partial \mathbf{r}}{\partial \tilde{\mathbf{m}}}=\left(\begin{array}{ccc}1 & 0 & -\frac{\partial v}{\partial w} \\ 0 & 1 & 0\end{array}\right)$
* MPIl binary file
- Input data for Millepede-II
- Fitted GblTrajectory can be written directly with method milleOut

Summary

* General Broken Lines
- Constructed from list of measurements and scatterers connected by propagation jacobians
- Fast fitting ($x \sim n_{\text {scat, }}$ (full) $V \sim n_{\text {scat }}{ }^{2}$)
- Well suited as local (track) fit for Millepede-II
* GBL maintained by Terascale Alliance
- Implemented in C++, Python, fortran
- Includes interface to Millepede-II

Backup

Global derivatives, alternative fits

Global derivatives (I)

* Global derivatives (for planar detectors)
- Measurement
+ For a measurement m with a prediction $p\left(x_{p}, y_{p}, z_{p}\right)$ from the track model the effects of displacements $(\Delta x, \Delta y, \Delta z)$ and small rotations (α, β, γ) (around axes at origin) are in first order:

$$
\tilde{\mathbf{m}}=\mathbf{m}+\left(\begin{array}{c}
\Delta x \\
\Delta y \\
\Delta z
\end{array}\right)+\alpha\left(\begin{array}{c}
0 \\
z_{p} \\
-y_{p}
\end{array}\right)+\beta\left(\begin{array}{c}
-z_{p} \\
0 \\
x_{p}
\end{array}\right)+\gamma\left(\begin{array}{c}
y_{p} \\
-x_{p} \\
0
\end{array}\right)
$$

Global derivatives (II)

- Prediction

+ Linearizing the track model at the intersection point with the (nominal) measurement plane, the prediction p depends on the position x_{i} and track direction t at that point:

$$
\mathbf{p}(\Delta s)=\mathbf{x}_{i}+\mathbf{t} \cdot \Delta s
$$

- With the normal n to the measurement plane the intersection of of the linearized track with the distorted measurement is given by:

$$
0=(\tilde{\mathbf{m}}-\mathbf{p}) \cdot \mathbf{n}=\left(\tilde{\mathbf{m}}-\mathbf{x}_{i}\right) \cdot \mathbf{n}-\mathbf{t} \cdot \mathbf{n} \cdot \Delta s \text { or } \Delta s=\frac{\left(\tilde{\mathbf{m}}-\mathbf{x}_{i}\right) \cdot \mathbf{n}}{\mathbf{t} \cdot \mathbf{n}}
$$

Global derivatives (III)

- Residuals

+The residual \mathbf{r} at the intersection of the linearized track with the distorted measurement is:

$$
\mathbf{r}=\tilde{\mathbf{m}}-\mathbf{p}=\tilde{\mathbf{m}}-\mathbf{x}_{i}-\mathbf{t} \cdot \Delta s=\tilde{\mathbf{m}}-\mathbf{x}_{i}-\mathbf{t} \frac{\left(\tilde{\mathbf{m}}-\mathbf{x}_{i}\right) \cdot \mathbf{n}}{\mathbf{t} \cdot \mathbf{n}}
$$

- Derivatives
+ The derivatives of the residual versus the displacements and rotations as global parameters g are:

$$
\frac{\partial \mathbf{r}}{\partial \mathbf{g}}=\frac{\partial \mathbf{r}}{\partial \tilde{\mathbf{m}}} \frac{\partial \tilde{\mathbf{m}}}{\partial \mathbf{g}}, \quad \frac{\partial \mathbf{r}}{\partial \tilde{\mathbf{m}}}=\mathbf{1}-\frac{\mathbf{t} \cdot \mathbf{n}^{t}}{\mathbf{t} \cdot \mathbf{n}}=\left(\delta_{i j}-\frac{t_{i} \cdot n_{j}}{\mathbf{t} \cdot \mathbf{n}}\right) \quad \frac{\partial \tilde{\mathbf{m}}}{\partial \mathbf{g}}=\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & -z_{p} & y_{p} \\
0 & 1 & 0 & z_{p} & 0 & -x_{p} \\
0 & 0 & 1 & -y_{p} & x_{p} & 0
\end{array}\right)
$$

- Local system (u, v, w) in plane
$+\boldsymbol{w}=\boldsymbol{n}, w_{p}=0\left(\right.$ corresponds to $\left.z_{p}\right) \quad \frac{\partial \mathbf{r}}{\partial \tilde{\mathbf{m}}}=\left(\begin{array}{ccc}1 & 0 & \frac{\partial w}{0} \\ 1 & -\frac{\partial v}{\partial w} \\ 0 & 0 & 0\end{array}\right)$

Alternative

* Same trajectory $u(s)$, different parameters x - Use multiple scattering kinks \mathbf{k}_{i} ("BreakPoints")

$$
\mathbf{u}_{i+1}=\frac{\partial \mathbf{u}_{i+1}}{\partial \mathbf{u}_{i}} \mathbf{u}_{i}+\frac{\partial \mathbf{u}_{i+1}}{\partial \mathbf{u}_{i}^{\prime}}\left(\mathbf{u}_{i}^{\prime}+\mathbf{k}_{i}\right)+\frac{\partial \mathbf{u}_{i+1}}{\partial \frac{q}{p_{i}}} \Delta \frac{q}{p_{i}}, \quad \mathbf{u}_{i+1}^{\prime}=\frac{\partial \mathbf{u}_{i+1}^{\prime}}{\partial \mathbf{u}_{i}^{\prime}}\left(\mathbf{u}_{i}^{\prime}+\mathbf{k}_{i}\right)+\frac{\partial \mathbf{u}_{i+1}^{\prime}}{\partial \frac{q}{p_{i}}} \Delta \frac{q}{p_{i}}
$$

Change of direction at each (thin) scatterer: $\mathbf{u} \mathbf{~} \rightarrow \mathbf{u} \mathbf{\prime}+\mathbf{k}$
$+x=\left(\Delta q / p_{1}, \mathbf{u}_{1}^{\prime}, \mathbf{u}_{1}, \mathbf{k}_{1}, . ., \mathbf{k}_{\text {nscat-1 }}\right)$

+ All scatterers in front of measurement $\frac{\partial \mathbf{u}_{\mathrm{in}, i, i}}{\partial \mathbf{k}_{j}} \approx \max \left(0, s_{i}-s_{j}\right) \cdot \mathbf{1}$
+ Matrix A of linear equation system is full matrix
- Effort for solution $\sim n_{\text {par }}{ }^{3}$

Alternative fits (II)

* Same trajectory $u(s)$, different parameters x - Put multiple scattering into covariance matrix, $\mathbf{k}=0$
$\mathbf{V}_{r}=\mathbf{V}_{m}+\left(\frac{\partial \mathbf{r}}{\partial \mathbf{k}}\right) \mathbf{V}_{k}\left(\frac{\partial \mathbf{r}}{\partial \mathbf{k}}\right)^{t}, \quad \mathbf{r}=\mathbf{m}-\mathbf{P} \cdot \mathbf{u}_{\mathrm{int}}, \quad \chi^{2}(\mathbf{x})=(\mathbf{r})^{t} \mathbf{V}_{r}^{-1}(\mathbf{r})$
$+x=\left(\Delta q / p_{1}, \mathbf{u}^{\prime}, \mathbf{u}_{1}\right), n_{\text {par }}=5$
+ V_{r} is full matrix of size $n_{\text {meas, }}$
residuals r are correlated, not usable with MillePede
+ Need $V_{r}{ }^{-1}$, effort for solution at least $\sim n_{\text {meas }}{ }^{3}$

