

Control and Data
Acquisition System for
ESRF Beamlines

Presented by Laurent Claustre for the BLISS group

XFEL DAQ Workshop /DESY / 10-11 March 2008

About the speaker

ID card:

Name: Laurent Claustre

Born in: France

Living in: Grenoble since 1991

Working in beamline control since 2000

Heading BLISS group since jan. 2008

O u tlin e

- 1. ESRF, Beamlines, BLISS
- 2. Control system overview
- 3. Future challenges

ESRF & Beam lines

29 ESRF beamlines

12 CRG's

ESRF/Computing

TBS / Experiments Division

BLISS / Software development and support	18
SciSoft / Scientific Software	8
C.E. / Electronics development and support	13
Computing Services	
Software Engineering Group	10
System Admin and Networks	15
Digital Electronics	9
Management Information System	8

B LISS

- * Beam line Instrument
 Software Support
- * 18 software engineers
- * Giving service to ALL

 ESRF beam lines

 including CRG's

PATH TO BLISS

A Practical Guide to Stages of Meditation

H.H. the Dalai Lama, Tenzin Gyatso

Translated by Geshe Thubten Jinpa Edited by Christine Cox

BLISS developments

* Scope:

*From low-level drivers to data analysis / visualization as far as concerns the successful running of the experiments

* Four de ve lopment are as:

*Hardware support software

*G raphical in terfaces

*A u to m a tio n projects

*In frastructure software

BLISS / Support

* Beam line instrumentation projects:

*Participate to beam line
instrumentation projects

*Small software developments

*Experiment macros

*Beam line specific GUI

- * Software consulting / auditing
- Beam line support:
 installation and problem
 resolution

Beam line Control System

A brief history of BL control system

- **1990**
 - Control choices: VME (os9) / HP + Sun
 - Taco development for accelerator control
- **1994**
 - First beamlines open. Control system based on VME / Taco
 - SPEC used as main control program
- 2001
 - Modernization efforts
 - ID31 control uses only Linux
- **2004**
 - BLISS graphical framework
 - Tango on beamlines
- 2005-2007
 - Automation efforts
 - Icepap, musst, frelon 2k, medipix
- 2008+ : ESRF Upgrade program

...and there be light (at the beamlines)

"In the beginning there was TACO & sp

TACO:

- Developed at the ESRF
- Objects in C. RPC communication.

spec:

- Commercial program for diffractometer control
- And some other features...

Taco

- Developed at the ESRF
- Used also at :
 - FRM-II neutron source (Garching-Munich)
 - Hartebeesthoek Radio Astronomy
 Observatory (South Africa).
 - Anka
- Used massively at all ESRF beamlines:
 - 92 different servers distributed
 - 7000+ devices exported

Taco: Device Servers

- 1.Register in DB
- 2.Client asks DB
- 3.Client / Server Communication

Manager/ Database

spec

*Move, Count, Take data, Plot, and Save

*Built-in macro language

*Built-in code for diffractometers (kappa, fourc, sixc, surf, ...)

*Configuration

*Many motor controllers, countertimers, CCD, Mca's integrated

*Generic I/O through CAMAC, VME,
GPIB, Serial Line, Socket, Bus coupler
and I/O ports

X dtterm						
Number: <>Controller	0: NON	1+	+ 2	: NONE	3: NON	Е
Unit/Channel	0/0)	IP28	0/1	0/	0 ∥
Name	Mon) I	TL09	Y Tilt	HP 66xP	s 📗
Mnemonic	mon	ITL	.09_E	yti	vol	t
Steps per degree/mm	2000)	IXE	2000	200	0
Sign of user * dial		KS	3112	1		1
Backlash [steps]	50) KS	3116	50	5	0
Steady-state rate [Hz]	2000) KS	3195	2000	200	0
Base rate [Hz]	200)	MAXE	200	20	0
Acceleration time [msec]	12.	KAM C	E_DC	125	12	5
Motor accumulator	20400) MA	XE_E	20000	3000	0
Restrictions	NON	: MA	XE_S	NONE	NON	E
		1	MC4			
Dial = accumulator / steps		1	MCB			
High limit	500.000)	MCU	180.0000	180.000	0
Current	10.2000) M	CU_E	10.0000	15.000	0
Low limit	-500.0000) - M	CU_H	-180.0000	-180.000	0
User = sign * dial + offset		M	CU_O			
Offset	0.0000) MM	12000	0.0000	0.000	0
'High' limit	500.0000	MM20	00_E	180.0000	180.000	0
Current	10.2000	MM	[2500]	10.0000	15.000	0
'Low' limit	-500.0000	- MM25	00_E	-180.0000	-180.000	0
		+	+			
Number of motors		Type	? or H	for help,	^C to quit	

```
💹 dtterm
961.VICENTE> wa
Current Positions (user, dial)
             Hexa Y
                       Hexa Z Motor 3
                                          Motor 4
                                                        Mono
                                                        mono
   1.0000
             7.0000
                       2.0000
                                 8.0000
                                            1.8870
                                                      1.1200
   1.0000
962.VICENTE> umvr m3 5
     Motor 3
963.VICENTE> ct 1
Mon May 15 14:43:03 2000
     Seconds = 1
     Monitor = 0 (0/s)
    Detector = -20.846 (-20.846/s)
   Counter 3 = 0 (0/s)
   Counter 4 = 0 (0/s)
 964.VICENTE>
```


Tango

- Inter-process communication using Corba
- Client and server API in C++, Java and Python
- Objects include commands, attributes and properties
- Features include: graphical development tools, event notification, automatic polling thread for each device, graphical java toolkit, remote administration of servers and configuration...
- Compatible with Taco
- Developed as a collaboration between ESRF, Elettra, Soleil DESY and Alba

Experiment visualization / evaluation

- Standalone tools for visualization
- Should work both online or offline
- Applications that users can bring along with their data
- Emphasis on performance.
- Non-intrusive
- Evolution with time and technologies...

Gra

ID ZI

Automation

- * Optics automation

 *Beam delivery

 *Mirroralignment
- * Experiment and sample handling

 *Mx data collection

 *Automatic (EMBL) and assisted sample centring
- Data analysis
- Experiment annotation, book keeping
- * Remote access

European Synchrotron Radiation Facility

The fun continues...

...some challenges ahead

What beamline software in next years?

- Detector systems
- Beamline control evolution
- ✓ Nano: positioning, sample environment
- Graphical interfaces
- Automation projects
- Fast acquisitions
- Data: visualization, online analysis, large dataset handling
- Accrued beamline support

Detectors & Computing

- Essential on upgrade program / cutting edge technologies
- Commercialization / collaboration
- CCD:
 - Growing size: Mar / ADSC
 - Growing speed: Sarnoff CCD / 1 tomography in 0.8s
 - 500 frames/sec = 125 MB/sec
- Pixel detectors
 - Maxipix (5 x 256 x 256 pixels) ESRF -
 - 1000 frames / sec = 600 MB/sec
 - Expected limit: datalink / disk speed
 - Today
 - 1000 frame / sec for 1 x 256 x 256 (ID10)
 - Pilatus 6M (2400 x 2328 pixels) SLS/ PSI -
 - 2ms readout ~ 500 fr / sec = 5 GB/sec
 - Today: 20 frame / sec = 200 MB/sec
- And more...

Detectors / and still more to come

CMOS Photron Ultima

10 bits

Example: 4000 fps

Already tested at ID15 at 10000 fps (512 x 256)

2 Gb/sec

BEAM LIME CAMPA EVALUTION

Issue

- Ensure the evolution of the beamline control system for constant modernization
- Follow up with functionalities offered by electronics developments
- Participate from/to developments in other European synchrotrons / XFEL

Software

- Evolution with linux kernels, hardware protocols.
 - Consider embedded solutions
- Tango: participate to / profit of the advantages of the collaboration

AJJ MAJJ DAHHU JIA4 S & CII

FAST/C AMINUAUS ACQUISITANS

- Enabled by electronics
 - Detectors with data buffering and near- zero readout (kinetics, pixel, mca buffering...)
 - Synchronization cards
 - Intelligent motor controllers
- Synchronization + buffering
 - From VCT6 synchronization to ISG suite:
 - MUSST for signal synchronization
 - Fully programmable features in Icepap
 - Software must handle them
 - Experiment sequences must be reconsidered

PATUTED WATER AND A STATE OF THE PATURE OF THE PATURE

SAIJORARDA

- Visualization:
 - multi-dimensional, instruments
- Online analysis and e estimation
 - Navigate through data
 - Data formats and met
 - Experiment databases

Thank you