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Outline

- Strong CP problem and axions

- axion-like particles BSM

- Axion (WISPy) cold dark matter

- axion - photon mixing

- radiation from a magnetised mirror
- cavity experiments

- dish antennas
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The Strong CP problem

- Topological term in QCD cannot be neglected (‘t Hooft) (explains eta’ mass)
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Axion-like particles (ALPs) BSM
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Axion cold Dark Matter

Axions (and ALPs) are produced non-thermally by three mechanisms

Realighment mechanism Cosmic Strings Domain Walls

(Field space) (Position space)

Qa,VR 40,ueV 1184
Qobs
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Axion cold Dark Matter

Axions (and ALPs) are produced non-thermally by three mechanisms

Realignment mechanism Cosmic Strings
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Axion cold Dark Matter*

If the Peccei-Quinn phase transition happens before inflation ...

Realighment mechanism Cosmic Strings Domain Walls
(Field space) (Position space)
(T>QCD) (T<QCD)
-
3T
a = — a =T
2
l.
-
a = 5
a=70 a=0 O

Size of our universe after inflation fits
inside one of these domains

- CSs and DWs are diluted by expansion

- Whole universe has 1 initial value for a
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Where axion CDM lies??

Hewett et al. arXiv:1205.2671 [hep-ex]
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WISPy cold dark matter

Arias et al, JCAP 1206
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Detecting axion (ALP) cold dark matter




axion - photon mixing in a magnetic field ...

L= %Fwﬁ“”a = —guyB - Ea
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rad|at|0n from a mirror Horns et al, arXiv:1212.2970, accepted in JCAP

E, = wgx cos(wat + kz).
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Photons radiated from the mirror with W, = W, = ma(l -+ 212/2)

4 )
Note: measuring these photons,
we measure the TOTAL DM energy,
DM mass and the velocity distribution!
also with directional sensitivity!
Irastorza et al. 2012
. J
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cavity searches (haloscopes)

Sikivie PRL ‘83

- Use two facing mirrors (simplistic resonant cavity in 1D)
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cavity searches (haloscopes)

Sikivie PRL ‘83

- Use two facing mirrors (simplistic resonant cavity in 1D)

10F resonant va ~ T 4 27T7’lj detector
' negative interference
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cavity searches (haloscopes)

Sikivie PRL ‘83

- Use two facing mirrors (simplistic resonant cavity in 1D)

10r resonant (,UWL ~ T+ 27Tnj detector
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coefficient t

dark matter distribution
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cavity searches (haloscopes)

Sikivie PRL ‘83

- Use two facing mirrors (simplistic resonant cavity in 1D)

resonant wwL ~ T + 27Tnj . detector
1\ -\ —F O\
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dark matter distribution
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cavity searches (haloscopes)

- Understanding the out Power
out |2 1 1M |2 1 1M |2
Pouwt = Area |ES""|* = Area |- EY"|” = Area |- E"|* =
8 t Y t a

1 1 ¢g*>B?
Area t—QXQ\waa\z = Area 33 PCDM

m, Volume
my,L = 7™ — Area =
-
P _Volumexmab>< 1 y | gB_z><
out — — [tQ N 5@2] _X ma_ IOCDM
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cavity searches and ALPS-II

- This is the same principle used in the REGENERATION CAVITY OF ALPS-II

detector

- In the HALOSCOPE experiment the coherence in time of the signal comes
from the fact that axions are non-relativistic (in the zero-k limit they are
standing waves)

- In the ALPS-II (relativistic axions) regeneration cavity, the coherence in
time has to be provided by an amazingly stable feeding-laser
(and it is ensured if the production cavity is resonant)
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cavity searches ll: the real thing...

http://www.phys.washington.edu/groups/admx/home.html

L=mn/m,"?

Once you have the right cavity ...
the only problem is signal/noise

S Pout _ Pout\/ time
Bandwidth

N - Pnoise TS

measurement time vs. different measurements

ADMX is now fighting to cool down
the cavity/amplifier to liquid 3He

the definitive experiment! ... ???
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cavity searches ll: the real thing...
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Lo, Lo + 5, Lo + 25, etc... slow scan, adjusting the length!
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cavity searches ll: the real thing...

http://www.phys.washington.edu/groups/admx/home.html
- Problem! We don’t know the axion mass!!!!!!!t [, — W/ma?

Lo, Lo + 5, Lo + 25, etc... slow scan, adjusting the length!

- Axion DM eXperiment ADMX (Washington U.) ... (the 3D version is more complex)

Once you have the right cavity ...
the only problem is signal/noise

S Pout _ Pout\/ time
Bandwidth

N - Pnoise TS

measurement time vs. different measurements

. ADMX is now fighting to cool down
8T field, 1mL,0.5mD the cavity/amplifier to liquid 3He

Mg ~ 1/L ~ peV

the definitive experiment! ... ???
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cavity searches ll: ADMX and relatives

- « PCDM
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cavity searches ll: ADMX and relatives
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dish antenna searches (broadband!)

Horns et al, arXiv:1212.2970

nice shielding

- Mirror radiation is perpendicular
to the mirror’s surface (emitted
coherently from the surface!)

- concentrate emission using a
spherical dish antenna!

background

Comparing both methods...

~ 2 2
Pcenter ~ Adish<‘EDM,||‘ > ~ X pCDMAdish Pcenter Adishm
Pcavity 106

2 I\ 2
Presonant cavity — RX mCLIOCDMQ‘/CaVitng(a ) .
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dish antenna searches (broadband!)

Horns et al, arXiv:1212.2970
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to take home

- No nEDM, dark matter is there... axions?

- WISPy cold dark matter

- cavity experiments (ADMX) hunt in the micro-eV
- new experiments!

- higher masses are motivated, but difficult!

- new broadband proposal with dish antennas
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Light Dark Matter: non-thermal relics

Any light boson features the
realignment mechanism (like axions)

o/

Hidden photons can be also Cold Dark Matter

Nelson et al, PRD84 ; Arias et al, JCAP 1206
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dish antenna searches (broadband!)

Horns et al, arXiv:1212.2970
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