Photon Control and Data Systems for LCLS

Amedeo Perazzo

representing

Mark Freytag, Gunther Haller, Ryan Herbst, Mike Huffer, Chris O'Grady, Leonid Sapozhnikov, Eric Siskind, Dave Tarkington, Matt Weaver

Stanford University/SLAC

XFEL DAQ and Control for Photon Beam Systems Workshop DESY, March 10th 2008

Contents

Data System Architecture

Brief description of the functionality of the various components (6 slides)

Control System Architecture

(Extremely) Brief description of the overall control system (1 slide)

Networking

- Service network organization (2 slides)
- Control and data traffic network organization (1 slide)

Reconfigurable Cluster Element

- SLAC custom made board
- Principal component of the LCLS DAQ system
 - Common among different experiments
- Main focal point of this talk (~12 slides)

Data System Architecture

Detector

- Experiment specific
- May be bump-bonded to ASIC or integrated with ASIC

Front-End Electronics (FEE)

- Provide local configuration registers and state machines
- Provide ADC if ASIC has analog outputs
- FEE uses FPGA to transmit to DAQ system

Accelerator Data

Timing interface

- Timing boards (EVR) receive 120 Hz timing information from accelerator timing generator board (EVG)
 - 1Gb/s optical fibers connect EVG with EVR through custom protocol
- EVR distributes timing signals to L1 nodes and FEE

Beam Line Data

- Time-stamped 120 Hz beam quality data information
- Information contained in raw Ethernet packets
 - low latency network
 - no UDP or TCP
- Used by L1 nodes to veto events

Level 0 Nodes

- Level 0: Control
 - DAQ operator consoles
- Provide different functionalities:
 - Run control
 - Partition management, data-flow
 - Detector control
 - Configuration (modes, biases, thresholds, etc)
 - Run monitoring
 - Data quality
 - Telemetry monitoring
 - Temperatures, currents, voltages, etc
- Manage all L1, L2 and L3 nodes in a given partition (i.e. the set of DAQ nodes used by a specific experiment or test-stand)

Level 1 Nodes

Level 1: Acquisition

- Receive 120 Hz timing signals, send trigger to FEE, acquire FEE data
- Error detection and recovery of the FEE data
- Control FEE parameters
- Calibration
 - Dark image accumulation and averaging
 - Transfer curve mapping, gain calculation
 - Neighbor pixel cross-talk calculation
- Event-build FEE science data with beam-line data
- Image processing
 - Pedestal subtraction using calibration constants, cross-talk corrections
 - Partial data reduction (compression)
 - Rejection using 120 Hz beam-line data
 - Processing envisioned both in software and firmware (VHDL)
- Send collected data to Level 2 nodes over 10 Gb/s Ethernet

Register Command Data Interface

MGT

L1 Node

Detector specific blocks PCDS blocks

Interface defined between FEE and L1

Transceiver

Fiber

Common interface among different experiments

MGT

- Provide data, command and register interfaces
- Custom point-to-point protocol (Pretty Good Protocol, PGP) implemented as FPGA IP core
- FEE FPGA assumed to be Xilinx Virtex-4 FX family with Multi Gigabit Transceivers (MGT)

Level 2 & 3 Nodes

Level 2: Processing

- High level data processing:
 - Learn, pattern recognition, sort, classify
 - e.g. combine 10⁵ − 10⁷ images into 3D data-set
 - Alignment, reconstruction
- Currently evaluating different ATCA blades for L2 nodes
- Send processed data to L3 over 10 Gb/s Ethernet

Level 3: Data Cache

- Provide data storage
 - Located in server room in experimental hall
- Off-line system will transfer data from local cache to tape staging system
 - Tape staging system located in SLAC central computing facilities
- Must be able to buffer up data in local storage during downtimes of staging system
 - Current requirement is ~4 days of data

Control System Architecture

Control system is EPICS based

- Each experiment control system connects to accelerator controls and to photon-beam controls through a channel access gateway (CAG)
 - CAG as proxy for external clients and to filter traffic between different systems

Adopted different architectures for the Input-Output Controllers (IOC)

- Most IOCs are MVME5500 SBCs (PowerPC) running RTEMS
 - Plus some cPCI PP410 SBC (x86) running Linux
 - Plus some 1U servers (x86) soft IOCs running Linux

Networking

- PCDS network organized in 2 zones
 - Back-end: provides networking services to the PCDS enclave
 - Front-end: control and data acquisition traffic
- Network organization driven mainly by new DOE security rules
- Back End Zone
 - Must allow Control & DAQ to be operational, for limited amount of time, when connection to SLAC domain is down
 - Divided into five subnets:
 - DMZ: limited access from SLAC machines
 - USER: development and Internet access
 - SERVICE: provides NFS, DNS, NTP and AAA services to CDS and DSS
 - CDS (Control & DAQ Subnet): service subnet for Control & DAQ nodes
 - DSS (Data Storage Subnet): service subnet for the Data Storage machines
 - Switching based on commercial off-shelf machines
 - Switches configured to also provide routing and firewall capabilities

Back End Zone Network Diagram

PHOTON
CONTROL &
DATA
SYSTEMS

Networking (II)

Front End Zone

- Provides the infrastructure for the control and data acquisition traffic
- Divided into three subnets:
 - DAQ: science data, partition management, run monitoring and telemetry traffic
 - connects DAQ operator consoles (L0), readout nodes (L1), processing nodes (L2) and data cache machines (L3)
 - EPICS: control traffic
 - connects control operator consoles (E0), IOCs (E1), EPICS archiver (E3) and the channel access gateway
 - BLD: low latency beam-line data traffic
- Switching based on custom Cluster Interconnect Modules (CIM)
 - Low latency, high-speed ATCA switches
 - Provide connectivity between modules inside ATCA chassis and among separate crates
 - More on the CIM at the end of this presentation...

Reconfigurable Cluster Element (I)

- The RCE is the most interesting among the different Level 1 node types
 - SLAC custom made ATCA board
- Based on System On Chip (SOC) Technology
 - Currently implemented with Xilinx Virtex 4 devices, FX family
 - Targeting XC4VFX60
 - Xilinx devices provide
 - Reconfigurable FPGA fabric
 - DSPs (200 for XC4VFX60)
 - Generic CPU (2 PowerPCs 405 running at 450 MHz for XC4VFX60)
 - TEMAC: Xilinx TriMode Ethernet Hard Cores
 - MGT: Xilinx Multi-Gigabit Transceivers 622Mb/s to 6.5Gb/s (16 for XC4VFX60)

Power consumption

- About 72 watts for fully populated board
 - Configuration with 2 RCE per board and 4 flash memory slices per RCE
 - ~30W per board+RTM, ~15W per FX60 (RCE), ~1.5W per FX20 (slice)

Reconfigurable Cluster Element (II)

FPGA fabric

- Interfaces to:
 - memory subsystems
 - JTAG debug port
 - custom multi-function display
 - various I/O channels
- Generic DMA Interface (PIC) designed as set of VHDL IP cores
 - Up to 16 PIC channels
- PIC in conjunction with Multi-Gigabit Transceivers and protocol cores, provide many channels of generic, high speed, serial I/O
 - 10Gb Ethernet
 - PGP
- PIC in conjunction with TriMode Ethernet Hard Cores also provide commodity network interfaces
 - 1Gb Ethernet

Reconfigurable Cluster Element (III)

- System Memory Subsystem
 - 512 MB of RAM (currently 128 MB)
 - Memory controller provides 8 GB/s overall throughput
 - Uses Micron RLDRAM II
- Platform Flash Memory Subsystem
 - Stores firmware code for FPGA fabric
- Configuration Flash Memory Subsystem
 - 128 MB configuration flash
 - Dedicated file system for storing software code and configuration parameters (up to 16 selectable images)
- Storage Flash Memory Subsystem (optional)
 - Up to 1TB per RCE persistent storage flash (currently 256GB per RCE)
 - Low latency/high bandwidth access through I/O channels using PGP
 - Uses Samsung K9NBG08 (32 Gb per chip)

Pretty Good Protocol

Pretty Good Protocol (PGP)

- Serial point-to-point connectivity
 - Physical interface is 2 LVDS pairs/lane
- Small footprint
- Features: clock recovery, full duplex, reliable frame transmission and reception, deterministic (and small) latency
- Implemented as IP protocol core interfaced to PIC
 - Extensible in both bit-rate and number of lanes
- Used to interface the RCE to its storage flash memory subsystem
 - Four lanes at 3.125Gb/s (~1GB/s per RCE)
- Used to interface the RCE to the front-end electronics
 - Up to four channels at 3.125Gb/s (~1GB/s per RCE or ~2GB/s per RCE board)

RCE Software

Software

- Ported open source Real-Time kernel
 - Adopted RTEMS: Real Time Operating Systems for Multiprocessor Systems
- Written BSP mainly in C++
 - Plus some C and assembly
- Written 10Gb Ethernet driver and PGP drivers for bulk data
- 1Gb management interface driver
- Built interface to RTEMS TCP/IP network stack (BSD)
- Developed specialized network stack for zero-copy Ethernet traffic

RCE Block Diagram

RCE Board Block Diagram

RCE Board with RTM

PHOTON
CONTROL &
DATA
SYSTEMS

Cluster Interconnect Module

ATCA network card

- SLAC custom made board
- Based on two 24-port 10Gb Ethernet switch ASICs from Fulcrum
 - Up to 480 Gb/s total bandwidth
- Managed via Virtex-4 device
 - Currently XC4VFX20
- Fully managed layer-2, cut-through switch
- Interconnect up to 14 in-crate RCE boards (i.e. 28 RCEs)
- Interconnect multiple crates for additional scalability
- Power consumption: ~50W per CIM (~100W per board)

Fully configurable

- Designed to optimize crates populated with RCE boards
 - Ability to use ATCA redundant lanes for additional bandwidth if desired
 - Ability to use 2.5Gb/s connections in place of standard 1Gb/s Ethernet
- At the same time may be configured to connect standard ATCA blades

CIM Board Block Diagram

CIM Board with RTM

Front-end Development Board

ATCA 14-slot Chassis

Conclusions and Path Forward

- LCLS common custom DAQ hardware devices fully prototyped
 - RCE, CIM and front-end development board
- Interface with FEE defined
 - Uses common (among different experiments) communication protocol
 - Implemented as IP cores interfaced to detector specific user logic in FEE FPGA
 - Need to develop detector specific user logic for ASIC operations
- Begun definition of the interface with off-line system
 - Currently investigating HDF5 as common data format for data cache
- Software development in progress on: DAQ partition management, user interface, calibration framework and data-flow
- Continue development on EPICS drivers for the control system of first LCLS experiment (AMOS)