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Outline

- Strong CP problem and axions

- axion-like particles BSM

- Axion (WISPy) cold dark matter

- axion - photon mixing

- radiation from a magnetised mirror

- cavity experiments
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The Strong CP problem

- Violations of  P and T are proportional to θ = θQCD + arg detMq

- Topological term in QCD cannot be neglected (‘t Hooft) (explains eta’ mass)

Violates P and T (and thus CP, 
since CPT is conserved)

   Prediction  is                                        but ... Experiments do not find it                                  

        Experimental limit
dn < 2.6× 10−26 ecm

Why ?????

dn ∼ 10−15θ ecm

θ � 10−11
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Global continuous symmetry 
spontaneously broken at 
high energy scale M 

pseudo Goldstone bosons
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Sizes and deformations of  
extra dimensions, 
gauge couplings

String ‘axions’ DILATONS RADION
MODULI

g ∼ α/2πM massmφ?

String Axiverse!
O(100) candidates!

Important remark!

ma � 6meV
109 GeV
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but QCD axions...
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Axion cold Dark Matter

Axions (and ALPs) are produced non-thermally by three mechanisms

Realignment mechanism Cosmic Strings Domain Walls

Φ(x) = ρ(x)ei
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(Field space) (Position space)

Ωa,V R

Ωobs
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If  the Peccei-Quinn phase transition happens before inflation ...

Realignment mechanism Cosmic Strings Domain Walls
(Field space) (Position space)

a = 0

a =
π

2

a =
3π

2
a = π

(T>QCD) (T<QCD)

a = 0

π

Ωa,V R

Ωobs
∼ θ20

�
12µeV

ma

�1.184

Size of our universe after inflation fits 
inside one of  these domains
- CSs and DWs are diluted by expansion
- Whole universe has 1 initial value for a

Axion cold Dark Matter*
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Telescope ! EBL
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preinflation PQ

(or cDM dilution ...)
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WISPy cold dark matter
Arias et al, JCAP 1206
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Detecting axion (ALP) cold dark matter
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axion - photon mixing in a magnetic field

LI =
gaγ
4

Fµν
�Fµνa = −gaγB ·E a

Raffelt, PRD’88
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ω
; ω � ma(1 + v2/2 + ...)
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radiation from a mirror

Ea = ωaχ cos(ωat+ kz).

Horns et al, arXiv:1212.2970, accepted in JCAP
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radiation from a mirror

Eγ = −ωaχ cos(ωγ(t− z)).

Ea = ωaχ cos(ωat+ kz).

Eγ + Ea|z=zmirror
= 0
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radiation from a mirror

Photons radiated from the mirror with ωγ = ωa = ma(1 + v2/2)

Eγ = −ωaχ cos(ωγ(t− z)).
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radiation from a mirror

Photons radiated from the mirror with ωγ = ωa = ma(1 + v2/2)

Eγ = −ωaχ cos(ωγ(t− z)).

Ea = ωaχ cos(ωat+ kz).

Eγ + Ea|z=zmirror
= 0

Horns et al, arXiv:1212.2970, accepted in JCAP

Note: measuring these photons, 
we measure the TOTAL DM energy, 
DM mass and the velocity distribution!
also with directional sensitivity!

Irastorza et al. 2012
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cavity searches (haloscopes)

- Use two facing mirrors (simplistic resonant cavity in 1D)
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Sikivie PRL ‘83
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1/t large

chose
maL = π

t2 ∼ 10−6

cavity searches (haloscopes)
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cavity searches (haloscopes)

- Understanding the out Power

maL = π → Area =
maVolume

π

Pout =
Volume×ma

π
× 1

[t2 ∼ δv2]
×

�
χ ∼ gB

ma

�2
× ρCDM

Pout = Area |Eout
γ |2 = Area |1

t
Ein

γ |2 = Area |1
t
Ein

a |2 =

Area
1

t2
χ2|ωaa|2 = Area

1

t2
g2B2

m2
a

ρCDM
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cavity searches and ALPS-II

?

detector

�10

�5

5

10

- This is the same principle used in the REGENERATION CAVITY OF ALPS-II

- In the HALOSCOPE experiment the coherence in time of  the signal comes 
from the fact that axions are non-relativistic (in the zero-k limit they are 
standing waves)

- In the ALPS-II (relativistic axions) regeneration cavity, the coherence in 
time has to be provided by an amazingly stable feeding-laser 
(and it is ensured if  the production cavity is resonant)
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cavity searches II: the real thing... 

Once you have the right cavity ... 
the only problem is signal/noise

ADMX is now fighting to cool down
the cavity/amplifier to liquid 3He

the definitive experiment! ... ???

measurement time vs. different measurements

http://www.phys.washington.edu/groups/admx/home.html

L = π/ma?

S

N
=

Pout

Pnoise
=

Pout

TS

�
time

Bandwidth
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L0, L0 + δ, L0 + 2δ, slow scan, adjusting the length!etc...
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cavity searches II: the real thing... 

Once you have the right cavity ... 
the only problem is signal/noise

ADMX is now fighting to cool down
the cavity/amplifier to liquid 3He

the definitive experiment! ... ???

- Axion DM eXperiment ADMX (Washington U.) ...  (the 3D version is more complex)

8T field, 1mL,0.5mD

ma ∼ 1/L ∼ µeV

measurement time vs. different measurements

http://www.phys.washington.edu/groups/admx/home.html

- Problem! We don’t know the axion mass!!!!!!!!! L = π/ma?

S

N
=

Pout

Pnoise
=

Pout

TS

�
time

Bandwidth

L0, L0 + δ, L0 + 2δ, slow scan, adjusting the length!etc...

Friday, 8, March,2013

http://www.phys.washington.edu/groups/admx/home.html
http://www.phys.washington.edu/groups/admx/home.html


KSVZ

DFSZ
A
D
M
X

BF
RT

IAXO

A
D
M
X

A
D
M
X
�
II

A
D
M
X
�
H
F

Antropic �Θ0�1� �Θ0�1�
HS HKS

DS

10�7 10�6 10�5 10�4 10�3

10�1

1

10

102

10�1 1 10 102

ma �eV�

CΓ

Ν �GHz�
cavity searches II: ADMX and relatives

caγγ × ρCDM

0.3GeV/cm3

Friday, 8, March,2013



KSVZ

DFSZ
A
D
M
X

BF
RT

IAXO

A
D
M
X

A
D
M
X
�
II

A
D
M
X
�
H
F

Antropic �Θ0�1� �Θ0�1�
HS HKS

DS

10�7 10�6 10�5 10�4 10�3

10�1

1

10

102

10�1 1 10 102

ma �eV�

CΓ

Ν �GHz�

We need more 
experiments!

cavity searches II: ADMX and relatives

caγγ × ρCDM

0.3GeV/cm3
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dish antenna searches (broadband!) Horns et al, arXiv:1212.2970

- Mirror radiation is perpendicular 
to the mirror’s surface (emitted 
coherently from the surface!)

- concentrate emission using a 
spherical dish antenna!

nice shielding

?

background

spheric
al d

ish

Pcenter ≈ Adish�|EDM,|||2� ∼ χ2ρCDMAdish Pcenter

Pcavity
∼ Adishm2

a

106

Comparing both methods...

Presonant cavity = κχ2maρCDMQVcavityG0(α
�)2.
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magnetic field
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dish antenna searches (broadband!) Horns et al, arXiv:1212.2970

1 m^2 dish 
5T magnet
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to take home

- No nEDM, dark matter is there... axions?

- WISPy cold dark matter

- cavity experiments (ADMX) hunt in the micro-eV

- new experiments!

- higher masses are motivated, but difficult!

- new broadband proposal with dish antennas
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Light Dark Matter: non-thermal relics

Any light boson features the 
realignment mechanism (like axions)

Hidden photons can be also Cold Dark Matter
Nelson et al, PRD84 ; Arias et al, JCAP 1206
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dish antenna searches (broadband!) Horns et al, arXiv:1212.2970

1 m^2 dish 
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