XFEL DAQ and Control for Photon Beam Systems

XFEL Timing System

and Data Acquisition Concept

Kay Rehlich

DESY, MCS4, WP-28

Our Vision

- Bunch synchronous data acquisition
 - ps / fs stable clocks and triggers (hardware)
- Full software integration
 - Correlation of the data: accelerator and experiments
 - A single program can access all data:
 - On-line, off-line and Linac, Experiments

Timing Sequence FLASH

Timing @ FLASH

Timing and Synchronization Systems @ XFEL

fs synchronization XFEL

The Front-end: XFEL

Data Acquisition (Hardware)

Hardware:

receives clocks or patterns, triggers

to synchronize the bunches (ps stability)

Data Acquisition

CPU:

receives event numbers, interrupts, modes

to synchronize the macro pulses for DAQ

Possible Bunch Patterns

Max: 5 Mhz, 3000 bunches

Pre bunch

1 MHz or lower frequencies

Arbitrary patterns

Different patterns @ different beamlines in one macro pulse

or varying patterns from shot to shot

Timing System Blocks

Timing System Requirements

1.3GHz telegrams

- With clock recovery, few ps jitter
- Events and data for triggers, event number, modes, bunch pattern, bunch charge?, ...
- Sender compensates cable length, drifts and measures time delay from sender to receiver

Timing receiver outputs (hardware)

- Raw telegrams
- Clock (and gated clocks) on front and backplane
- triggers
- Level (LVDS, LVPECL,..) to be defined
- Connectors to be defined (e.g. Infiniband)
- Goal: first prototype ready end 2008

Timing Distribution

Hardware: xTCA

Software Integration: DOOCS

Software Integration (2): DOOCS

User Interface

DOOCS Application Program Interface

- One interface to access all data
 - On-line
 - Off-line
 - Accelerator
 - Experiments

ACC1 Probe Ampl

1000

2000 2500

[MV/m] 25.0 T

15.0 10

5.0

0.000

Middle Layer

Front-end Tier

Accelerator, Experiments

Software Integration (3): DOOCS

DOOCS Device Server

- Readout triggered by timing system
- DMA data transfer
- MultiThreaded server
- Can send data to the DAQ
- Direct access from GUI
 - Data selection: e.g. ROI
- Local archive (one value / shot)

User Interface

Middle Layer

Front-end Tier

Accelerator, Experiments

DOOCS: Integrated environment

Conclusions

- Hardware timing system
 - ns stable system: a lot of experience gained at FLASH
 - Provides clocks, triggers and event numbers
 - ps and fs stable systems for XFEL are under design
- Software integration
 - DOOCS provides synchronized data acquisition for the accelerator and experiments at FLASH
 - Future developments of DOOCS will provide more featured tools for a full access to online and offline data