
General Broken Lines (GBL)
 for track fitting and alignment

1

C. Kleinwort - DESY

EUTelescope Workshop 26.03.13

Overview
★ General Broken Lines
‣ Based on original broken lines by V. Blobel (UHH)
‣ Concepts

✦ Definition, construction of trajectory
✦ Local track parameters, implementation of fit
✦ Comparison with Kalman filter

★ software package, use cases
✦ Simple track fitting
✦ Tracker alignment with Millepede-II

★ Summary

2

NIM A, 673 (2012), 107-110

http://dx.doi.org/10.1016/j.nima.2012.01.024
http://dx.doi.org/10.1016/j.nima.2012.01.024

Definition

★ Trajectory based on ‘general broken lines’
‣ Track refit to add with local offsets ui(si) the

description of multiple scattering to an initial
trajectory (‘seed’) based on the propagation in a
magnetic field (and energy loss)

3

u s

measurement 1 2 3 nmeas

detector material

re
si

du
al

s
vs

in
iti

al
 tr

aj
ec

to
ry

(arclength)

Construction (I)

★ Trajectory based on ‘general broken lines’
‣ Refit for set of (nmeas) measurements m on a track

based on sequence of (nscat) thin scatterers
✦ Material between adjacent measurements is in general a

thick scatterer, represented by (up to) 2 thin scatterers
with similar mean and RMS of material

✦ Dummy thin scatterers at first and last measurement
✦ Offsets u in local system (u1,u2,w) at each scatterer
✦ Measurements can coincide with a scatterer or are

described by interpolation of adjacent scatterers
‣ List of points (meas., scat.) ordered in arc-length

4

Construction (II)

‣ Prediction uint at measurement m from interpolation
of adjacent scatterers (➜ residuals rm=m-∂m/∂u·uint)
‣ Triplets of consecutive scatterers define kinks k

✦ 2D multiple scattering angles at central scatterers
− Expectation value zero, variance Vk according to central scatterer

✦ Additional nscat-2 2D residuals rk=k (+k0 if iterating)

5

u s

measurement 1 2 3 nmeas
thin scatterer 1 2 3 4 5 6 nscat-1 nscat

k uint

kink interpolation

Construction (III)

‣ Track (fit) parameters
✦ One common ‘curvature’ correction
✦ nscat 2D (small) offsets u, nscat ≤ 2nmeas

‣Seeding
✦ Internally from (fit of) same measurements
✦ Externally from (fit of) independent measurements

6

Local track parameters (I)

★ Local track parameters pi

‣Defined (by user) in orthonormal system (u1,u2,w) at
each point ‘i’
✦ Offsets u=(u1,u2) in local system
✦ Direction: angles or slopes (e.g. u’=∂u/∂w) or ..
✦ Curvature: q/p or ..

‣Use (q/p, u’, u) in the following
‣ Technical constraint

✦ Multiple scattering covariance matrix must be diagonal
(at least one ui perpendicular to track direction)

7

Local track parameters (II)

‣ Curvilinear system (xT, yT, zT) well suited
✦ Constructed from flight direction T (from seed) at point:
W=ZT=T, U1=XT=Z×T/|Z×T|, U2=YT=T×XT

✦ Curvilinear track parameters
‣ Refit determines at each point corrections to the

local track parameters (from the seed)
★ Propagation on initial trajectory needs jacobian

for transformation of local parameters
‣Ti+ = ∂pi/∂pi-1 (, Ti- = ∂pi/∂pi+1 = (Ti+1+)-1)

8

q
p ,λ,φ, x⊥ , y⊥()

Implementation (I)

★ Linear least squares fit of x=(∆q/p,..,uj,..)
‣Minimize

‣Need local derivatives ∂pint,i/∂x, ∂ki/∂x to get
corresponding linear equation system A·x=b
✦ u’int,i, uint,i, ki depend only on few (≤3) adjacent uj

✦ Matrix A has band structure with band width m≤5 and
✦ from general ∆q/p dependence (full) border of size b=1

9

χ 2 (Δ q
p ,u1…unscat) = (mi

i=1

nmeas

∑ −Hi ⋅p int,i)
tVmeas,i

−1 (mi −Hi ⋅p int,i)

+ ki + k0,i()t Vk ,i
−1 ki + k0,i()

i=2

nscat −1

∑ +Δpseed
t Vseed

−1 Δpseed for ext. seed()
p int = Δ q

p , ′uint ,uint(), H =
∂m
∂p int

(1)

(up to 5D measurement m)

Implementation (II)

‣ Bordered Band Matrix
✦ Fast (band) solution by root free

Cholesky decomposition
− Au=LDLt (L triangular band, D diagonal)
− fwd/bwd substitution Lz=bu, Ltxu=D-1z

✦ Full solution by block mat. algebra
✦ Effort to calculate

− Solution x (➞ ∆pi): ~npar·(m+b)2

− Bordered band part of A-1 (➞ cov(pi)): ~npar·(m+b)2

− Full A-1 (➞ Millepede): ~npar2·(m+b)
− Inversion would be ~npar3

✦ For track fit (∆pi, cov(pi)) time linear in nmeas

10

d b b b b b b b
b d m m 0 0 0 0
b m d m m 0 0 0
b m m d m m 0 0
b 0 m m d m m 0
b 0 0 m m d m m
b 0 0 0 m m d m
b 0 0 0 0 m m d

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

Aij = 0 for min(i, j) > b ∧ i − j > m

Au

Implementation (III)

★ Local track parameters
★ Propagation of offset Δu using local linearization
‣ with initial offset ∆u0, slope ∆u’0, curvature ∆q/p0:

 taken from jacobian

★ Solve for slope Δu’0:

11

Δu = ∂u
∂u0

Δu0 +
∂u
∂u '0

Δu '0+
∂u
∂ q

p0

Δ q
p0
= JΔu0 + SΔu '0+ dΔ

q
p0

(2)

p = (qp ,u ',u), u = (u1,u2), u ' = ∂u
∂w

(d,S,J) = ∂u
∂p0

∂p
∂p0

Δu '0 = S
−1 Δu − JΔu0 − dΔ

q
p0()(3)

Implementation (IV)

★ With triplet u-, u0, u+ of offsets:

★ Kink k at u0

★ Interpolation
‣ solve (6) for uint=u0 with k≡0, (4 or 5) using u0 = uint

12

u+ = J+u0 + S+u '+ + d+Δ
q
p , u '0(+) =W+ u+ − J+u0 − d+Δ

q
p(), W+ = S+

−1

u− = J−u0 + S−u '−+ d−Δ
q
p , u '0(−) =W− J−u0 − u− + d−Δ

q
p(), W− = −S−

−1

k = u '0(+)− u '0(−) =W+u+ − W+J+ +W−J−()u0 +W−u− − W+d+ +W−d−()Δ q
p

uint = N W+u+ +W−u−() − N W+d+ +W−d−()Δ q
p , N = W+J+ +W−J−()−1

(4)

(5)

(6)

(7)

Δu0 → u0 , Δu→ u±()

u 'int =W−J−NW+u+ −W+J+NW−u− − W−J−NW+d+ −W+J+NW−d−()Δ q
p(8)

Broken lines vs Kalman filter (I)

★ General Broken Lines with
‣One measurement only
‣ External seed

★ Normal equations

★ Solution

13

χ 2 (pbl) = r1(pbl)
tVmeas,1

−1 r1(pbl)
 + pbl

t Vseed
−1 pbl

Vseed
−1 +H1

tVmeas,1
−1 H1()pbl = H1

tVmeas,1
−1 r1,

H1 =
∂r1
∂pbl()

pbl = Vbl H1
tVmeas,1

−1 r1()
Vbl = Vseed

−1 +H1
tVmeas,1

−1 H1()−1

xk = Ck Ck
k−1()−1 xkk−1 +Hk

tVk
−1mk

⎡
⎣

⎤
⎦

Ck = Ck
k−1()−1 +Hk

tVk
−1Hk

⎡
⎣

⎤
⎦
−1

Kalman filtering (weighted mean formalism)

R. Frühwirth NIM A262(1987) 444-450, eqn (8b)

Fit parameter corrections: prediction xk
k−1 = 0

=(10)

(9)

Broken lines vs Kalman filter (II)

★ Track fitting
‣ Kalman filter is externally seeded General Broken

Lines fit with single (additional) measurement
‣ General Broken Lines fit is optionally seedless

Kalman filter adding all measurements in one
filtering step

★ Millepede
‣Simultaneous fit of all measurements as local fit
‣ Can’t use consecutive Kalman filter, need GBL

14

 software package

★ Available from DESY SVN server
★ Implementations in C++, Python, fortran
★ Contains interface to Millepede-II
‣Write trajectories to binary file

★ For application examples use:
‣ C++ version (V01-15-00, doxygen documentation)

✦ Simple (track) and complex (decay) trajectories available
‣ Curvilinear system for all points

15

U1 = X⊥ =
− sinϕ
cosϕ

0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

, U2 = Y⊥ =
− cosϕ sinλ
− sinϕ sinλ

cosλ

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

, W = Z⊥ = T =
cosϕ cosλ
sinϕ cosλ

sinλ

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

https://svnsrv.desy.de
https://svnsrv.desy.de
http://www.desy.de/~kleinwrt/GBL/doc/cpp/html/index.html
http://www.desy.de/~kleinwrt/GBL/doc/cpp/html/index.html

Track fitting (I)

★ For all points on trajectory
‣ Create GblPoint with

✦ Propagation jacobian T+ from previous point (1 for first)
‣Optionally add 2D measurement m with

✦ Projection matrix P=∂m/∂u
− with measurement directions Mi:

✦ Residual vector rm (measurement - prediction)
✦ Precision matrix Vm-1

− can be singular (e.g. for 1D measurements)
− internally diagonalized if necessary

16

P−1 =

∂u
∂m

= U1 U2()t i M1 M2()

http://www.desy.de/~kleinwrt/GBL/doc/cpp/html/classgbl_1_1_gbl_point.html
http://www.desy.de/~kleinwrt/GBL/doc/cpp/html/classgbl_1_1_gbl_point.html

Track fitting (II)

‣Optionally add scatterer with
✦ Initial kinks k0, usually zero
✦ Diagonal of precision matrix Vk-1,

‣Add point to list (std::vector)
★ GblTrajectory
‣ Created from list of GblPoints (and ext. seed)
‣ Fitted with fit method

✦ M-estimators available for outlier down-weighting
‣Optionally retrieve track parameter corrections or

residuals and errors for GblPoints

17

Vk =
θ0
2 0
0 θ0

2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

http://www.desy.de/~kleinwrt/GBL/doc/cpp/html/classgbl_1_1_gbl_trajectory.html
http://www.desy.de/~kleinwrt/GBL/doc/cpp/html/classgbl_1_1_gbl_trajectory.html

Tracker alignment (I)

★ Global derivatives ∂r/∂g
‣ Variation of measurement residuals with global

(=alignment) parameters
‣Needed by to determine alignment par.
‣Have to be added to GblPoints with measurements

✦ Labels: positive integers identifying parameters
✦ Values: (non-zero) derivatives

‣ Example: planar detector as rigid body
✦ 3 displacements, 3 rotations,
✦ g=(∆x, ∆y, ∆z, α, β, γ), labels = 1 .. 6

18

Tracker alignment (II)
✦ Depend on prediction p, track slope t and (plane) normal n

✦ Local system (u,v,w) in plane:
w = n, wp = 0 (corresponds to zp)

★ binary file
‣ Input data for Millepede-II
‣ Fitted GblTrajectory can be written directly with

method milleOut

19

∂r
∂g

=
∂r
∂ m

∂ m
∂g

, ∂r
∂ m

= 1 − t ⋅n
t

t ⋅n
= δ ij −

ti ⋅nj
t ⋅n

⎛
⎝⎜

⎞
⎠⎟

∂ m
∂g

=

1 0 0 0 −zp yp
0 1 0 zp 0 −xp
0 0 1 −yp xp 0

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

∂r
∂ m

=
1 0 − ∂u

∂w

0 1 − ∂v
∂w

0 0 0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

Summary

★ General Broken Lines
‣ Constructed from list of measurements and

scatterers connected by propagation jacobians
‣ Fast fitting (x ~nscat, (full) V ~nscat2)
‣Well suited as local (track) fit for Millepede-II

★ maintained by Terascale Alliance
‣ Implemented in C++, Python, fortran
‣ Includes interface to Millepede-II

20

https://www.wiki.terascale.de/index.php/GeneralBrokenLines
https://www.wiki.terascale.de/index.php/GeneralBrokenLines

Backup

Global derivatives, alternative fits

21

Global derivatives (I)

★ Global derivatives (for planar detectors)
‣Measurement

✦ For a measurement m with a prediction p (xp,yp,zp) from
the track model the effects of displacements (∆x, ∆y, ∆z)
and small rotations (α,β,γ) (around axes at origin) are in
first order:

22

m = m +
Δx
Δy
Δz

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
+α

0
zp
−yp

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
+ β

−zp
0
xp

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
+ γ

yp
−xp
0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

Global derivatives (II)

‣ Prediction
✦ Linearizing the track model at the intersection point with

the (nominal) measurement plane, the prediction p depends
on the position xi and track direction t at that point:

✦ With the normal n to the measurement plane the
intersection of of the linearized track with the distorted
measurement is given by:

23

p(Δs) = xi + t ⋅ Δs

0 = (m − p) ⋅n = (m − xi) ⋅n − t ⋅n ⋅ Δs or Δs = (m − xi) ⋅n

t ⋅n

Global derivatives (III)

‣ Residuals
✦ The residual r at the intersection of the linearized track

with the distorted measurement is:

‣Derivatives
✦ The derivatives of the residual versus the displacements

and rotations as global parameters g are:

‣ Local system (u,v,w) in plane
✦ w = n, wp = 0 (corresponds to zp)

24

r = m − p = m − xi − t ⋅ Δs = m − xi − t

(m − xi) ⋅n
t ⋅n

∂r
∂g

=
∂r
∂ m

∂ m
∂g

, ∂r
∂ m

= 1 − t ⋅n
t

t ⋅n
= δ ij −

ti ⋅nj
t ⋅n

⎛
⎝⎜

⎞
⎠⎟

∂ m
∂g

=

1 0 0 0 −zp yp
0 1 0 zp 0 −xp
0 0 1 −yp xp 0

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

∂r
∂ m

=
1 0 − ∂u

∂w

0 1 − ∂v
∂w

0 0 0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

Alternative (linear least squares) fits (I)

★ Same trajectory u(s), different parameters x
‣Use multiple scattering kinks ki (“BreakPoints”)

✦ x=(∆q/p1,u’1,u1,k1,..,knscat-1)
✦ All scatterers in front of measurement

 mi contribute to prediction uint,i

✦ Matrix A of linear equation system is full matrix
✦ Effort for solution ~ npar3

25

ui+1 =
∂ui+1

∂ui
ui +

∂ui+1

∂u 'i
u 'i+ ki() + ∂ui+1

∂ q
pi

Δ q
pi

, u'i+1 =
∂u 'i+1

∂u 'i
u 'i+ ki() + ∂u 'i+1

∂ q
pi

Δ q
pi

∂uint,i
∂k j

≈ max(0, si − s j) ⋅1

Change of direction at each (thin) scatterer: u’ → u’+k

Alternative fits (II)

★ Same trajectory u(s), different parameters x
‣ Put multiple scattering into covariance matrix, k≡0

✦ x=(∆q/p1,u’1,u1), npar=5
✦ Vr is full matrix of size nmeas,

residuals r are correlated, not usable with MillePede
✦ Need Vr-1, effort for solution at least ~ nmeas3

26

Vr = Vm +
∂r
∂k

⎛
⎝⎜

⎞
⎠⎟
Vk

∂r
∂k

⎛
⎝⎜

⎞
⎠⎟
t

, r = m − P ⋅uint , χ 2 (x) = r()t Vr
−1 r()

