Charm Fragmentation Function

Zuzana Rúriková

HRJRG meeting, Moscow 8. February 2008

- Introduction
- Observable definitions & measurement
- Extraction of fragmentation parameters
- Universality issues

Introduction

- QCD predictions usually based on perturbative calculations==> at long distances not applicable
- ► Factorization theorem: allows to separate process into short distance part (perturbative) associated with large momentum transfer and long distance part (non-perturbative, but universal)
- Production cross-section for inclusive process ep->H+X:

$$\sigma_H = \sum_i \sum_k f_{i/p}(x,\mu_{
m f}) \otimes \hat{\sigma}_{i\gamma
ightarrow kX}(lpha_{
m s}(\mu_{
m r}),\mu_{
m r},\mu_{
m f}) \otimes D_k^H(z,\mu_{
m f})$$

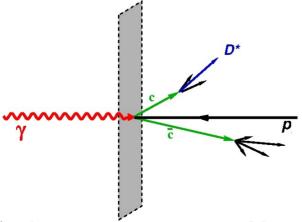
Fragmentation Function

► Fragmentation Function (FF): provides information about the energy fraction z transferred from parent quark to the created hadron

$$z=(E+P_L)_{D*}/(E+P)_c$$

- Phenomenological models: Lund string (PYTHIA MC), cluster (HERWIG MC)
- Phenomenological parametrizations: Peterson, Kartvelishvili, Bowler with a tunable parameters
- charm FF already precisely measured in e+e-==> with ep data we can check if universality holds (i.e. if they are portable from e+e- to ep and pp collisions)

Choice of Fragmentation Observable

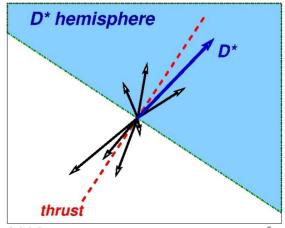

Fragmentation functions cannot be measured directly, since only hadrons are observed!

Jet method:

ightharpoonup momentum of c-quark approximated by momentum of rec. D^* -jet

$$\mathbf{z}_{\mathrm{jet}} = \frac{(E+p_{\mathrm{L}})_{D^*}}{(E+p)_{\mathrm{jet}}}$$

 $ho k_{\perp}$ -clus jet algorithm applied in γp -frame $ig(E_{
m t}(D^* jet) > 3 \; {
m GeV}ig)$



Hemisphere method:

 \triangleright momentum of c-quark approximated by momentum of rec. D^* -hemisphere

$$\mathbf{z}_{\text{hem}} = \frac{(E+p_{\text{L}})_{D^*}}{\sum_{\text{hem}}(E+p)_i}$$

- $\triangleright \eta(part) > 0$ for p-remnant suppression
- \triangleright thrust axis in plane perpendicular to γ used for hemisphere division

D* Selection

Cuts:

DIS cuts:

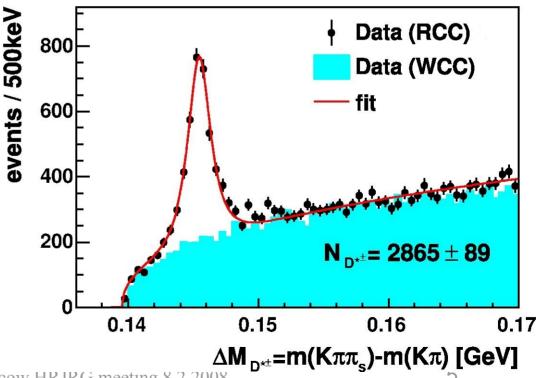
$$2 < Q^{2} < 100 \text{ GeV}^{2}$$

 $0.05 < y_{e} < 0.7$
 $40 < E-p_{z} < 75 \text{ GeV}$
 $|z_{yyz}| < 35 \text{ cm}$

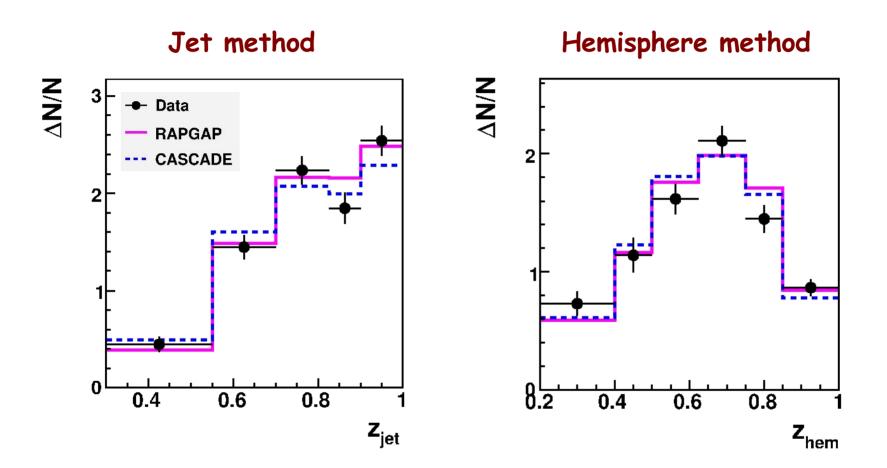
D* cuts:

$$|\eta(D^*)|<1.5$$

 $1.5 GeV
 $p_t(K,\pi)>0.25$ GeV
 $p_t(\pi_s)>0.12$ GeV
 $p_t(K)+p_t(\pi)>2$ GeV
 $|M(K,\pi)-M(D^0)|<70$ MeV
particle identification via dE/dx$


Golden channel: $D^* \rightarrow D^0 \pi_s \rightarrow K \pi \pi_s$

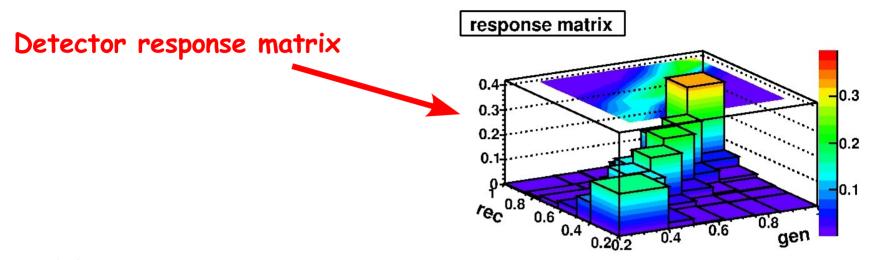
1999+2000 data: Luminosity = 47 pb-1


full sample $N(D^*)\approx 2900$,

for $E_{\downarrow}(D^*jet)>3GeV N(D^*)\approx1500$

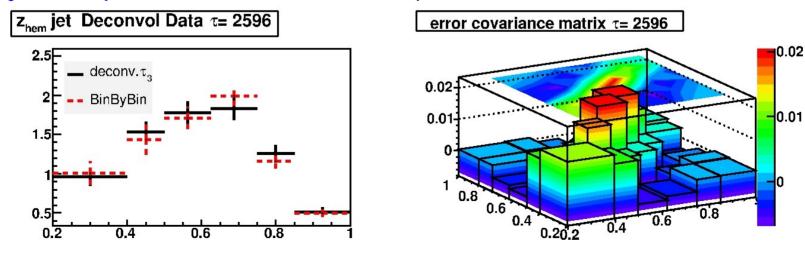
Fit: Mod. Gauss + bg. function

Observables at Detector Level

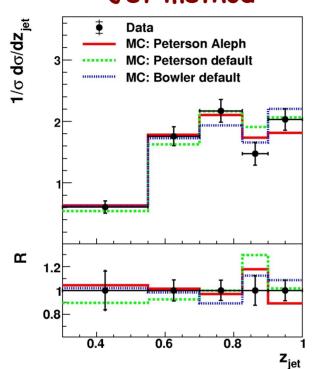


differences between observables in the last z bin due to significant fraction of D*jets consisting of a D*meson only

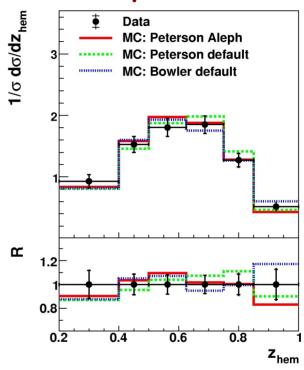
Correction Procedure


- Subtraction of beauty component
 - done at detector level, using bb RAPGAP MC prediction (fraction bellow 2%)
- Correcting for detector effects
 - regularized unfolding procedure applied, migrations from one bin into another taken into account by detector response matrix (essential for correct statistical error propagation in case of low purities)
- QED radiative corrections
 - calculated by RAPGAP/HERACLES

SVD Unfolding z hem


Unfolded z_{hem} distribution,

D*jet sample (statistical errors only):



Hadron Level Corrected Frag. Obs.

Jet method

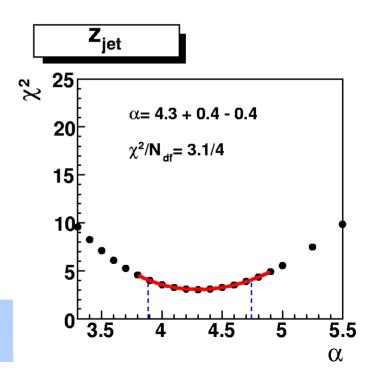
Hemisphere method

- observables compared with different MC fragmentation tunes
 - **Default** = Rapgap out of the box, no higher resonances present $(c-D^*)$
 - ▶ Aleph tune, contains ~ 27% of higher resonances (c->D* and c->D**->D*)
- good description of both observables

Averaged Systematic Errors (summary)

	Zhem [%]	Zjet [%]
Ee	0.8	0.5
Theta_ e	0.1	0.1
dE/dx	0.1	0.3
D*signal extr.	17	17
Energy scale	3	25
Trk. Scale	0.2	0.2
Trk eff.	0.1	0.1
Beauty	12	0.9
Model	0.1	0.3
Tot. sys. err.	3.8	3.4
Stat er.	D	10.9

<-- Statistical error dominant!</p>

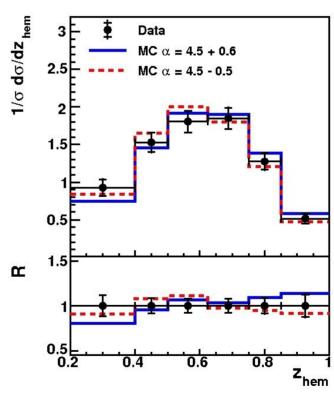

Sys. errors due to uncertainty of energy scale, electron energy and beauty fraction are correlated in z bins

FF Extraction Procedure

Non-pert. Frag. function defined only within given theoretical model:

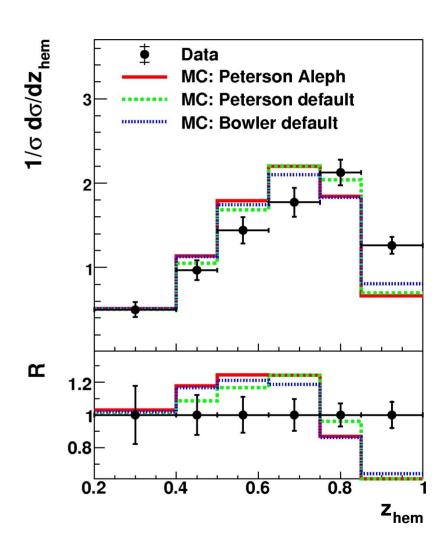
- ► LO+PS Monte Carlo models RAPGAP and CASCADE with Lund string fragmentation model (default setting, Aleph setting)
- NLO calculations (HVQDIS)
- Fitted parametrizations of nonpert. FF: Kartvelishvili, Peterson
- optimal parameters and confidence limits obtained from chi2 (correlated statistical and sys. errors taken into account)

$$\chi^2(\boldsymbol{\varepsilon}) = (z - z^{MC}(\boldsymbol{\varepsilon}))^T V^{-1}(z - z^{MC}(\boldsymbol{\varepsilon}))$$

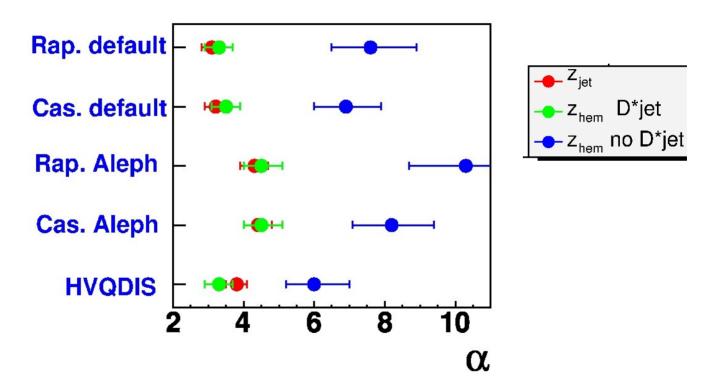

Extracted FF Plots - MC

Rapgap with Aleph setting & Kartvelishvili parametrization:

Jet method


Hemisphere method

both methods agree well within errors!


Investigating the Threshold Region

- events not fulfilling hard scale cut Et(D*jet)>3GeV, roughly 1300 D* events ==> inclusion would improve the statistical errors
- data spectrum much harder, data events have different topology than MC
- extracted FF roughly 4σ far from the FF extracted from the nominal sample
- discrepancy due to improper description of underlaying physics close to the charm production threshold in MC models

α Fit Results (Summary)

Rapgap MC Aleph tune, Kartvelishvili parametrization:

Qualitatively similar picture obtained also with Peterson parametrization

Universality Issues (Comparison with e+e-)

- Direct comparison of measured data impossible because:
 - ▶ 1.) different observable definitions used: $z_{e+e-} = E_{D*} / E_{beam}$, $z_{e+e-} = P_{D*} / P_{max}$, $z_{iet} = (E+P_L)_{D*} / (E+P)_{iet}$, $z_{hem} = (E+P_L)_{D*} / (E+P)_{hem}$
 - ▶2.) measurements performed in different phase space:

ALEPH, OPAL
$$\sqrt{s}$$
=91.2GeV
CLEO, BELLE \sqrt{s} =10.6GeV
H1 $\sqrt{\langle \hat{s} \rangle}$ =10GeV

- Comparison of extracted FF parameters relevant, but one needs to keep a track of what
 - ▶ 1.) perturbative calculation have been used
 - 2.) which MC fragmentation parameter tune have been used

Peterson Fits with Aleph PYTHIA Tune

(work done by our sumer student Thomas Lubbert)

- PYTHIA/RAPGAP MC with most recent ALEPH parameter tune used
- Peterson FF parameter fits performed with BELLE, ALEPH and this ep data

	ALEPH	BELLE	zjet	zhem
epsilon	0.042 +/- 0.013	0.032 +/-0.004	0.035 +/-0.007	0.029 +/-0.007

Within errors rather consistent picture obtained!