

XFEL offline computing@DESY

Martin Gasthuber, Volker Gülzow

Outline

- todays resources and their usage
- potential of todays systems
- example usage for (known) XFEL demands
- more demanding/critical questions

Part of the analysis chain

It will be very different from today (requirements) What are the components?

- 1) Network
- 2) Compute Resources
- 3) Storage
- 4) Software
- 5) Support
- -> A computing model/TDR is needed for offline computing!

Part of the analysis chain

- 1) Network: technically okay, bunch of 10/40/100 GigaBit/s Ethernet (GE) connections (money)
- 4) Software: both, technical (OS, Compilers,..) and analysis packages (okay?), Performance? Multicore enabled, scalable?
- 5) Support: Staff for operations/technical SW and staff for analysis packages

2. Computing Resources

- Model is application driven
- Expecting all Unix (Linux) driven
- Major work on local clusters (farms with fast interconnect eg backplane, infiniband)
- Grid solutions
- Special system for visualization

FFT benchmarks

By Frank Schluenzen (IT)

• Available hosts:

#	СРИ	Туре	Speed/ GHz	os	kernel	CPUs	Cores/ CPU	Nodes	Total Cores	RAM/ Core	Interfac e	Host
1	Intel(R) Xeon(R)	X7350	2.93	SLD5.0	2.6.18	4	4	1	16	4.0 GB	bus	fast06
2	AMD Opteron (tm)	885	2.20	SLD4.4	2.6.9	8	2	1	16	4.0 GB	bus	hasgkss xtmrs
3	AMD Opteron (tm)	252	2.59	SLD5.0	2.6.18	1	2	8	16	1.5 GB	IB	plejade @ifh

• Compute environment:

Compiler:	Intel 10.1, gcc/gnufortran 4.x, PGI 7.1
MPI:	openmpi 1.2.5, mpich2 1.0.4
FFTw:	fftw 3.2-alpha3

Comparison

2000

FFT benchmarks: 500x500x500

AMD Dual

Intel Quad (1)

IB Cluster (3)

(2)

- DualCore (16 core) \sim 7Gflops \rightarrow 21s /1000³ FFT
- DualCore (IB-Cluster) ~ 7Gflops → 21s /1000³ FFT

FFT benchmarks: 1000x1000x1000

Performance summary

- 16 core DualOpteron offers best scalability & memory throughput
- 16 core QuadCore offers the same performance
- considerably faster for less memory demanding tasks
- Infiniband Performance and Scalability seem sufficient
- Infiniband Cluster of 4*16 sufficient to get execution time << 10s for 1000³

2. Computing Resources

- Grid based resources (Linux)
 - very large scale (world-wide distributed)
 - gLite and GT4 Middleware in use
 - Batch like interface (i.e. glite-job-submit), VO driven
 - LHC usage: large scale data reduction, MC, Analysis ...
- Cluster, Farm (Linux) (like NAF or Bird)
 - large scale (site-wide)
 - Batch & Interactive Access (include remote)
 - flexible, high availability, easy extend & maintain
 - LHC usage: Physics Analysis, private MC, SW dev

The Grid: potential benefit

- Grid-Methods as standard user interface
- Resource provider (not free!)
- Grid-Services for operations (AAA,...) but security is an issue
- Political reasons

3. Storage Resources

Grid based

- worldwide access (gridftp) / local access (dCap, xrootd)
- very cost effective large scale <u>managed storage</u>
- optimized for high aggregate tp. with thousands of streams
- includes tertiary storage access/management large tape systems (robot) these days

Cluster / Farm

- cluster filesystem (i.e. Lustre) for very fast and easy access to large datasets, Infiniband based
- standard file access like other filesystems
- access to AFS and Grid storage through IP network
- Workgroup
 - AFS, NFS, CIFS based

Deployed Today

Grid based

- ~830 CPU cores (2 GB per core)
- ~250 TB disk based (dCache managed) storage
- tape (LTO3/4)
- Cluster / Farm
 - 256 CPU cores (2 GB per core)
 - ~50 TB Lustre based disk storage
- Workgroup
 - several TB for homedirs and dedicated group NFS

todays situation

- 2x SUN SL8500
- Installed at DESY in Jan 07
- Up to 13000 Cartridges
- Multi library capability
- Currently 30 drives LTO3, 8 drives LTO4
- LTO3 400 GB/Cart, 120 MB/s (45€cart)
- LTO4 800 GB/Cart, 120 MB/s (70€cart)
- 2nd Silo financed via grids money

todays potential

CPU

- Grid managed
 - **>50000**
- Cluster / Farm
 - >1000 (exceeding 10,000 soon)

Network

- IP
 - WAN 10Gigabit DFN link in place
 - Gigabit, 10Gigabit (and aggregates of such, i.e. 4x10GE)
- Infiniband
 - DDR (double data rate) 20 Gbits/sec per port
 - usually 2 ports per node available

todays potential

Tape

- single stream ~120 MB/sec (native not compr.)
- aggregate >2 GB/sec
- capacity >8 PB easy extendable

Disk

- dCache
 - unlimited capacity biggest site >2 PB
 - single stream ~100 MB/sec (dep. IP path, disk config)
 - aggregate only limited by network and disk config
- Lustre
 - max. observed capacity (worldwide) ~ 2 PB
 - bandwidth
 - o single stream ~1 GB/sec
 - aggregate >40 GB/sec (dep. on disk and server config)

(known) XFEL demands fitting (2013)

- DAQ (single Experiment, prob. x 3)
 - 5 GB/sec aggregate store rate
 - todays LTO4 tape drive (extend to ~50 in total)
 - extend Ethernet to 10GE per participating node
 - need ~50 streams (i.e. 5 per sending node)
 - 25 PB (50% uptime)
 - extend Robot space to ~50000 slots
 - o 5 of the largest robots (reasonable!)
- by that time (2013)
 - Tape at least: 3.2 TB, 300 MB/sec per drive (x3 better)
 - Ethernet (IP): 40 or 100 GE and aggregates of such

the real big issues...

- how/where/when reading data back
- long term storage (DPG good practice)
- collaborating institutes (copy of data parts)
- analyze use cases (i.e. common data reductions for large groups)
- OS platform for analysis (Linux/OSX/Win/...)

 this all determine to a very large extend the architecture and costs of the final system

in other words

need a <u>Computing Model</u>

- we (IT@DESY) are ready (hot standby) to participate in creating and finalize (iterate)
- must include rough timing (initially)
- must include Challenges (prove scaling) for online and offline processing
- need this also for cost estimates
 - somebody will probably ask soon!

Conclusion

Still many unknowns

A computing TDR is recommended

It seems as if there are no technical problems

It seems as if it's a matter of money

Software should take multicore architecture into account

technology outlook

Q4/07 ~2009 ~2012

Note: all numbers include 1:2 compression ratio - divide by two to get real numbers ;-)

simplified architecture Grid fabric

- Worker-Node (CPU) + File-Server (Storage) connected through IP Network (GigE) to the (Grid) world (WAN)
 - allows commodity components to a large extend
 - non commodity: tape, WAN, (LAN)
- LCG/gLite Grid middleware stack used

simplified architecture Cluster/Farm

