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Overview
★ General Broken Lines
‣ Based on original broken lines by V. Blobel (UHH)
‣ Concepts

✦ Definition, construction of trajectory
✦ Local track parameters, implementation of fit
✦ Comparison with Kalman filter

★             software package, use cases
✦ Simple track fitting
✦ Tracker alignment with Millepede-II

★ Summary
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Definition

★ Trajectory based on ‘general broken lines’
‣ Track refit to add with local offsets ui(si) the 

description of multiple scattering to an initial 
trajectory (‘seed’) based on the propagation in a 
magnetic field (and energy loss)
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Construction (I)

★ Trajectory based on ‘general broken lines’
‣ Refit for set of (nmeas) measurements m on a track 

based on sequence of (nscat) thin scatterers
✦ Material between adjacent measurements is in general a 

thick scatterer, represented by (up to) 2 thin scatterers 
with similar mean and RMS of material

✦ Dummy thin scatterers at first and last measurement
✦ Offsets u in local system (u1,u2,w) at each scatterer
✦ Measurements can coincide with a scatterer or are 

described by interpolation of adjacent scatterers
‣ List of points (meas., scat.) ordered in arc-length
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Construction (II)

‣ Prediction uint at measurement m from interpolation 
of adjacent scatterers (➜ residuals rm=m-∂m/∂u·uint)
‣ Triplets of consecutive scatterers define kinks k

✦ 2D multiple scattering angles at central scatterers
− Expectation value zero, variance Vk according to central scatterer

✦ Additional nscat-2 2D residuals rk=k (+k0 if iterating)
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Construction (III)

‣ Track (fit) parameters
✦ One common ‘curvature’ correction
✦ nscat 2D (small) offsets u, nscat ≤ 2nmeas

‣Seeding
✦ Internally from (fit of) same measurements
✦ Externally from (fit of) independent measurements
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Local track parameters (I)

★ Local track parameters pi

‣Defined (by user) in orthonormal system (u1,u2,w) at 
each point ‘i’
✦ Offsets u=(u1,u2) in local system
✦ Direction: angles or slopes (e.g. u’=∂u/∂w) or ..
✦ Curvature: q/p or ..

‣Use (q/p, u’, u) in the following
‣ Technical constraint 

✦ Multiple scattering covariance matrix must be diagonal 
(at least one ui perpendicular to track direction)
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Local track parameters (II)

‣ Curvilinear system (xT, yT, zT) well suited
✦ Constructed from flight direction T (from seed) at point: 
W=ZT=T, U1=XT=Z×T/|Z×T|, U2=YT=T×XT

✦ Curvilinear track parameters 
‣ Refit determines at each point corrections to the 

local track parameters (from the seed)
★ Propagation on initial trajectory needs jacobian 

for transformation of local parameters
‣Ti+ = ∂pi/∂pi-1  (, Ti- = ∂pi/∂pi+1 = (Ti+1+)-1)
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Implementation (I)

★ Linear least squares fit of x=(∆q/p,..,uj,..)
‣Minimize 

 

‣Need local derivatives ∂pint,i/∂x, ∂ki/∂x to get 
corresponding linear equation system A·x=b
✦ u’int,i, uint,i, ki depend only on few (≤3) adjacent uj

✦ Matrix A has band structure with band width m≤5 and
✦ from general ∆q/p dependence (full) border of size b=1
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χ 2 (Δ q
p ,u1…unscat ) = (mi

i=1

nmeas

∑ −Hi ⋅p int,i )
tVmeas,i

−1 (mi −Hi ⋅p int,i )

+ ki + k0,i( )t Vk ,i
−1 ki + k0,i( )

i=2

nscat −1

∑    +Δpseed
t Vseed

−1 Δpseed  for ext. seed( )
p int = Δ q

p , ′uint ,uint( ),   H =
∂m
∂p int

(1)

(up to 5D measurement m)



Implementation (II)

‣ Bordered Band Matrix
✦ Fast (band) solution by root free 

Cholesky decomposition
− Au=LDLt (L triangular band, D diagonal)
− fwd/bwd substitution  Lz=bu,  Ltxu=D-1z

✦ Full solution by block mat. algebra
✦ Effort to calculate

− Solution x (➞ ∆pi): ~npar·(m+b)2

− Bordered band part of A-1 (➞ cov(pi)): ~npar·(m+b)2

− Full A-1 (➞ Millepede): ~npar2·(m+b)
− Inversion would be ~npar3

✦ For track fit (∆pi, cov(pi)) time linear in nmeas
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Implementation (III) 

★ Local track parameters
★ Propagation of offset Δu using local linearization
‣ with initial offset ∆u0, slope ∆u’0, curvature ∆q/p0:

 

                 taken from jacobian
 

★ Solve for slope Δu’0:
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Δu = ∂u
∂u0

Δu0 +
∂u
∂u '0

Δu '0+
∂u
∂ q

p0

Δ q
p0
= JΔu0 + SΔu '0+ dΔ

q
p0

(2)

p = ( qp ,u ',u),   u = (u1,u2 ),   u ' = ∂u
∂w

(d,S,J) = ∂u
∂p0

∂p
∂p0

Δu '0 = S
−1 Δu − JΔu0 − dΔ

q
p0( )(3)



Implementation (IV) 

★ With triplet u-, u0, u+ of offsets:

 

★ Kink k at u0
  

★ Interpolation 
‣ solve (6) for uint=u0 with k≡0, (4 or 5) using u0 = uint
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u+ = J+u0 + S+u '+ + d+Δ
q
p ,   u '0(+ ) =W+ u+ − J+u0 − d+Δ

q
p( ),   W+ = S+

−1

u− = J−u0 + S−u '−+ d−Δ
q
p ,   u '0(− ) =W− J−u0 − u− + d−Δ

q
p( ),   W− = −S−

−1

k = u '0(+ )− u '0(− ) =W+u+ − W+J+ +W−J−( )u0 +W−u− − W+d+ +W−d−( )Δ q
p

uint = N W+u+ +W−u−( ) − N W+d+ +W−d−( )Δ q
p ,    N = W+J+ +W−J−( )−1

(4)

(5)

(6)

(7)

Δu0 → u0 ,   Δu→ u±( )

u 'int =W−J−NW+u+ −W+J+NW−u− − W−J−NW+d+ −W+J+NW−d−( )Δ q
p(8)



Broken lines vs Kalman filter (I)

★ General Broken Lines with
‣One measurement only
‣ External seed

★ Normal equations

★ Solution
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χ 2 (pbl ) = r1(pbl )
tVmeas,1

−1 r1(pbl )
            + pbl

t Vseed
−1  pbl

Vseed
−1 +H1

tVmeas,1
−1 H1( )pbl = H1

tVmeas,1
−1 r1,

H1 =
∂r1
∂pbl( )

pbl = Vbl H1
tVmeas,1

−1 r1( )   
Vbl = Vseed

−1 +H1
tVmeas,1

−1 H1( )−1

xk = Ck Ck
k−1( )−1 xkk−1 +Hk

tVk
−1mk

⎡
⎣

⎤
⎦

Ck = Ck
k−1( )−1 +Hk

tVk
−1Hk

⎡
⎣

⎤
⎦
−1

Kalman filtering (weighted mean formalism)

R. Frühwirth NIM A262(1987) 444-450, eqn (8b)

Fit parameter corrections: prediction xk
k−1 = 0

=(10)

(9)



Broken lines vs Kalman filter (II)

★ Track fitting
‣ Kalman filter is externally seeded General Broken 

Lines fit with single (additional) measurement
‣ General Broken Lines fit is optionally seedless 

Kalman filter adding all measurements in one 
filtering step

★ Millepede
‣Simultaneous fit of all measurements as local fit
‣ Can’t use consecutive Kalman filter, need GBL
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      software package

★ Available from DESY SVN server
★ Implementations in C++, Python, fortran
★ Contains interface to Millepede-II
‣Write trajectories to            binary file

★ For application examples use:
‣ C++ version (V01-15-00, doxygen documentation)

✦ Simple (track) and complex (decay) trajectories available
‣ Curvilinear system for all points 
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Track fitting (I)

★ For all points on trajectory
‣ Create GblPoint with

✦ Propagation jacobian T+ from previous point (1 for first)
‣Optionally add 2D measurement m with

✦ Projection matrix P=∂m/∂u
− with measurement directions Mi:

✦ Residual vector rm (measurement - prediction)
✦ Precision matrix Vm-1 

− can be singular (e.g. for 1D measurements)
− internally diagonalized if necessary 
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Track fitting (II)

‣Optionally add scatterer with
✦ Initial kinks k0, usually zero
✦ Diagonal of precision matrix Vk-1,

‣Add point to list (std::vector)
★ GblTrajectory
‣ Created from list of GblPoints (and ext. seed)
‣ Fitted with fit method

✦ M-estimators available for outlier down-weighting
‣Optionally retrieve track parameter corrections or 

residuals and errors for GblPoints 
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Tracker alignment (I)

★ Global derivatives ∂r/∂g
‣ Variation of measurement residuals with global 

(=alignment) parameters
‣Needed by            to determine alignment par.
‣Have to be added to GblPoints with measurements

✦ Labels: positive integers identifying parameters
✦ Values: (non-zero) derivatives

‣ Example: planar detector as rigid body
✦ 3 displacements, 3 rotations,
✦  g=(∆x, ∆y, ∆z, α, β, γ), labels = 1 .. 6
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Tracker alignment (II)
✦ Depend on prediction p, track slope t and (plane) normal n 
 

✦ Local system (u,v,w) in plane:
w = n, wp = 0 (corresponds to zp)

★           binary file
‣ Input data for Millepede-II 
‣ Fitted GblTrajectory can be written directly with 

method milleOut   
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Summary

★ General Broken Lines
‣ Constructed from list of measurements and 

scatterers connected by propagation jacobians
‣ Fast fitting (x ~nscat, (full) V ~nscat2)
‣Well suited as local (track) fit for Millepede-II

★             maintained by Terascale Alliance
‣ Implemented in C++, Python, fortran
‣ Includes interface to Millepede-II
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Backup

Global derivatives, alternative fits
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Global derivatives (I)

★ Global derivatives (for planar detectors)
‣Measurement

✦ For a measurement m with a prediction p (xp,yp,zp) from 
the track model the effects of displacements (∆x, ∆y, ∆z) 
and small rotations (α,β,γ) (around axes at origin) are in 
first order:
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Global derivatives (II)

‣ Prediction
✦ Linearizing the track model at the intersection point with 

the (nominal) measurement plane, the prediction p depends 
on the position xi and track direction t at that point:

✦ With the normal n to the measurement plane the 
intersection of of the linearized track with the distorted 
measurement is given by:
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p(Δs) = xi + t ⋅ Δs

 
0 = ( m − p) ⋅n = ( m − xi ) ⋅n − t ⋅n ⋅ Δs or Δs = ( m − xi ) ⋅n

t ⋅n



Global derivatives (III)

‣ Residuals
✦ The residual r at the intersection of the linearized track 

with the distorted measurement is:
 

‣Derivatives
✦ The derivatives of the residual versus the displacements 

and rotations as global parameters g are:
 

‣ Local system (u,v,w) in plane
✦ w = n, wp = 0 (corresponds to zp)
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Alternative (linear least squares) fits (I) 

★ Same trajectory u(s), different parameters x
‣Use multiple scattering kinks ki  (“BreakPoints”)

✦ x=(∆q/p1,u’1,u1,k1,..,knscat-1)
✦ All scatterers in front of measurement

 mi contribute to prediction uint,i

✦ Matrix A of linear equation system is full matrix
✦ Effort for solution ~ npar3
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ui+1 =
∂ui+1

∂ui
ui +

∂ui+1

∂u 'i
u 'i+ ki( ) + ∂ui+1

∂ q
pi

Δ q
pi

,   u'i+1 =
∂u 'i+1

∂u 'i
u 'i+ ki( ) + ∂u 'i+1

∂ q
pi

Δ q
pi

∂uint,i
∂k j

≈ max(0, si − s j ) ⋅1

Change of direction at each (thin) scatterer: u’ → u’+k



Alternative fits (II) 

★ Same trajectory u(s), different parameters x
‣ Put multiple scattering into covariance matrix, k≡0

✦ x=(∆q/p1,u’1,u1), npar=5
✦ Vr is full matrix of size nmeas, 

residuals r are correlated, not usable with MillePede
✦ Need Vr-1, effort for solution at least ~ nmeas3
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