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Outline:

• Motivations for Precision Jet Physics

• Event Shapes for N-jets:

•

e+e− → jets αs(mZ)•
• e−p→ jets
• pp→ L + jets & pp→ L(→ jets) + X

N-jettiness & N-subjettiness

Jet Technology (factorization, NNLL summation, hadronization, ...) 

• 2 Next-to-Next-to-Leading Log examples

• Jet mass spectrum

• DIS, jet axis & initial state radiatione−p→ 2 jets

Hadronization corrections & Universality

pp→ H + 1 jet

,
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Jets in e+e- collisions
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High Precision from event shapes Gehrmann et al. & Weinzierl
Becher, Schwartz; Chien, Schwartz
Abbate, Fickinger, Hoang, Mateu, IS

Kolobrubetz, Hoang, Mateu, IS (in prep)

• Thrust

• C-parameter

2 jets τ → 0
C → 0

+ power 
correction

Ω1

Qτ

• Fixed order calculations to

+ Resummation to N3LL for thrust, HJM, C-parameter•

+
renormalon 

subtractions, 
R-RGE

• full treatment of 
{peak, tail, multijet}+ + + global fit, 

various Q’s ...

O(α3
s)

Moch, Vermaseren, Vogt
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High Precision from event shapes Gehrmann et al. & Weinzierl
Becher, Schwartz; Chien, Schwartz
Abbate, Fickinger, Hoang, Mateu, IS

Kolobrubetz, Hoang, Mateu, IS (in prep)
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FIG. 11: Distribution of best fit points in the αs(mZ)-2Ω1 and αs(mZ)-2Ω̄1 planes. Panel (a) shows results including pertur-
bation theory, resummation of the logs, the soft nonperturbative function and Ω1 defined in the R-gap scheme with renormalon
subtractions. Panel (b) shows the results as in panel a, but with Ω̄1 defined in the MS scheme without renormalon subtractions.
In both panels the respective total (experimental+theoretical) 39% CL standard error ellipses are displayed (thick dark red
lines), which correspond to 1-sigma (68% CL) for either one-dimensional projection.
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FIG. 12: Distribution of best fit points in the αs(mZ)-χ
2/dof plane. Panel (a) shows the χ2/dof values of the points given in

Fig. 11a. Panel (b) shows the χ2/dof values of the points given in Fig. 11b.

respective areas according to the orders. The fit results
clearly show a substantial reduction of the theoretical
uncertainties with increasing orders. Explicit numerical
results for the respective central values (determined by
the mean of the respective maximal and minimal values)

and the theory errors (determined by half of the differ-
ence between maximal and minimal values) for αs and
Ω1 are given in Tabs. IV and V, respectively. We will
consider these theory errors as 1-sigma. At N3LL′ or-
der with Ω1 in the R-gap scheme the theory error for

2 parameter fit
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FIG. 9: Theory scan for errors in pure QCD with massless quarks. The panels are a) fixed-order, b) resummation with no
nonperturbative function, c) resummation with a nonperturbative function using the MS scheme for Ω̄1 without renormalon
subtraction, d) resummation with a nonperturbative function using the R-gap scheme for Ω1 with renormalon subtraction.

caption of Tab. II. Furthermore, we always consider five
active flavors in the running and do not implement bot-
tom threshold corrections, since our lowest scale in the
profile functions (the soft scale µS) is never smaller than
6 GeV in the tail where we perform our fit.

In Fig. 9 we display the normalized thrust distribution
in the tail thrust range 0.15 < τ < 0.30 at the differ-
ent orders taking αs(mZ) = 0.114 and Ω1(R∆, µ∆) =
0.35 GeV as reference values, and neglectingmb and QED
corrections. We display the case Q = mZ where the
experimental measurements from LEP-I have the small-
est statistical uncertainties. The qualitative behavior of
the results agrees with other c.m. energies. The colored
bands represent the theoretical errors of the predictions
at the respective orders, which have been determined by
the scan method described in Sec. VI.

In Fig. 9a we show the O(αs) (light/yellow), O(α2
s)

(medium/purple) and O(α3
s) (dark/red) fixed-order

thrust distributions without summation of large loga-
rithms. The common renormalization scale is chosen
to be the hard scale µH . In the fixed-order results the
higher order corrections are quite large and our error es-
timation obviously underestimates the theoretical uncer-
tainty of the fixed-order predictions. This panel including
the error bands is very similar to the analogous figures
in Refs. [4] and [6]. This emphasizes the importance of
summing large logarithms.

In Fig. 9b the fully resummed thrust distributions at
NLL′ (yellow), NNLL (green), NNLL′ (purple), N3LL
(blue) and N3LL′ (red) order are shown, but without
implementing the soft nonperturbative function Smod

τ or
the renormalon subtractions related to the R-gap scheme.
The yellow NLL′ error band is mostly covered by the
green NNLL order band, and similarly the purple NNLL′

+ power 
correction

Ω1

Qτ

• Fixed order calculations to

+ Resummation to N3LL for thrust, HJM, C-parameter•

+
renormalon 

subtractions, 
R-RGE

• full treatment of 
{peak, tail, multijet}+ + + global fit, 

various Q’s ...

O(α3
s)
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order Ω̄1 (MS) Ω1 (R-gap)

NLL′ 0.264 ± 0.213 0.293 ± 0.203

NNLL 0.256 ± 0.197 0.276 ± 0.155

NNLL′ 0.283 ± 0.097 0.316 ± 0.072

N3LL 0.274 ± 0.098 0.313 ± 0.071

N3LL′ (full) 0.252 ± 0.069 0.323± 0.045

N3LL′
(QCD+mb) 0.238 ± 0.070 0.310 ± 0.049

N3LL′
(pure QCD) 0.254 ± 0.070 0.332 ± 0.045

TABLE V: Theory errors from the parameter scan and cen-
tral values for Ω1 defined at the reference scales R∆ = µ∆ =
2 GeV in units of GeV at various orders. The N3LL′ value
above the horizontal line is our final scan result, while the
N3LL′ values below the horizontal line show the effect of leav-
ing out the QED corrections, and leaving out both the b-mass
and QED respectively. The central values are the average of
the maximal and minimal values reached from the scan.
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FIG. 13: Thrust distribution at N3LL′ order and Q = mZ

including QED and mb corrections using the best fit values
for αs(mZ) and Ω1 in the R-gap scheme given in Eq. (66). The
pink band represents the perturbative error determined from
the scan method described in Sec. VI. Data from DELPHI,
ALEPH, OPAL, L3, and SLD are also shown.

method. The fit result is shown in comparison with data
from DELPHI, ALEPH, OPAL, L3, and SLD, and agrees
very well. (Note that the theory values displayed are
actually binned according to the ALEPH data set and
then joined by a smooth interpolation.)

Band Method

It is useful to compare our scan method to determine the
perturbative errors with the error band method [26] that
was employed in the analyses of Refs. [20, 22, 25]. In the
error band method first each theory parameter is varied
separately in the respective ranges specified in Tab. III
while the rest are kept fixed at their default values. The
resulting envelope of all these separate variations with
the fit parameters αs(mZ) and Ω1 held at their best fit

Band Band Our scan
method 1 method 2 method

N3LL′ with ΩRgap
1 0.0004 0.0008 0.0009

N3LL′ with Ω̄MS
1 0.0016 0.0019 0.0021

N3LL′ without Smod
τ 0.0018 0.0021 0.0034

O(α3
s) fixed-order 0.0018 0.0026 0.0046

TABLE VI: Theoretical uncertainties for αs(mZ) obtained at
N3LL′ order from two versions of the error band method, and
from our theory scan method. The uncertainties in the R-gap
scheme (first line) include renormalon subtractions, while the
ones in the MS scheme (second line) do not and are therefore
larger. The same uncertainties are obtained in the analysis
without nonperturbative function (third line). Larger uncer-
tainties are obtained from a pure O(α3

s) fixed-order analysis
(lowest line). Our theory scan method is more conservative
than the error band method.

values determines the error bands for the thrust distri-
bution at the different Q values. Then, the perturbative
error is determined by varying αs(mZ) keeping all the-
ory parameters to their default values and the value of
the moment Ω1 to its best fit value. The resulting per-
turbative errors of αs(mZ) for our full N3LL′ analysis in
the R-gap scheme are given in the first line of Tab. VI.
In the second line the corresponding errors for αs(mZ)
in the MS scheme for Ω̄1 are displayed. The left column
gives the error when the band method is applied such
that the αs(mZ) variation leads to curves strictly inside
the error bands for all Q values. For this method it turns
out that the band for the highest Q value is the most
restrictive and sets the size of the error. The resulting
error for the N3LL′ analysis in the R-gap scheme is more
than a factor of two smaller than the error obtained from
our theory scan method, which is shown in the right col-
umn. Since the high Q data has a much lower statistical
weight than the data from Q = mZ , we do not consider
this method to be sufficiently conservative and conclude
that it should not be used. The middle column gives the
perturbative error when the band method is applied such
that the αs(mZ) variation minimizes a χ2 function which
puts equal weight to all Q and thrust values. This sec-
ond band method is more conservative, and for the N3LL′

analyses in the R-gap and the MS schemes the resulting
errors are only 10% smaller than in the scan method that
we have adopted. The advantage of the scan method we
use is that the fit takes into account theory uncertainties
including correlations.

Effects of QED and the bottom mass

Given the high-precision we can achieve at N3LL′ or-
der in the R-gap scheme for Ω1, it is a useful exercise
to examine also the numerical impact of the corrections
arising from the nonzero bottom quark mass and the
QED corrections. In Fig. 14 the distributions of the best
fit points in the αs-2Ω1 plane at N3LL′ in the R-gap
scheme is displayed for pure massless QCD (light green

thrust 
tail
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FIG. 8: First moment of the thrust distribution as a func-
tion of the center of mass energy Q, using the best-fit values
for αs(mZ) and Ω1 in the Rgap scheme as given in Eq. (34).
The blue band represents the perturbative uncertainty deter-
mined by our theory scan. Data is from ALEPH, OPAL, L3,
DELPHI, JADE, AMY and TASSO.

typically designed to eliminate initial state photon radi-
ation, while those of the TASSO, L3 and ALEPH collab-
orations eliminated initial and final state photon radia-
tion. It is straightforward to test for the effect of these
differences in the fits by using our theory code with QED
effects turned on or off depending on the data set. Using
our N3LL order code in the Rgap scheme we obtain the
central values αs(mZ) = 0.1143 and Ω1 = 0.376 GeV.
Comparing to our default results given in Tabs. I and II,
which are based on the theory code were QED effects are
included for all data sets, we see that the central value
for αs is larger by 0.0003 and the one for Ω1 is smaller
by 0.001 GeV. This shift is substantially smaller than
our perturbative uncertainty. Hence our choice to use
the theory code with QED effects included everywhere
as the default for our analysis does not cause an observ-
able bias regarding experiments which remove final state
photons.
By comparing the N3LL (pure massless QCD) and

N3LL (QCD+mb) entries in Tabs. I and II we see that in-
cluding finite b-mass corrections causes a very mild shift
of ! +0.0004 to αs(mZ), and a somewhat larger shift
of ! −0.033GeV to Ω1. In both cases these shifts are
within the 1-σ theory uncertainties. In the N3LL (pure
massless QCD) analysis the b-quark is treated as a mass-
less flavor, hence this analysis differs from that done by
JADE [23] where primary b quarks were removed using
MC generators.

D. Final Results

As our final result for αs(mZ) and Ω1, obtained at
N3LL order in the Rgap scheme for Ω1(R∆, µ∆), includ-

0.112 0.113 0.114 0.115 0.116 0.117

0.5

0.6

0.7

0.8

0.9
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2$1!GeV" first moment
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FIG. 9: Comparison of αs(mZ) and Ω1 determinations from
thrust first moment data (red) and thrust tail data (blue).
The plot corresponds to fits with N3LL accuracy and in the
Rgap scheme. The tail fits are performed with our improved
code which uses a new nonsingular two-loop function, and the
now known two-loop soft function. Dashed lines correspond to
theory uncertainties, solid lines correspond to ∆χ2 = 1 com-
bined theoretical and experimental error ellipses, and wide-
dashed lines correspond to ∆χ2 = 2.3 combined error ellipses
(corresponding to 1-σ uncertainty in two dimensions).

ing bottom quark mass and QED corrections we obtain

αs(mZ) = 0.1140 ± (0.0004)exp (34)

± (0.0013)hadr ± (0.0007)pert,

Ω1(R∆, µ∆) = 0.377 ± (0.013)exp

± (0.042)αs(mZ) ± (0.039)pert GeV,

where R∆ = µ∆ = 2 GeV and we quote individual 1-σ
uncertainties for each parameter. Here χ2/dof = 1.33.
Eq. (34) is the main result of this work.
In Fig. 8 we show the first moment of the thrust dis-

tribution as a function of the center of mass energy Q,
including QED andmb corrections. We use here the best-
fit values given in Eq. (34). The band displays the theo-
retical uncertainty and has been determined with a scan
on the parameters included in our theory, as explained in
App. A. The fit result is shown in comparison with data
from ALEPH, OPAL, L3, DELPHI, JADE, AMY and
TASSO. Good agreement is observed for all Q values.
It is interesting to compare the result of this analysis

with the result of our earlier fit of thrust tail distributions
in Ref. [8]. This is shown in Fig. 9. Here the red upper
shaded area and corresponding ellipses show the results
from fits to the first moment of the thrust distribution,
while the blue lower shaded area and ellipses show the

�

thrust 
moment

Global Fits

universality?Q = mZ

Q = mZ

ΩC
1 ↔ Ωτ

1

QCD only

with QED
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nQêYnY n̄ | 0 �

Se(�) = � 0 |Y †
n̄Y

†
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XXVI Physics in Collison, Búzios, Rio de Janeiro, 6-9 July 2006 1

αs Determinations from Jets and Scaling Violations at HERA

T. Kluge
DESY, Notkestr. 85, 22607 Hamburg, Germany

A review is given on recent αs determinations from the H1 and ZEUS Collaborations. These are
based on measurements of jet cross sections, event shape variables, as well as on the observed scaling
violation of the structure function F2. A HERA average on αs(mZ) is presented, in comparison
with world mean values.

The strong coupling constant αs is the single free
parameter of QCD, the knowledge of its value is es-
sential when predicting virtually every cross section
for high energy collisions of elementary particles. E.g.
multi jet states pose the standard model background
for various searches for new physics at the LHC. Thus
it is essential to know αs to as high precision as possi-
ble. The determination of the strong coupling is more
difficult compared to other elementary forces due to
the confinement, i.e. one cannot observe the carriers
of color charge, the partons, directly like electrons in
QED. Before the startup of LEP and HERA a preci-
sion of only around the 10% level was reached [1]

αs(mZ) = 0.11 ± 0.01.

Much progress has been made since then, thanks to
experimental data of higher precision, larger range in
scale and the inclusion of a variety of processes, such
as e+e− annihilation, hadron-hadron collisions,ep
scattering, heavy particle decays as well as advances
in the theory.

HERA, the only accelerator for e±p collisions at
high center-of-mass energies

√
s = 320 GeV, is recog-

nised as today’s precision tool for QCD investigations.
With the H1 and ZEUS experiments two general pur-
pose detectors explore the manifold aspects of QCD.
The role of HERA for determinations of the strong
coupling constant lies in precision as well as in com-
plementarity to other environments. In general two
effects are exploited for this: scaling violations of
structure functions (inclusive) and hadronic final state
characteristics (exclusive).

The cross section of the neutral current (NC) in-
teraction ep → eX (Fig. 1) is defined in terms of
three kinematic variables Q2 (the photon virtuality),
Bjorken x and y, where y quantifies the inelasticity
of the interaction. The kinematic variables are re-
lated via Q2 = sxy, where s is the ep centre-of-mass
energy squared. Over most of the large kinematic
domain at HERA the dominant contribution to the
cross section comes from pure photon exchange as
expressed by the structure function F2(x, Q2), which
is in the quark parton model directly related to the
sum of the quark and antiquark densities in the pro-
ton, i.e. xF2 =

∑
i
e2

i
(qi(x, Q2) + q̄i(x, Q2)). In the

quark parton model F2 is independent of Q2, a fea-
ture known as scaling, consequently the observation
of scaling violations is evidence for QCD. The accu-

Q2

p

e

x

FIG. 1: The Born contribution to neutral current ep scat-
tering.

racy and kinematic coverage of the HERA neutral and
charged current cross section data [2, 3, 4], provide for
a clear demonstration of scaling violations, e.g. shown
in Fig. 2. The magnitude of the scaling violations de-
pends on αs as well as on the gluon density in the pro-
ton. The H1 Collaboration [5] has determined αs(mZ)
simultaneously with the gluon density in a QCD fit to
the derivative of F2 with respect to Q2 (Fig. 3), using
H1 and BCDMS proton data. A value of the coupling
constant

αs(mZ) = 0.1150 ± 0.0017(exp.) +0.0009
−0.0005(mod.)

± 0.0050(th.)

is obtained. The theory error, estimated by varying
the renormalisation scale and the factorisation scale
by a factor of four, is found to be significantly larger
than the experimental uncertainty. This uncertainty
is expected to be reduced significantly in NNLO per-
turbation theory. The value obtained for αs(mZ) is
nearly independent of the chosen parameterisation for
the parton densities.

A more direct sensitivity to αs is achieved when in-
cluding the hadronic final state of ep scattering. An
example is the cross section for events where the final
state contains more than one hadronic jet (not count-
ing the remnant from proton dissociation), which van-
ishes in absence of QCD effects (Fig. 4). In deep-
inelastic scattering (DIS, Q2 >∼ 1 GeV2) the jets are
usually reconstructed in the Breit frame of reference,
where by definition no recoil from the scattered beam
electron occurs. Jet cross sections are complementary
compared to inclusive NC cross sections in that sense
that the analysis offers direct sensitivity to αs, on the
other hand the measurement as well as the theoreti-
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Strong Coupling
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DIS Kinematics

Q2 = −q2
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u
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k

q = k − k�

P

x =
Q2

2P · q
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P · q

P · k

momentum transfer
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lepton energy 
loss in proton 

rest frame

Q2 = xys

s = (k + P )2 squared center-
of-mass energy
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DIS event shapes

e e�

P

HJHB

pB

pJ

Breit frame: qµ = (0, 0, 0, Q)

DIS thrust (review by Dasgupta & Salam ’03)

different versions:

τnQ = 1− 2
Q

�

i∈HJ

|�pi · �n|

Q

2
→

�

i∈HJ

Ei•

• �n = ẑ fixed to photon/weak boson’s axis

• vary �n to minimize τnQ

τ
τC

calculations to NLO & NLL Dasgupta, Salam, ...
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FIG. 10: Normalised event shape distributions corrected
to the hadron level for the τC , τ and B variables. The
measurements are compared with fits based on a NLO
QCD calculation including resummation (NLL) and sup-
plemented by power corrections (PC). The fit results are
shown as solid lines and are extended as dashed lines to
those data points which are not included in the QCD fit.

nisation Dokshitzer/Webber power corrections (PC)
have been used, which depends on the parameter α0

representing an effective strong coupling constant in
the infrared regime. An overall good description is
obtained for part of the phase space (higher Q and
moderate event shape values), where the theory is
expected to be valid. Simultaneous fits of αs(mZ)
and the power correction parameter α0 are shown in
Fig. 11. An average value of

αs(mZ) = 0.1198 ± 0.0013(exp.)
+0.0056
−0.0043(th.)

is obtained, which is consistent with the results from
jet and inclusive DIS cross sections. The fit was also
performed separately for all scales covered by the data,
see Fig. 12, where the asymptotic freedom of QCD
is clearly demonstrated. Due to the more inclusive
definition compared to jets, a larger range in scale is
accessible for the event shape analysis.

Since inclusive DIS and jet analyses offer different
sensitivity to the PDFs of the proton and αs, it is
desirable to have a combined QCD analysis based on
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FIG. 11: Fit results to the differential distributions of τ , B,
ρ0, τC and the C-parameter in the (αs, α0) plane. The 1σ
contours correspond to χ2 = χ2

min +1, including statistical
and experimental systematic uncertainties. The value of
αs (vertical line) and its uncertainty (shaded band) are
taken from [14].
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FIG. 12: The strong coupling αs as a function of the scale
Q from an average of the results obtained by fitting the
differential event shape distributions. The errors represent
the total experimental uncertainties. A value of αs(mZ) is
indicated in the plot, determined from a fit to the αs(Q) re-
sults using the QCD renormalisation group equation. The
fit curve is shown as the full line. The inner (outer) shaded
band represents the uncertainty of the fitted αs(Q) from
experimental errors (the renormalisation scale variation).
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FIG. 10: Normalised event shape distributions corrected
to the hadron level for the τC , τ and B variables. The
measurements are compared with fits based on a NLO
QCD calculation including resummation (NLL) and sup-
plemented by power corrections (PC). The fit results are
shown as solid lines and are extended as dashed lines to
those data points which are not included in the QCD fit.

nisation Dokshitzer/Webber power corrections (PC)
have been used, which depends on the parameter α0

representing an effective strong coupling constant in
the infrared regime. An overall good description is
obtained for part of the phase space (higher Q and
moderate event shape values), where the theory is
expected to be valid. Simultaneous fits of αs(mZ)
and the power correction parameter α0 are shown in
Fig. 11. An average value of

αs(mZ) = 0.1198 ± 0.0013(exp.)
+0.0056
−0.0043(th.)

is obtained, which is consistent with the results from
jet and inclusive DIS cross sections. The fit was also
performed separately for all scales covered by the data,
see Fig. 12, where the asymptotic freedom of QCD
is clearly demonstrated. Due to the more inclusive
definition compared to jets, a larger range in scale is
accessible for the event shape analysis.

Since inclusive DIS and jet analyses offer different
sensitivity to the PDFs of the proton and αs, it is
desirable to have a combined QCD analysis based on
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contours correspond to χ2 = χ2
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and experimental systematic uncertainties. The value of
αs (vertical line) and its uncertainty (shaded band) are
taken from [14].
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Q from an average of the results obtained by fitting the
differential event shape distributions. The errors represent
the total experimental uncertainties. A value of αs(mZ) is
indicated in the plot, determined from a fit to the αs(Q) re-
sults using the QCD renormalisation group equation. The
fit curve is shown as the full line. The inner (outer) shaded
band represents the uncertainty of the fitted αs(Q) from
experimental errors (the renormalisation scale variation).
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FIG. 10: Normalised event shape distributions corrected
to the hadron level for the τC , τ and B variables. The
measurements are compared with fits based on a NLO
QCD calculation including resummation (NLL) and sup-
plemented by power corrections (PC). The fit results are
shown as solid lines and are extended as dashed lines to
those data points which are not included in the QCD fit.

nisation Dokshitzer/Webber power corrections (PC)
have been used, which depends on the parameter α0

representing an effective strong coupling constant in
the infrared regime. An overall good description is
obtained for part of the phase space (higher Q and
moderate event shape values), where the theory is
expected to be valid. Simultaneous fits of αs(mZ)
and the power correction parameter α0 are shown in
Fig. 11. An average value of

αs(mZ) = 0.1198 ± 0.0013(exp.)
+0.0056
−0.0043(th.)

is obtained, which is consistent with the results from
jet and inclusive DIS cross sections. The fit was also
performed separately for all scales covered by the data,
see Fig. 12, where the asymptotic freedom of QCD
is clearly demonstrated. Due to the more inclusive
definition compared to jets, a larger range in scale is
accessible for the event shape analysis.

Since inclusive DIS and jet analyses offer different
sensitivity to the PDFs of the proton and αs, it is
desirable to have a combined QCD analysis based on
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FIG. 12: The strong coupling αs as a function of the scale
Q from an average of the results obtained by fitting the
differential event shape distributions. The errors represent
the total experimental uncertainties. A value of αs(mZ) is
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sults using the QCD renormalisation group equation. The
fit curve is shown as the full line. The inner (outer) shaded
band represents the uncertainty of the fitted αs(Q) from
experimental errors (the renormalisation scale variation).
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Fig. 5. Differential distributions for the event shapes 1 − Tγ and Bγ . Other details as in Fig. 4.

Fig. 6. Differential distributions for the event shapes M2, C and 1 − TT . The distributions are normalised such that n

refers to the number of events in the (x,Q2) bin after the Elim cut and N to the total number of events in the (x,Q2) bin
before the Elim cut. The differential cross section has been scaled for clarity by factors 10n , where n = 12, 10, 8, 6, 4, 2
for 〈Q〉 = 21, 29, 42, 59, 82 and 113 GeV, respectively. The solid (dashed) curves show the points used (omitted) in the
fit to NLL resummed calculation matched to NLO plus power corrections.

None of the three matching techniques discussed in Section 6.1 is strongly preferred theoreti-
cally. Although the modification terms should be used to ensure the correct behaviour of the cross
section, all options included in DISRESUM have been used. The results of fits using six different
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Fig. 4. Differential distributions for the event shapes M2, C and 1 − TT . The distributions are normalised such that n
refers to the number of events in the (x,Q2) bin after the Elim cut and N to the total number of events in the (x,Q2) bin
before the Elim cut. The differential cross section has been scaled for clarity by factors 10n , where n = 12, 10, 8, 6, 4, 2
for 〈Q〉 = 21, 29, 42, 59, 82 and 113 GeV, respectively. Predictions of ARIADNE at the hadron (solid lines) and parton
(dashed lines) levels are shown.

the power correction becomes positive and the fitted values of αs (α0) change to 0.1285(0.3541),
values that are in closer agreement with the other variables. If the model were robust, the fitted
values of αs would be independent of µI . However a dependence on µI is clearly evident in the
tables. In view of these results, no attempt to extract combined values of (α0,αS) from the mean
event shapes was made.

10.2. Differential distributions

The differential distributions of the event-shape variables for Q2 > 320 GeV2 are compared
to the predictions of ARIADNE in Figs. 4 and 5. For all variables, ARIADNE describes the data
well. The parton level of ARIADNE is also shown. The difference between the hadron and parton
levels can be taken as illustrative of the hadronisation correction.

The differential distributions for (1 − Tγ ), Bγ , M2, C and (1 − TT ), for which the theoretical
predictions are available, have been fitted with NLL+NLO+PC calculations as shown in Figs. 6
and 7. The solid (dashed) bars show the bins that were used (unused) in the fit as described in
Section 7.

perturbative uncertainty

Higher precision 
possible?
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Jet Bins for pp

pp→ H + N -jets



Jet Bin Motivations

• Enhance new physics signals that like to produce jets

• W + 0, 1, 2, 3, . . . jets
Z + 0, 1, 2, 3, . . . jets

Background for new physics searches
Test QCD calculations

• Analyses where backgrounds vary with the number of jets
Use jet bins to 
maximize sensitivity

H + 0, 1, 2, . . . jets
W/Z + γ + 0jets

Higgs and Jet Binning Jet Vetoes and Factorization NNLL�
pT

+NNLO Resummation for p
jet
T Summary

Higgs Decay Channels
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H → WW → �ν�ν: Large rate but missing energy
Large background from tt̄ → WWbb̄ requires
hard jet veto
Jet binning into 0-jet, (1-jet), VBF-like 2-jet

Frank Tackmann (DESY) The Higgs Cross Section with a Jet Veto 2013-03-15 3 / 27

eg. large top 
background 
in  H →WW
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Higgs and Jet Binning Jet Vetoes and Factorization NNLL�
pT

+NNLO Resummation for p
jet
T Summary

Identifying the Higgs

... by measuring its properties requires all production and decay channels

First step:
Apply a common scaling factor for vec-
torial and fermionic Higgs couplings
and fit for it

H →ττ, bb̄ essential to measure
fermionic couplings
H →WW very sensitive to
vectorial couplings

⇒ All of these involve exclusive jet
bins
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Frank Tackmann (DESY) The Higgs Cross Section with a Jet Veto 2013-03-15 4 / 27

Jet Bins are important for coupling analyses

•
•
•

0–jets
1–jet
2–jets (VBF)

H →WW → ��νν

•
•
•

0–jets
1–jet
2–jets (VBF)

H →WW → �νq
�
q̄

H → γγ

•
• 2–jets (VBF)

First step: fit for common scaling factor 
for vector and fermionic Higgs couplings 

H → ττ, bb̄ H →WW

involve exclusive jet bins

inclusive
H → ZZ

H → ττ



Jet veto gives double logs
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⇒ Veto events with central jets, measure pp → H(→ WW ) + 0 jets

Frank Tackmann (MIT) Higgs Production with a Central Jet Veto 2011-01-24 8 / 26
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⇒ Resum logs to obtain improved predictions and uncertainty estimates
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Logarithms are important for pT � Q ∼ hard-interaction scale

Same logarithms appear in the exclusive N-jet and inclusive (≥ N+1)-jet

cross section (and cancel in their sum)
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Uncertainty procedure: IS, Tackmann

NNLO Fixed Order: 
                   FEHiP, HNNLO, MCFM

Resummation of Veto Logs
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FIG. 2. Comparison of NNLO, NLL+NNLO and NNLL+NNLO results for jet-veto efficiencies for Higgs (left) and Z-boson
(right) production at the 8 TeV LHC. The Higgs plot includes the result from a POWHEG (revision 1683) [20, 40] plus Pythia
(6.426) [17, 41] simulation in which the Higgs-boson pt distribution was reweighted to match the NNLL+NNLO prediction
from HqT 2.0 [7] as in [21]. The lower panels show results normalised to the central NNLL+NNLO efficiencies.

Our central predictions have µR = µF = Q = M/2 and
scheme a matching, with MSTW2008NNLO PDFs [54].
We use the anti-kt [29] jet-algorithm with R = 0.5, as
implemented in FastJet [55]. For the Higgs case we use
the large mtop approximation and ignore bb̄ fusion and
b’s in the gg → H loops (corrections beyond this approx-
imation have a relevant impact [16, 56]). To determine
uncertainties we vary µR and µF by a factor of two in
either direction, requiring 1/2 ≤ µR/µF ≤ 2. Maintain-
ing central µR,F values, we also vary Q by a factor of
two and change to matching schemes b and c. Our final
uncertainty band is the envelope of these variations. In
the fixed-order results, the band is just the envelope of
µR,F variations.

The results for the jet-veto efficiency in Higgs and Z-
boson production are shown in Fig. 2 for 8 TeV LHC
collisions. Compared to pure NNLO results, the cen-
tral value is slightly higher and for Higgs production, the
uncertainties reduced, especially for lower pt,veto values.
Compared to NNLO+NLL results [21], the central values
are higher, sometimes close to edge of the NNLO+NLL
bands; since the NNLO+NLL results used the same ap-
proach for estimating the uncertainties, this suggests that
the approach is not unduly conservative. In the Higgs
case, the NNLO+NNLL uncertainty band is not particu-
larly smaller than the NNLO+NLL one. This should not
be a surprise, since [21] highlighted the existence of pos-
sible substantial corrections beyond NNLL and beyond
NNLO. For the Higgs case, we also show a prediction
from POWHEG [20, 40] interfaced to Pythia 6.4 [17] at
parton level (Perugia 2011 shower tune [41]), reweighted

to describe the NNLL+NNLO Higgs-boson pt distribu-
tion from HqT (v2.0) [7], as used by the LHC experi-
ments. Though reweighting fails to provide NNLO or
NNLL accuracy for the jet veto, for pt,veto scales of prac-
tical relevance, the result agrees well with our central
prediction. It is however harder to reliably estimate un-
certainties in reweighting approaches than in direct cal-
culations.
Finally, we provide central results and uncertainties

for the jet-veto efficiencies and 0-jet cross sections (in
pb) with cuts (in GeV) like those used by ATLAS and
CMS, and also for a larger R value:

R pt,veto ε(7 TeV) σ(7 TeV)
0-jet ε(8 TeV) σ(8 TeV)

0-jet

0.4 25 0.63+0.07
−0.05 9.6+1.3

−1.1 0.61+0.07
−0.06 12.0+1.6

−1.4

0.5 30 0.68+0.06
−0.05 10.4+1.2

−1.1 0.67+0.06
−0.05 13.0+1.5

−1.5

1.0 30 0.64+0.03
−0.05 9.8+0.8

−1.1 0.63+0.04
−0.05 12.2+1.1

−1.4

Interestingly, the R = 1 results have reduced upper un-
certainties, due perhaps to the smaller value of the NNLL
f(R) correction (a large f(R) introduces significant Q-
scale dependence). The above results are without a ra-
pidity cut on the jets; the rapidity cuts used by ATLAS
and CMS lead only to small, < 1%, differences [21].
For the 0-jet cross sections above, we used total

cross sections at 7 TeV and 8 TeV of 15.3+1.1
−1.2 pb and

19.5+1.4
−1.5 pb respectively [57, 58] (based on results in-

cluding [45–49]) and took their scale uncertainties to be
uncorrelated with those of the efficiencies. Symmetris-
ing uncertainties, we find correlation coefficients between
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FIG. 2. Comparison of NNLO, NLL+NNLO and NNLL+NNLO results for jet-veto efficiencies for Higgs (left) and Z-boson
(right) production at the 8 TeV LHC. The Higgs plot includes the result from a POWHEG (revision 1683) [20, 40] plus Pythia
(6.426) [17, 41] simulation in which the Higgs-boson pt distribution was reweighted to match the NNLL+NNLO prediction
from HqT 2.0 [7] as in [21]. The lower panels show results normalised to the central NNLL+NNLO efficiencies.

Our central predictions have µR = µF = Q = M/2 and
scheme a matching, with MSTW2008NNLO PDFs [54].
We use the anti-kt [29] jet-algorithm with R = 0.5, as
implemented in FastJet [55]. For the Higgs case we use
the large mtop approximation and ignore bb̄ fusion and
b’s in the gg → H loops (corrections beyond this approx-
imation have a relevant impact [16, 56]). To determine
uncertainties we vary µR and µF by a factor of two in
either direction, requiring 1/2 ≤ µR/µF ≤ 2. Maintain-
ing central µR,F values, we also vary Q by a factor of
two and change to matching schemes b and c. Our final
uncertainty band is the envelope of these variations. In
the fixed-order results, the band is just the envelope of
µR,F variations.

The results for the jet-veto efficiency in Higgs and Z-
boson production are shown in Fig. 2 for 8 TeV LHC
collisions. Compared to pure NNLO results, the cen-
tral value is slightly higher and for Higgs production, the
uncertainties reduced, especially for lower pt,veto values.
Compared to NNLO+NLL results [21], the central values
are higher, sometimes close to edge of the NNLO+NLL
bands; since the NNLO+NLL results used the same ap-
proach for estimating the uncertainties, this suggests that
the approach is not unduly conservative. In the Higgs
case, the NNLO+NNLL uncertainty band is not particu-
larly smaller than the NNLO+NLL one. This should not
be a surprise, since [21] highlighted the existence of pos-
sible substantial corrections beyond NNLL and beyond
NNLO. For the Higgs case, we also show a prediction
from POWHEG [20, 40] interfaced to Pythia 6.4 [17] at
parton level (Perugia 2011 shower tune [41]), reweighted

to describe the NNLL+NNLO Higgs-boson pt distribu-
tion from HqT (v2.0) [7], as used by the LHC experi-
ments. Though reweighting fails to provide NNLO or
NNLL accuracy for the jet veto, for pt,veto scales of prac-
tical relevance, the result agrees well with our central
prediction. It is however harder to reliably estimate un-
certainties in reweighting approaches than in direct cal-
culations.
Finally, we provide central results and uncertainties

for the jet-veto efficiencies and 0-jet cross sections (in
pb) with cuts (in GeV) like those used by ATLAS and
CMS, and also for a larger R value:

R pt,veto ε(7 TeV) σ(7 TeV)
0-jet ε(8 TeV) σ(8 TeV)

0-jet

0.4 25 0.63+0.07
−0.05 9.6+1.3

−1.1 0.61+0.07
−0.06 12.0+1.6

−1.4

0.5 30 0.68+0.06
−0.05 10.4+1.2

−1.1 0.67+0.06
−0.05 13.0+1.5

−1.5

1.0 30 0.64+0.03
−0.05 9.8+0.8

−1.1 0.63+0.04
−0.05 12.2+1.1

−1.4

Interestingly, the R = 1 results have reduced upper un-
certainties, due perhaps to the smaller value of the NNLL
f(R) correction (a large f(R) introduces significant Q-
scale dependence). The above results are without a ra-
pidity cut on the jets; the rapidity cuts used by ATLAS
and CMS lead only to small, < 1%, differences [21].
For the 0-jet cross sections above, we used total

cross sections at 7 TeV and 8 TeV of 15.3+1.1
−1.2 pb and

19.5+1.4
−1.5 pb respectively [57, 58] (based on results in-

cluding [45–49]) and took their scale uncertainties to be
uncorrelated with those of the efficiencies. Symmetris-
ing uncertainties, we find correlation coefficients between

4

!(
p t

,v
et

o)

gg " H, mH = 125 GeV

NNLO
NLL+NNLO

NNLL+NNLO
HqT-rescaled POWHEG + Pythia

 0.2

 0.4

 0.6

 0.8

 1
pp, 8 TeV
mH /4 < µR,F , Q < mH , schemes a,b,c
MSTW2008 NNLO PDFs
anti-kt, R = 0.5
Pythia partons, Perugia 2011 tune

!(
p t

,v
et

o)
 / 
! c

en
tra

l(p
t,v

et
o)

pt,veto [GeV]

 0.8
 0.9

 1
 1.1
 1.2

 10  20  30  50  70  100

!(
p t

,v
et

o)

Z production

NNLO
NLL+NNLO

NNLL+NNLO
 0.5

 0.6

 0.7

 0.8

 0.9

 1
pp, 8 TeV
mZ /4 < µR,F , Q < mZ , schemes a,b,c
MSTW2008 NNLO PDFs
anti-kt, R = 0.5

!(
p t

,v
et

o)
 / 
! c

en
tra

l(p
t,v

et
o)

pt,veto [GeV]

 0.9

 0.95

 1

 1.05

 10  20  30  50  70  100

FIG. 2. Comparison of NNLO, NLL+NNLO and NNLL+NNLO results for jet-veto efficiencies for Higgs (left) and Z-boson
(right) production at the 8 TeV LHC. The Higgs plot includes the result from a POWHEG (revision 1683) [20, 40] plus Pythia
(6.426) [17, 41] simulation in which the Higgs-boson pt distribution was reweighted to match the NNLL+NNLO prediction
from HqT 2.0 [7] as in [21]. The lower panels show results normalised to the central NNLL+NNLO efficiencies.

Our central predictions have µR = µF = Q = M/2 and
scheme a matching, with MSTW2008NNLO PDFs [54].
We use the anti-kt [29] jet-algorithm with R = 0.5, as
implemented in FastJet [55]. For the Higgs case we use
the large mtop approximation and ignore bb̄ fusion and
b’s in the gg → H loops (corrections beyond this approx-
imation have a relevant impact [16, 56]). To determine
uncertainties we vary µR and µF by a factor of two in
either direction, requiring 1/2 ≤ µR/µF ≤ 2. Maintain-
ing central µR,F values, we also vary Q by a factor of
two and change to matching schemes b and c. Our final
uncertainty band is the envelope of these variations. In
the fixed-order results, the band is just the envelope of
µR,F variations.

The results for the jet-veto efficiency in Higgs and Z-
boson production are shown in Fig. 2 for 8 TeV LHC
collisions. Compared to pure NNLO results, the cen-
tral value is slightly higher and for Higgs production, the
uncertainties reduced, especially for lower pt,veto values.
Compared to NNLO+NLL results [21], the central values
are higher, sometimes close to edge of the NNLO+NLL
bands; since the NNLO+NLL results used the same ap-
proach for estimating the uncertainties, this suggests that
the approach is not unduly conservative. In the Higgs
case, the NNLO+NNLL uncertainty band is not particu-
larly smaller than the NNLO+NLL one. This should not
be a surprise, since [21] highlighted the existence of pos-
sible substantial corrections beyond NNLL and beyond
NNLO. For the Higgs case, we also show a prediction
from POWHEG [20, 40] interfaced to Pythia 6.4 [17] at
parton level (Perugia 2011 shower tune [41]), reweighted

to describe the NNLL+NNLO Higgs-boson pt distribu-
tion from HqT (v2.0) [7], as used by the LHC experi-
ments. Though reweighting fails to provide NNLO or
NNLL accuracy for the jet veto, for pt,veto scales of prac-
tical relevance, the result agrees well with our central
prediction. It is however harder to reliably estimate un-
certainties in reweighting approaches than in direct cal-
culations.
Finally, we provide central results and uncertainties

for the jet-veto efficiencies and 0-jet cross sections (in
pb) with cuts (in GeV) like those used by ATLAS and
CMS, and also for a larger R value:

R pt,veto ε(7 TeV) σ(7 TeV)
0-jet ε(8 TeV) σ(8 TeV)

0-jet

0.4 25 0.63+0.07
−0.05 9.6+1.3

−1.1 0.61+0.07
−0.06 12.0+1.6

−1.4

0.5 30 0.68+0.06
−0.05 10.4+1.2

−1.1 0.67+0.06
−0.05 13.0+1.5

−1.5

1.0 30 0.64+0.03
−0.05 9.8+0.8

−1.1 0.63+0.04
−0.05 12.2+1.1

−1.4

Interestingly, the R = 1 results have reduced upper un-
certainties, due perhaps to the smaller value of the NNLL
f(R) correction (a large f(R) introduces significant Q-
scale dependence). The above results are without a ra-
pidity cut on the jets; the rapidity cuts used by ATLAS
and CMS lead only to small, < 1%, differences [21].
For the 0-jet cross sections above, we used total

cross sections at 7 TeV and 8 TeV of 15.3+1.1
−1.2 pb and

19.5+1.4
−1.5 pb respectively [57, 58] (based on results in-

cluding [45–49]) and took their scale uncertainties to be
uncorrelated with those of the efficiencies. Symmetris-
ing uncertainties, we find correlation coefficients between
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FIG. 2. Comparison of NNLO, NLL+NNLO and NNLL+NNLO results for jet-veto efficiencies for Higgs (left) and Z-boson
(right) production at the 8 TeV LHC. The Higgs plot includes the result from a POWHEG (revision 1683) [20, 40] plus Pythia
(6.426) [17, 41] simulation in which the Higgs-boson pt distribution was reweighted to match the NNLL+NNLO prediction
from HqT 2.0 [7] as in [21]. The lower panels show results normalised to the central NNLL+NNLO efficiencies.

Our central predictions have µR = µF = Q = M/2 and
scheme a matching, with MSTW2008NNLO PDFs [54].
We use the anti-kt [29] jet-algorithm with R = 0.5, as
implemented in FastJet [55]. For the Higgs case we use
the large mtop approximation and ignore bb̄ fusion and
b’s in the gg → H loops (corrections beyond this approx-
imation have a relevant impact [16, 56]). To determine
uncertainties we vary µR and µF by a factor of two in
either direction, requiring 1/2 ≤ µR/µF ≤ 2. Maintain-
ing central µR,F values, we also vary Q by a factor of
two and change to matching schemes b and c. Our final
uncertainty band is the envelope of these variations. In
the fixed-order results, the band is just the envelope of
µR,F variations.

The results for the jet-veto efficiency in Higgs and Z-
boson production are shown in Fig. 2 for 8 TeV LHC
collisions. Compared to pure NNLO results, the cen-
tral value is slightly higher and for Higgs production, the
uncertainties reduced, especially for lower pt,veto values.
Compared to NNLO+NLL results [21], the central values
are higher, sometimes close to edge of the NNLO+NLL
bands; since the NNLO+NLL results used the same ap-
proach for estimating the uncertainties, this suggests that
the approach is not unduly conservative. In the Higgs
case, the NNLO+NNLL uncertainty band is not particu-
larly smaller than the NNLO+NLL one. This should not
be a surprise, since [21] highlighted the existence of pos-
sible substantial corrections beyond NNLL and beyond
NNLO. For the Higgs case, we also show a prediction
from POWHEG [20, 40] interfaced to Pythia 6.4 [17] at
parton level (Perugia 2011 shower tune [41]), reweighted

to describe the NNLL+NNLO Higgs-boson pt distribu-
tion from HqT (v2.0) [7], as used by the LHC experi-
ments. Though reweighting fails to provide NNLO or
NNLL accuracy for the jet veto, for pt,veto scales of prac-
tical relevance, the result agrees well with our central
prediction. It is however harder to reliably estimate un-
certainties in reweighting approaches than in direct cal-
culations.
Finally, we provide central results and uncertainties

for the jet-veto efficiencies and 0-jet cross sections (in
pb) with cuts (in GeV) like those used by ATLAS and
CMS, and also for a larger R value:

R pt,veto ε(7 TeV) σ(7 TeV)
0-jet ε(8 TeV) σ(8 TeV)

0-jet

0.4 25 0.63+0.07
−0.05 9.6+1.3

−1.1 0.61+0.07
−0.06 12.0+1.6

−1.4

0.5 30 0.68+0.06
−0.05 10.4+1.2

−1.1 0.67+0.06
−0.05 13.0+1.5

−1.5

1.0 30 0.64+0.03
−0.05 9.8+0.8

−1.1 0.63+0.04
−0.05 12.2+1.1

−1.4

Interestingly, the R = 1 results have reduced upper un-
certainties, due perhaps to the smaller value of the NNLL
f(R) correction (a large f(R) introduces significant Q-
scale dependence). The above results are without a ra-
pidity cut on the jets; the rapidity cuts used by ATLAS
and CMS lead only to small, < 1%, differences [21].
For the 0-jet cross sections above, we used total

cross sections at 7 TeV and 8 TeV of 15.3+1.1
−1.2 pb and

19.5+1.4
−1.5 pb respectively [57, 58] (based on results in-

cluding [45–49]) and took their scale uncertainties to be
uncorrelated with those of the efficiencies. Symmetris-
ing uncertainties, we find correlation coefficients between
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FIG. 2. Comparison of NNLO, NLL+NNLO and NNLL+NNLO results for jet-veto efficiencies for Higgs (left) and Z-boson
(right) production at the 8 TeV LHC. The Higgs plot includes the result from a POWHEG (revision 1683) [20, 40] plus Pythia
(6.426) [17, 41] simulation in which the Higgs-boson pt distribution was reweighted to match the NNLL+NNLO prediction
from HqT 2.0 [7] as in [21]. The lower panels show results normalised to the central NNLL+NNLO efficiencies.

Our central predictions have µR = µF = Q = M/2 and
scheme a matching, with MSTW2008NNLO PDFs [54].
We use the anti-kt [29] jet-algorithm with R = 0.5, as
implemented in FastJet [55]. For the Higgs case we use
the large mtop approximation and ignore bb̄ fusion and
b’s in the gg → H loops (corrections beyond this approx-
imation have a relevant impact [16, 56]). To determine
uncertainties we vary µR and µF by a factor of two in
either direction, requiring 1/2 ≤ µR/µF ≤ 2. Maintain-
ing central µR,F values, we also vary Q by a factor of
two and change to matching schemes b and c. Our final
uncertainty band is the envelope of these variations. In
the fixed-order results, the band is just the envelope of
µR,F variations.

The results for the jet-veto efficiency in Higgs and Z-
boson production are shown in Fig. 2 for 8 TeV LHC
collisions. Compared to pure NNLO results, the cen-
tral value is slightly higher and for Higgs production, the
uncertainties reduced, especially for lower pt,veto values.
Compared to NNLO+NLL results [21], the central values
are higher, sometimes close to edge of the NNLO+NLL
bands; since the NNLO+NLL results used the same ap-
proach for estimating the uncertainties, this suggests that
the approach is not unduly conservative. In the Higgs
case, the NNLO+NNLL uncertainty band is not particu-
larly smaller than the NNLO+NLL one. This should not
be a surprise, since [21] highlighted the existence of pos-
sible substantial corrections beyond NNLL and beyond
NNLO. For the Higgs case, we also show a prediction
from POWHEG [20, 40] interfaced to Pythia 6.4 [17] at
parton level (Perugia 2011 shower tune [41]), reweighted

to describe the NNLL+NNLO Higgs-boson pt distribu-
tion from HqT (v2.0) [7], as used by the LHC experi-
ments. Though reweighting fails to provide NNLO or
NNLL accuracy for the jet veto, for pt,veto scales of prac-
tical relevance, the result agrees well with our central
prediction. It is however harder to reliably estimate un-
certainties in reweighting approaches than in direct cal-
culations.
Finally, we provide central results and uncertainties

for the jet-veto efficiencies and 0-jet cross sections (in
pb) with cuts (in GeV) like those used by ATLAS and
CMS, and also for a larger R value:

R pt,veto ε(7 TeV) σ(7 TeV)
0-jet ε(8 TeV) σ(8 TeV)

0-jet

0.4 25 0.63+0.07
−0.05 9.6+1.3

−1.1 0.61+0.07
−0.06 12.0+1.6

−1.4

0.5 30 0.68+0.06
−0.05 10.4+1.2

−1.1 0.67+0.06
−0.05 13.0+1.5

−1.5

1.0 30 0.64+0.03
−0.05 9.8+0.8

−1.1 0.63+0.04
−0.05 12.2+1.1

−1.4

Interestingly, the R = 1 results have reduced upper un-
certainties, due perhaps to the smaller value of the NNLL
f(R) correction (a large f(R) introduces significant Q-
scale dependence). The above results are without a ra-
pidity cut on the jets; the rapidity cuts used by ATLAS
and CMS lead only to small, < 1%, differences [21].
For the 0-jet cross sections above, we used total

cross sections at 7 TeV and 8 TeV of 15.3+1.1
−1.2 pb and

19.5+1.4
−1.5 pb respectively [57, 58] (based on results in-

cluding [45–49]) and took their scale uncertainties to be
uncorrelated with those of the efficiencies. Symmetris-
ing uncertainties, we find correlation coefficients between

Banfi, Monni, Salam, Zanderighi 
Becher, Neubert;  Tackmann, Walsh, Zuberi
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Higgs and Jet Binning Jet Vetoes and Factorization NNLL�
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from fully differential codes

� FEHiP [Anastasiou, Melnikov, Petriello]
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Naive scale variation at fixed order ignores ∆cut induced by log series
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⇒ Resum logs to obtain improved predictions and uncertainty estimates
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Introduction Resumming Jet Cross Sections in SCET Matching with Helicity Amplitudes Summary

Perturbative Structure of Jet Cross Sections

σtotal =
� pcut
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0
dpT
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dpT� �� �
+

� ∞

pcut
T

dpT
dσ

dpT� �� �
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σtotal = 1 + αs + α2
s + · · ·
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s(L
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�
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s + · · ·
�

−
�
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s(L
4 + · · · ) + · · ·

�

where L = ln(pcut
T /Q)

Logarithms are important for pT � Q ∼ hard-interaction scale

Same logarithms appear in the exclusive N-jet and inclusive (≥ N+1)-jet

cross section (and cancel in their sum)
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Uncertainty procedure: IS, Tackmann
NNLO Fixed Order: FeHIP, HNNLO

Resummation of Veto Logs
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Resummation of Veto Logs

IS, Tackmann, Walsh, Zuberi (in prep)
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Jet Substructure
Distinguish quark jets from gluon jets by radiation pattern•

Jet Mass: m2
J =

� �

i∈J

pµ
i

�2

Factorization and SCET Higgs Jet Veto Calculation Results

H → WW vs. tt̄ → WWbb̄
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⇒ Veto events with central jets, measure pp → H(→ WW ) + 0 jets

Frank Tackmann (MIT) Higgs Production with a Central Jet Veto 2011-01-24 8 / 26
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(a) Unnormalized jet mass spectrum for quark and gluon jets
at NNLL. The uncertainties are sizable even at NNLL.
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(b) Normalized jet mass spectrum for quark and gluon jets at
NNLL. Compared to Fig. 4(a), the normalization significantly
reduces the perturbative uncertainties.
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(c) Convergence of the resummed calculation for gluon jets.

! "! #!! #"! $!!!%!!!

!%!!"

!%!#!

!%!#"

!%!$!

!" !()*"

#Σ
%
##
!
"
!8
46
5
9:
7;
)<
"

2233
233
33

'#!. Η"#!. ()"#&!! ()*. !
/01# $" ()*

$&"%&. ()45)167/ *##

(d) Convergence of the resummed calculation for quark jets.
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(e) Individual scale variations that enter the uncertainty estimate
for gluon jets at NNLL. Shown are the variations relative to
the central NNLL curve.
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(f) Individual scale variations that enter the uncertainty estimate
for quark jets at NNLL. Shown are the variations relative to
the central NNLL curve.

FIG. 4: Perturbative uncertainties and convergence for the jet mass spectrum in gg → Hg and gq → Hq with default inputs.

There are several classes of perturbative scale uncer-
tainties, the “Fixed Order” scale variation that is cor-
related with the total cross section, the “Beam” scale
variation from varying µB and µSB that is related to the

presence of the jet veto, the “Jet” scale variation from
varying µJ and µSJ that is related to the jet mass mea-
surement, and the uncertainty from “r” that is related
to the perturbative freedom in the refactorized formula
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Figure 10. Normalised cross-sections as functions of mass of anti-kt jets with R = 1.0 in four
different pT bins.
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Jesse Thaler — Jet Substructure & N-subjettiness 12

Other Notable Measurements

ATLAS Test of Grooming Procedures and Pileup

BDRS Method
[Butterworth, Davison, Rubin, Salam]

A Practical Higgs Finder BDRS:
Butterworth, Davison, 
Rubin, Salam (2008)

“Mass-Drop + Filter” Algorithm:

ATL-STDM-2011-19
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Top Tagging c. 2010

500 GeV < pT < 600 GeV
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Quark/Gluon Jet

Boost2010 Top Benchmark

Jet Shape

Algorithmic

Distinguish heavy boosted objects from  QCD•
Distinguish quark jets from gluon jets by radiation pattern•

boosted

top tagging

Jesse Thaler — Jet Substructure & N-subjettiness

Calculable Measures: Jet Shapes

Almeida, S. Lee, Perez, 
Sterman, Sung, Virzi (2008)

14

Jet Shapes:  Planar Flow
Top Tagging with Jet Shapes

Thaler, Wang (2008)

Christopher Lee — Panic 2011

Figure 8: Left: QCD dijet predictions for det S
⊥

with a pT cut of 1200 GeV, showing large
variations between different shower evolution variables. Right: detS

⊥
after imposing the top

window cut 160 GeV < Qjet < 200 GeV, comparing to a 3 TeV top resonance. While detS
⊥

shows promise in separating boosted tops from QCD fat jets, it is difficult to make a firm
conclusion given the large theoretical variance.

3.2 Boost-Invariant Event Shape

While boosted tops might be described theoretically by an M → ABC splitting, one still has
to find an experimental proxy for the A, B, and C subclusters. Instead of using a clustering
algorithm, an alternative strategy is to construct an event shape variable that uses all of the
hadrons in a jet to form an observable that measures the gross energy distribution.

The goal is to build an event shape that probes the fact the top decay products are widely
separated in the top rest frame, so one wants a boost-invariant event shape. Ideally, the event
shape would be invariant under both the boost axis and the boost magnitude. Unfortunately,
building a meaningful event shape that is invariant under choice of boost axis is difficult, because
in the M rest frame, the splitting M → ABC defines a plane. If the boost axis is perpendicular
to this plane then A, B, and C look well-separated, but if the boost axis is parallel to the plane,
then A, B, and C overlap.

We can still form an event shape that is invariant under the boost magnitude, by considering
a variant to the ordinary sphericity tensor [31].

8
Taking the z-axis to be the boost direction,

consider a jet with total four vector {Ejet,!0⊥, p
z
jet} and constituents p

µ
α = {Eα, !p

⊥
α , p

z
α}. The

(linear) jet transverse sphericity tensor S
⊥ij

is an object that is invariant under boosts along
the z-axis:

S
⊥ij

=

∑

α∈jet

!p
⊥i
α !p

⊥j
α

|!p⊥
α |

∑

α∈jet

|!p
⊥
α |

. (10)

There is only one non-trivial eigenvalue of S
⊥

since the two eigenvalues sum to 1, so we will take
the determinant of S

⊥
to be our boost-invariant event shape. Note that det S

⊥
is identically 0

8
Strictly speaking, even this event shape is not invariant under boosts given finite calorimetry. Even though

!p
⊥

is invariant under boosts, the calorimetry is defined by φ and η, which is invariant only under boosts along
the beam axis and not to boosts along the top momentum axis.

13

Ok Top/QCD
Separation

vs.

H → bb̄



27Jesse Thaler — Jet Substructure & N-subjettiness 17

Top Tagging c. 2011
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Tagging with τN/τN–1
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Hot Off the Press from ATLAS
Calibration on Background.  Thanks to David Miller!

QCD-likeSignal-like QCD-likeSignal-like

one-dimensional cut using jet shapes: τ3/τ2 Thaler, Van Tilburg
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Better
Τ3�Τ2
Multivariate ΤN

Jet Shape!

Top Tagging

one-dimensional cut using jet shapes: τ3/τ2 Thaler, Van Tilburg
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Figure 14. Normalised cross-sections as functions of τ32 of Cambridge-Aachen jets with R = 1.2
in four different pT bins.
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Hot Off the Press from ATLAS
Calibration on Background.  Thanks to David Miller!

QCD-likeSignal-like QCD-likeSignal-like

background measurement
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N-Jettiness Event Shape TN

N-Subjettiness Event Shape τN

TN 0 1:

≤ N > N# of jets:

0 1:

≤ N > N# of subjets:

τN

IS, Tackmann, Waalewijn

Thaler,  Van Tilburg
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or

find axis by minimizing TN
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H → WW ∗ search channel, where a jet veto is needed
to remove the large tt̄ → WWbb̄ background. The use
of an event shape for the jet veto makes possible a re-
summation of large logarithms to next-to-next-to-leading
logarithmic (NNLL) order.
The generalization of beam thrust to processes with

N jets is N -jettiness, TN , introduced in Ref. [12]. It
is designed such that in the limit TN → 0 the final
state consists of N narrow jets plus two narrow ISR-
jets along the beam axis (for hadron collisions). Since it
does not restrict the collinear radiation inside a jet, the
beam and jet functions appearing in Eq. (1) are again
the inclusive beam and jet functions (which are known
to one [10, 11, 13, 14] and two loops [15, 16], respectively).
Furthermore, since N -jettiness itself covers all of phase
space, no additional restriction on the radiation outside
of jets or beams is needed. In contrast, hadron-collider
event shapes constructed from transverse momenta only,
such as transverse thrust, in general require the addition
of exponentially suppressed forward terms to suppress
the contributions from large rapidities [17, 18].
Factorization for N -jettiness can be contrasted with

factorization for jet algorithms. Here, the perturbative
corrections are complicated by: the presence of non-
global logarithms [19–22], the potential for soft radiation
to be strongly influenced by the number of energetic par-
tons in the jets, and by cuts on soft radiation that intro-
duce additional soft scales that must be handled within
factorization [23, 24]. Jet functions for jet algorithms
in e+e− → jets have been calculated at next-to-leading
order (NLO) in Refs. [24, 25]. In Ref. [24] the soft func-
tion for e+e− → jets was calculated at NLO, where a
cut on the total energy outside the jets was used as the
jet veto. Using N -jettiness avoids several of these issues
that complicate the structure of perturbation theory.
The N -jettiness event shape assigns all particles to one

ofN+2 regions, corresponding to theN jets and 2 beams.
Therefore TN acts much like a jet algorithm, and we can
consider distinct measurements on each of these “jets”.
The simplest example is T i

N , the N -jettiness contribution
from each region i, where TN =

∑
i T i

N . A measurement
of T i

N is essentially the same as measuring the transverse
mass of this jet. This correspondence will be made pre-
cise in the next section. We will also briefly explore the
shape of the jet regions obtained using N -jettiness with
different measures. A geometric measure gives jets with
circular boundaries, putting them in the class that are
typically preferred experimentally.
For an N -jettiness cross section calculation using

Eq. (1), the only missing ingredient for an evaluation
of generic processes at NNLL is the one-loop N -jettiness
soft function, SN , which we compute in detail in this
paper. (As mentioned above, the beam and jet func-
tions are known. The hard function in Eq. (1) can be
obtained from the corresponding QCD fixed-order calcu-
lation, many of which are now known to NLO.) General
features of N -jettiness and its jet regions are explored in
Sec. II. Results are given for the fully differential T i

N fac-

torization theorem, and for renormalization group con-
sistency equations for the N -jettiness soft function. Sec-
tion III contains details of the NLO calculation of SN ,
including developing a simple method that uses hemi-
spheres for each pair of hard partons to extract UV diver-
gences and the corresponding induced logarithmic terms.
The remaining O(αs) terms are then given by finite in-
tegrals that do not involve the UV regulator, and we will
refer to these as the non-hemisphere contributions. These
steps are not specific to the N -jettiness observable, and
we show how they can be applied in general. For the
N -jettiness soft function we reduce the non-hemisphere
contributions to well-behaved one-dimensional numerical
integrals (some details are relegated to appendices). Sec-
tion IV contains conclusions.
Although it is not directly related to our investigations

here, it is worth mentioning that N -jettiness is useful for
exploring jet substructure [26, 27]. This is done with N -
subjettiness, which restricts the definition of the event
shape to particles and reference momenta inside a jet.
There are interesting correspondences between applica-
tions of N -jettiness and N -subjettiness. In particular
one could study the transverse mass spectrum of subjets
with T i

N , following a similar procedure that we advocate
here for jets.

II. SETUP OF THE CALCULATION

A. N -Jettiness Definition and Regions

N -jettiness is defined as [12]

TN =
∑

k

min
i

{2qi · pk
Qi

}
, (2)

where i runs over a, b for the two beams and 1, . . . , N
for the final-state jets. For e+e− collisions, the terms for
the beams are absent and we continue to let N refer to
the number of jets. The complexity of the calculation for
the e+e− (N + 2)-jettiness is equivalent to N -jettiness
for pp collisions. In Eq. (2) the qi are massless reference
momenta for the jets and beams, and the Qi are normal-
ization factors. For each jet we can take

qµi = ωi (1,#ni) , (3)

where ωi is the jet energy, and #ni is the jet direction.
The ωi and #ni can be predetermined with a suitable
jet algorithm, and the choice of algorithm only gives
power-suppressed effects, as explained in Ref [12]. For
the beams we have

qµa =
1

2
xa Ecm(1, ẑ) , qµb =

1

2
xb Ecm(1,−ẑ) , (4)

where Ecm is the center-of-mass energy, ẑ points along
the beam axis, and xa,b are the light-cone momentum

• Compares distance of particle k to beams and jets

• Qj determine the jet measure

• particles assigned to jet and beam regions

TN = T a
N + T b

N + T 1
N + · · · + T N

N

Applies to• pp→ jets, pp→ H + jets, . . .

Factorization Friendly•

• Related to Jet Masses: m2
J = QiT i

N

dσ

dT a
N · · · dT N

N
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Various Jet definitions: 
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Tagging with τN/τN–1
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Introducing N-subjettiness

Jet shape “counts” number of subjets!

0τN: 1

≤ N > N# subjets:
0 0.5 1 1.5

4.5

5

5.5

6

Boosted Top Jet, R = 0.8

τN =
1
d0

�

k

pT,k min {∆Rk,1, ∆Rk,2, . . . , ∆Rk,N}

Generalization of thrust 
to multiple (sub)jets!

(strictly speaking, generalization of jet broadening)

Adapted from “N-jettiness”, used to define exclusive jet bins
[Stewart, Tackmann, Waalewijn: 1004.2489]

N-Subjettiness

available as fastjet plugin
Fast implementation by generalized k-means clustering

Jesse Thaler — Jet Substructure & N-subjettiness 21

Tagging with τN/τN–1

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4
145 GeV < mj < 205 GeV

2

3

 

 

QCD jets (blue/open)
Top jets (red/filled)

...but suggests 
multivariate cut!

Some raw distinguishing power...

0 0.2 0.4 0.6 0.8 1
0

0.01

0.02

0.03

0.04

0.05

0.06

3/ 2 of jet

R
el

at
iv

e 
oc

cu
re

nc
e

145 GeV < mj < 205 GeV

 

 

Top jets
QCD jets

Flexible cut to adjust 
signal acceptance vs. 
background rejection

τ3/τ2:  Boosted Tops
τ2/τ1:  Boosted W/Z/H

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

2 of jet

R
el

at
iv

e 
oc

cu
re

nc
e

145 GeV < mj < 205 GeV

 

 

Top jets
QCD jets

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

3 of jet

R
el

at
iv

e 
oc

cu
re

nc
e

145 GeV < mj < 205 GeV

 

 

Top jets
QCD jets

τ2τ3

τ3/τ2

Ratio is quasi-boost invariant

τN =
1
d0

�

k∈jet

pT,k min
�
∆Rk,1,∆Rk,2, . . . ,∆Rk,N

�



33

Jet Mass in 
pp collisions

. Jouttenus, IS, F. Tackmann, W. Waalewijn  arXiv:1302.0846
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Why Compute the Jet Mass Spectrum?
•

Test MC

Benchmark for our ability to compute jet-substructure at LHC

•
Address Dependence on:
• Kinematics:

dσ/dmJ

pjet
T ηjet, , . . .

• Hard process: pp→ 2 jets pp→ Z + jet pp→ γ + jetpp→ H + jet, , ,

- gluon vs. quark jets- ISR - color flow

•
• Jet size:   R

• Order of the calculation: NNLL/NLL/LL (theory uncertainty)

• Non-global logs

• Hadronization

• Underlying event

• trimming/filtering/pruning

pileup•

- incl. vs excl. jets

Jet algorithm/grouping - anti-kT,  CA,  kT,  N-jettiness jets, ...
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N-jet Factorization:
µS

µJ , µB

µH

µp

E

SCET

QCD
Exclusive Jet Event with Hard Interaction:

mjet ∼ 50 GeV

Introduction Exclusive Jet Cross Sections Jet Shapes Summary

Factorized Cross Section in SCET

dσ = fa,b ⊗ Ia,b ⊗ H ⊗
�

i
Ji ⊗ S

ΛQCD µB µH µJ µS

f

H

I

I

J

f
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s
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J

J
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Hard function H(µH): µH ∼ mJJ , p
jet
T

Contains squared matrix-element for underlying hard partonic process

� Determined from corresponding QCD fixed-order calculation

Jet function J(µJ), Beam function B(µB) ≡ I ⊗ f : µB ∼ µJ ∼ mJ

Universal and process independent for given jet definition/observable

� For simple jet observables can be calculated perturbatively

Soft function S(µS): µS ∼ µ
2
J
/µH

Encodes soft effects on a given jet observable

� µS � ΛQCD: can be calculated perturbatively

� µS ∼ ΛQCD: can be modeled and fitted from data

Frank Tackmann (MIT) New Approaches to Jet Physics at Colliders 2010-08-26 5 / 23

H

µH
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dσ = PDFs ⊗ ISR ⊗ hard interactions ⊗ FSR ⊗ soft radiation

pjet
T ∼ 300 GeV

m2
jet =

� �

i∈J

pµ
i

�2

well known that jet mass gives sensitivity to a soft scale: µS =
µ2

J

µH

∼ m2
J

µH
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µ > µB: Off-shell parton (−t < 0) part of incoming jet
Colliding parton emits collinear and soft ISR “outside” proton
ISR goes into final state and is measured by jet veto
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FIG. 3: Illustration of the different fixed-order scales appear-
ing in the factorized cross section and our evolution strategy.

of QJTJ/pJ 2
T = m2

J/p
J 2
T from the jet mass measurement

by carrying out perturbation theory for the hard, beam,
jet, and soft functions at their natural scales

µH ! pJT , µi !
√
QiTi , µSi ! QiTi/pJT , (29)

and then running them to an arbitrary common scale.
Here i = a, b, J , since the situation for the beams and the
jet are fully analogous. As discussed above we must use
the combination QiTi to ensure we have the correct lead-
ing logarithms. The remaining dependence of the cross
section on Qi occurs due to its impact on the boundaries
between the jet and beam regions. This is encoded in the
fixed-order terms in the soft function that do not involve
large logarithms.
If any Ti becomes very small, ∼ ΛQCD, the nonper-

turbative corrections to the soft function become impor-
tant and the scales are µH ! pJT , µi ∼

√
ΛQCD pJT , and

µSi
>∼ ΛQCD. On the other hand, for large Ti ∼ pJT the

resummation of QiTi/pJ 2
T is not important and is turned

off by having the scales merge, µH = µi = µSi ! pJT .
To connect the various regions where the resummation

must be handled differently, we use Ti-dependent scales,
which are known as profile functions [23, 73]. A transi-
tion between these three regions is given by the following
running scales, adopted from Ref. [64],

µH = µ , (30)

µi(τ) =
[
1 + ei θ(τ3 − τ)

(
1− τ

τ3

)2 ]√
µµrun(τ, µ) ,

µSi(τ) =
[
1 + eSi θ(τ3 − τ)

(
1− τ

τ3

)2 ]
µrun(τ, µ) ,

where τ = QiTi/Q2. The expression for µrun can be
found in App. B, along with the choice of parameters for
the central values, and details on the variations of µ, ei,
and eSi used to estimate the perturbative uncertainties
in our predictions.
To estimate the additional perturbative uncertainty as-

sociated with the refactorization of the soft function in
Sec. III B, we reintroduce correlations between the soft
scales using a parameter r satisfying 0 ≤ r ≤ 1,

µ(r)
SJ

= (µ̄S)
r (µSJ )

1−r , µ(r)
SB

= (µ̄S)
r (µSB )

1−r ,

ln µ̄S ≡ (T 2
a + T 2

b ) lnµSB + T 2
J lnµSJ

T 2
a + T 2

b + T 2
J

. (31)

Here T 2
i = CF for i = q and i = q̄, and T 2

i = CA for
i = g. For r = 0 we have the original uncorrelated
soft scales. By increasing r the scales move towards the
“color average” value µ̄S . At r = 1 they are all equal
to this average soft scale, so the refactorization is turned
off (which as explained earlier causes unphysical NGLs in
the LL series). To estimate the size of the freedom in the
refactorization we take r = 0.2 as our default choice and
include r = 0 and r = 0.4 as separate scale variations in
our uncertainty estimate.

D. Non-Global Logarithms

If the NGLs are not large logarithms then they enter
beyond NNLL order, and should be of comparable size to
other higher-order perturbative terms. This is obviously
only possible for some range of m2

J/(p
J
TT cut), which de-

termines where our result is valid at NNLL order. To
determine this range we include the leading O(α2

s) NGL
into our resummed calculation and compare the results
with and without this term for various parameter choices.
In the factorized cross section all NGLs enter through the
soft function S. For simplicity we restrict this analysis of
the size of non-global logarithms to the gg → Hg chan-
nel, as the results for other channels are similar.
The leading NGL in the cumulant soft function is

SNGL({kci }, µS) =
∏

i

( ∫ kc
i

0
dki

)
SNGL({ki}, µS) (32)

= −α2
s(µS)C2

A

(2π)2

∑

i<j

Gij ln
2
(kci
kcj

)
.

HereGij is a geometric factor that depends on the bound-
aries of the jet and beam regions. Note the absence of
explicit µ-dependence in the NGLs. These expressions
for SNGL follow from the known result for e+e− → 2
jets [32, 33, 41, 42], by replacing the color factor CFCA →
C2

A. Unlike the global logarithms this contribution does
not factor, so we assign it a common soft scale which we
take to be µ̄S given in Eq. (31).
For the purpose of our numerical analysis we take

Gij = π2/3, which is the result for a hemisphere. This
may be thought of as reasonable estimate and in reality
the values may differ by about 15% to 30% [14]. Con-
verting the cumulant space result in Eq. (32) into a full
distribution yields

SNGL({ki}, µ̄S) ! −α2
s(µ̄S)C2

A

(2π)2
π2

3

[∑

i

4

µ′L1

(ki
µ′

)

− 2
∑

i<j

1

µ′L0

(ki
µ′

) 1

µ′L0

(kj
µ′

)]
, (33)

where the Ln denote standard plus distributions as de-
fined in Eq. (A5). Note that the µ′ dependence cancels
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Consider 1-jettiness for pp→ H + 1-jet

6

d3σH+1j

dηJ dpJT dY dTa dTb dTJ
=

pJT
4πE2

cm(Q
2 +m2

H)

∑

κ

Hκ({qµi }, µ)
∫
dta Bκa(ta, xa, µ)

∫
dtb Bκb(tb, xb, µ)

×
∫
dsJ JκJ (sJ , µ)Sκ

(
Ta −

ta
Qa

, Tb −
tb
Qb

, TJ − sJ
QJ

,
{ qµi
Qi

}
, µ

)
. (17)

channel κa κb κJ

gg → Hg g g g

gq → Hq g q q

qg → Hq q g q

gq̄ → H̄q g q̄ q̄

q̄g → H̄q q̄ g q̄

qq̄ → Hg q q̄ g

q̄q → Hg q̄ q g

TABLE I: Values of κ for the different partonic channels.

The N -jettiness variables Ta, Tb, and TJ were defined in
Sec. II. The hard function Hκ contains the short-distance
matrix element for producing a Higgs plus a jet, the beam
functions Bκa and Bκb describe the collinear initial-state
radiation and contain the PDFs, the jet function JκJ

characterizes the collinear final-state radiation, and the
soft function Sκ describes soft radiation effects.3 The
sum over κ = {κa,κb,κJ} runs over the possible flavors
κi ∈ {g, u, ū, d, . . . } of the two incoming and one outgoing
parton. The possible combinations, corresponding to the
various partonic channels, are listed in Table I.

The power of factorization is that it allows one to eval-
uate the various fixed-order pieces at their natural scales,
where they contain no large logarithms. We then use the
RG evolution of each of these functions to evolve them to
a common scale µ, resumming the logarithms of m2

J/p
J 2
T

and QiTi/pJ 2
T . This evolution is implicit in Eq. (17), by

writing all functions as evaluated at the common scale
µ. The factorization formula with all evolution factors
written out explicitly is given in Eq. (28) below. Our
choice of scales is discussed in Sec. III C. Power correc-
tions to Eq. (17) arise from so-called nonsingular correc-
tions, which are suppressed by a relative O(m2

J/Q
2) in

this differential cross, and are not considered here.

The cross section in Eq. (17) is differential in the 1-
jettiness contributions from the jet and the beams TJ ,
Ta, and Tb. As we will see, the shape of the jet mass
spectrum is independent of the jet veto for a reasonable
range of Ta,b values. For simplicity we impose a common
cut Ta,b ≤ T cut. We also convert TJ to the jet mass mJ

3 Note that we do not call Eq. (17) a factorization theorem since
the decoupling of Glauber gluons for hadron collider processes
with a specific number of jets has not been proven.

matching γx Γcusp β PDF

LL 0-loop - 1-loop 1-loop NLO

NLL 0-loop 1-loop 2-loop 2-loop NLO

NNLL 1-loop 2-loop 3-loop 3-loop NLO

TABLE II: Perturbative ingredients at different orders in re-
summed perturbation theory.

using Eq. (7), and so consider

σ(mcut
J , T cut) =

∫ T cut

0
dTa

∫ T cut

0
dTb

∫ mcut 2
J /QJ

0
dTJ

d3σ

dTa dTb dTJ
.

(18)

The differential jet mass cross section, dσ/dmJ , is ob-
tained by taking the numerical derivative of this cumu-
lant cross section. We define the normalized jet mass
spectrum over the range [0,mcut

J ] as dσ̂/dmJ , so

dσ̂

dmJ
(mcut

J , T cut) ≡ 1

σ(mcut
J , T cut)

dσ(T cut)

dmJ
. (19)

The ingredients in the resummed cross section are
needed at different orders in perturbation theory, as sum-
marized in Table II, where the columns correspond to the
fixed-order matching, non-cusp anomalous dimension γx,
cusp anomalous dimension Γcusp, the β function, and the
PDFs. All ingredients necessary for a NNLL resumma-
tion of the global logarithms are known and are collected
in App. A: The one-loop hard function for the three basic
processes gg → Hg, gq → Hq, and qq̄ → Hg via gluon
fusion (in the large mt limit) are obtained from the one-
loop helicity amplitudes calculated in Ref. [56] following
the procedure in Ref. [57]. The one-loop quark and gluon
jet function were calculated in Refs. [58–60], the one-loop
quark and gluon beam functions in Refs. [61–64], and the
one-loop soft function in Ref. [47]. We also require the
cusp anomalous dimension to three loops [65, 66], and
the non-cusp anomalous dimensions to two loops, which
are known from Refs. [60, 62, 67–70].
There is some freedom in how to treat products of the

fixed-order corrections in Eq. (17), specifically the higher-
order cross terms that are generated, such as the one-loop
correction to H times the one-loop correction to J , which
we denote H(1)J (1). The series for the individual objects
are fairly convergent, except for the hard function whose

one exclusive jet 

cut on beam radiation
not normalized

normalized

mH = 125GeVpick , MSTW pdfs, use NLO Hard Fn’s:

C.Schmidt (2007)
αs(mZ)

qg → qH q̄g → q̄H qq̄ → gH, ,include gg → gH ,

T. Jouttenus, IS, F. Tackmann, W. Waalewijn  arXiv:1302.0846

� mcut
J

0
dmJ

d �σ
dmJ

= 1

kinematic variables:

m2
J = jet-mass

Ta,b ≤ T cut

pJ
T = jet pT

ηJ = jet rapidity
Y = event rapidity

NNLL
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(a) Unnormalized jet mass spectrum for quark and gluon jets
at NNLL. The uncertainties are sizable even at NNLL.
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(b) Normalized jet mass spectrum for quark and gluon jets at
NNLL. Compared to Fig. 4(a), the normalization significantly
reduces the perturbative uncertainties.
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(c) Convergence of the resummed calculation for gluon jets.
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(d) Convergence of the resummed calculation for quark jets.
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(e) Individual scale variations that enter the uncertainty estimate
for gluon jets at NNLL. Shown are the variations relative to
the central NNLL curve.
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(f) Individual scale variations that enter the uncertainty estimate
for quark jets at NNLL. Shown are the variations relative to
the central NNLL curve.

FIG. 4: Perturbative uncertainties and convergence for the jet mass spectrum in gg → Hg and gq → Hq with default inputs.

There are several classes of perturbative scale uncer-
tainties, the “Fixed Order” scale variation that is cor-
related with the total cross section, the “Beam” scale
variation from varying µB and µSB that is related to the

presence of the jet veto, the “Jet” scale variation from
varying µJ and µSJ that is related to the jet mass mea-
surement, and the uncertainty from “r” that is related
to the perturbative freedom in the refactorized formula
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at NNLL. The uncertainties are sizable even at NNLL.
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(b) Normalized jet mass spectrum for quark and gluon jets at
NNLL. Compared to Fig. 4(a), the normalization significantly
reduces the perturbative uncertainties.
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(c) Convergence of the resummed calculation for gluon jets.
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(d) Convergence of the resummed calculation for quark jets.
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(e) Individual scale variations that enter the uncertainty estimate
for gluon jets at NNLL. Shown are the variations relative to
the central NNLL curve.
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(f) Individual scale variations that enter the uncertainty estimate
for quark jets at NNLL. Shown are the variations relative to
the central NNLL curve.

FIG. 4: Perturbative uncertainties and convergence for the jet mass spectrum in gg → Hg and gq → Hq with default inputs.

There are several classes of perturbative scale uncer-
tainties, the “Fixed Order” scale variation that is cor-
related with the total cross section, the “Beam” scale
variation from varying µB and µSB that is related to the

presence of the jet veto, the “Jet” scale variation from
varying µJ and µSJ that is related to the jet mass mea-
surement, and the uncertainty from “r” that is related
to the perturbative freedom in the refactorized formula

Quark and Gluon Jets
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(a) Unnormalized jet mass spectrum for quark and gluon jets
at NNLL. The uncertainties are sizable even at NNLL.

! "! #!! #"! $!!!%!!!

!%!!"

!%!#!

!%!#"

!%!$!

!" !()*"

#Σ
%
##
!
"
!8
46
5
9:
7;
)<
"

$$"%$
$&"%&

'#!. Η"#!. ()"#&!! ()*. !
/01# $" ()*

2233. ()45)167/ *##

(b) Normalized jet mass spectrum for quark and gluon jets at
NNLL. Compared to Fig. 4(a), the normalization significantly
reduces the perturbative uncertainties.

! "! #!! #"! $!!!%!!!

!%!!"

!%!#!

!%!#"

!" !()*"

#Σ
%
##
!
"
!8
46
5
9:
7;
)<
"

2233
233
33

'#!. Η"#!. ()"#&!! ()*. !
/01# $" ()*

$$"%$. ()45)167/ *##

(c) Convergence of the resummed calculation for gluon jets.
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(d) Convergence of the resummed calculation for quark jets.
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(e) Individual scale variations that enter the uncertainty estimate
for gluon jets at NNLL. Shown are the variations relative to
the central NNLL curve.
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(f) Individual scale variations that enter the uncertainty estimate
for quark jets at NNLL. Shown are the variations relative to
the central NNLL curve.

FIG. 4: Perturbative uncertainties and convergence for the jet mass spectrum in gg → Hg and gq → Hq with default inputs.

There are several classes of perturbative scale uncer-
tainties, the “Fixed Order” scale variation that is cor-
related with the total cross section, the “Beam” scale
variation from varying µB and µSB that is related to the

presence of the jet veto, the “Jet” scale variation from
varying µJ and µSJ that is related to the jet mass mea-
surement, and the uncertainty from “r” that is related
to the perturbative freedom in the refactorized formula
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(a) Unnormalized jet mass spectrum for quark and gluon jets
at NNLL. The uncertainties are sizable even at NNLL.
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(b) Normalized jet mass spectrum for quark and gluon jets at
NNLL. Compared to Fig. 4(a), the normalization significantly
reduces the perturbative uncertainties.
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(c) Convergence of the resummed calculation for gluon jets.
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(d) Convergence of the resummed calculation for quark jets.
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(e) Individual scale variations that enter the uncertainty estimate
for gluon jets at NNLL. Shown are the variations relative to
the central NNLL curve.
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(f) Individual scale variations that enter the uncertainty estimate
for quark jets at NNLL. Shown are the variations relative to
the central NNLL curve.

FIG. 4: Perturbative uncertainties and convergence for the jet mass spectrum in gg → Hg and gq → Hq with default inputs.

There are several classes of perturbative scale uncer-
tainties, the “Fixed Order” scale variation that is cor-
related with the total cross section, the “Beam” scale
variation from varying µB and µSB that is related to the

presence of the jet veto, the “Jet” scale variation from
varying µJ and µSJ that is related to the jet mass mea-
surement, and the uncertainty from “r” that is related
to the perturbative freedom in the refactorized formula
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FIG. 5: Effect of using different jet veto cuts on the jet mass spectrum for gg → Hg. While the unnormalized spectrum on
the left is directly sensitive to the jet veto cut, this dependence almost completely cancels in the normalized spectrum on the
right. The same is true for the quark channel, gq → Hq, and the sum over all partonic channels.

for the soft function. For the NNLL results, these indi-
vidual scale variations are shown in Figs. 4(e) and 4(f)
for gluon and quark jets respectively. For simplicity we
combined the uncertainty from varying the jet scale µJ

and the scale of the jet part of the soft function µSJ by
taking the envelope, and similarly for the beams. It is not
too surprising that the uncertainties associated with the
hard and beam scale variations are smaller, since they
are mostly common to the numerator and denominator
of the normalized spectrum in Eq. (19). To obtain the
total perturbative uncertainty we take the envelope of
“Jet”, “Beam” and “r” uncertainties and combine it in
quadrature with the “Fixed Order” uncertainty. The to-
tal uncertainty in the jet mass spectrum is dominated by
that of the jet and by the soft function refactorization.

C. Jet Veto and Non-Global Logarithms

Next we discuss the effect of the jet veto on the jet mass
spectrum. Our veto is imposed through the variable T cut,
rather than a more traditional pcutTJ , since this simplifies
the treatment of scales in the problem, and allows us to
make use of a known factorization theorem. This jet veto
restricts the initial and final-state collinear radiation as
well as soft radiation. It turns out that the normalized
jet mass spectrum is fairly insensitive to the value of the
jet veto cut.
We start by considering the effect of the jet veto on the

unnormalized jet mass spectrum, as shown for gg → Hg
in the left panel of Fig. 5. Decreasing T cut imposes a
stronger restriction on the initial-state radiation and re-
duces the unnormalized cross section. (This reduction
is less strong for gq → Hq, because quarks radiate less
than gluons.) As the right panel of Fig. 5 shows, the nor-
malization removes the majority of the T cut dependence.
Note that without the refactorization of the soft function
(see Sec. III B) this cancellation would be spoiled by un-
physical logarithms. This strong cancellation is also the

case for the other partonic channels, as well as for their
sum in pp → H + 1 jet. This insensitivity to T cut also
remains valid after integrating over the jet phase space,
as we show below in Fig. 8. We have also studied the
dependence on T cut as well as a standard pcutTJ jet veto
with Pythia, where we also find a similar insensitivity
of the normalized jet mass spectrum to the details of the
used jet-veto variable and cut values.
Next we turn to our analysis of NGLs, both in the

unnormalized and normalized jet mass spectra. As ex-
plained in Sec. III D, we test for the size of the NGLs
by comparing the cross section with and without these
terms. The leading NGL is included in fixed-order per-
turbation theory, on top of which we sum an infinite series
of global logarithms through the factorization formula.
In the left panel of Fig. 6 we show the unnormalized

spectrum for various T cut values at NNLL (solid lines)
and the same spectra including the NGL terms (dotted
lines). As mentioned earlier, there is a point on the spec-
trum where the NGLs exactly cancel. This point is at
mJ " 50, 110, 165, 300 for T cut = 10, 25, 50, 150GeV re-
spectively. For all values of mJ shown in this figure the
effect of the NGL terms is well within the perturbative
uncertainty [cf. the uncertainty bands shown in Fig. 4(a)].
When we normalize the spectrum we are dividing by

the cumulant with mcut
J , and the jet-veto dependence

does not cancel out in the presence of the non-global
logarithms. There are two types of NGLs in the nor-
malized result, terms involving ln[m2

J/(p
J
TT cut)] from

the numerator and terms involving ln[mcut 2
J /(pJTT cut)]

from the denominator. Therefore for a fixed T cut there
is no longer a value of mJ where all the NGLs will
vanish. Results for the normalized spectrum with and
without NGLs are shown in the right panel of Fig. 6.
The orange band shows the NNLL result without NGLs
along with its perturbative uncertainty, while the vari-
ous black lines show the central values for NNLL results
that have the NGLs included. For the wide range of val-
ues 25GeV ≤ T cut ≤ 150GeV the effect of the NGLs is
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FIG. 5: Effect of using different jet veto cuts on the jet mass spectrum for gg → Hg. While the unnormalized spectrum on
the left is directly sensitive to the jet veto cut, this dependence almost completely cancels in the normalized spectrum on the
right. The same is true for the quark channel, gq → Hq, and the sum over all partonic channels.

for the soft function. For the NNLL results, these indi-
vidual scale variations are shown in Figs. 4(e) and 4(f)
for gluon and quark jets respectively. For simplicity we
combined the uncertainty from varying the jet scale µJ

and the scale of the jet part of the soft function µSJ by
taking the envelope, and similarly for the beams. It is not
too surprising that the uncertainties associated with the
hard and beam scale variations are smaller, since they
are mostly common to the numerator and denominator
of the normalized spectrum in Eq. (19). To obtain the
total perturbative uncertainty we take the envelope of
“Jet”, “Beam” and “r” uncertainties and combine it in
quadrature with the “Fixed Order” uncertainty. The to-
tal uncertainty in the jet mass spectrum is dominated by
that of the jet and by the soft function refactorization.

C. Jet Veto and Non-Global Logarithms

Next we discuss the effect of the jet veto on the jet mass
spectrum. Our veto is imposed through the variable T cut,
rather than a more traditional pcutTJ , since this simplifies
the treatment of scales in the problem, and allows us to
make use of a known factorization theorem. This jet veto
restricts the initial and final-state collinear radiation as
well as soft radiation. It turns out that the normalized
jet mass spectrum is fairly insensitive to the value of the
jet veto cut.
We start by considering the effect of the jet veto on the

unnormalized jet mass spectrum, as shown for gg → Hg
in the left panel of Fig. 5. Decreasing T cut imposes a
stronger restriction on the initial-state radiation and re-
duces the unnormalized cross section. (This reduction
is less strong for gq → Hq, because quarks radiate less
than gluons.) As the right panel of Fig. 5 shows, the nor-
malization removes the majority of the T cut dependence.
Note that without the refactorization of the soft function
(see Sec. III B) this cancellation would be spoiled by un-
physical logarithms. This strong cancellation is also the

case for the other partonic channels, as well as for their
sum in pp → H + 1 jet. This insensitivity to T cut also
remains valid after integrating over the jet phase space,
as we show below in Fig. 8. We have also studied the
dependence on T cut as well as a standard pcutTJ jet veto
with Pythia, where we also find a similar insensitivity
of the normalized jet mass spectrum to the details of the
used jet-veto variable and cut values.
Next we turn to our analysis of NGLs, both in the

unnormalized and normalized jet mass spectra. As ex-
plained in Sec. III D, we test for the size of the NGLs
by comparing the cross section with and without these
terms. The leading NGL is included in fixed-order per-
turbation theory, on top of which we sum an infinite series
of global logarithms through the factorization formula.
In the left panel of Fig. 6 we show the unnormalized

spectrum for various T cut values at NNLL (solid lines)
and the same spectra including the NGL terms (dotted
lines). As mentioned earlier, there is a point on the spec-
trum where the NGLs exactly cancel. This point is at
mJ " 50, 110, 165, 300 for T cut = 10, 25, 50, 150GeV re-
spectively. For all values of mJ shown in this figure the
effect of the NGL terms is well within the perturbative
uncertainty [cf. the uncertainty bands shown in Fig. 4(a)].
When we normalize the spectrum we are dividing by

the cumulant with mcut
J , and the jet-veto dependence

does not cancel out in the presence of the non-global
logarithms. There are two types of NGLs in the nor-
malized result, terms involving ln[m2

J/(p
J
TT cut)] from

the numerator and terms involving ln[mcut 2
J /(pJTT cut)]

from the denominator. Therefore for a fixed T cut there
is no longer a value of mJ where all the NGLs will
vanish. Results for the normalized spectrum with and
without NGLs are shown in the right panel of Fig. 6.
The orange band shows the NNLL result without NGLs
along with its perturbative uncertainty, while the vari-
ous black lines show the central values for NNLL results
that have the NGLs included. For the wide range of val-
ues 25GeV ≤ T cut ≤ 150GeV the effect of the NGLs is

Effect of the Beam Cut
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(a) The cross section decreases with increasing pJT .
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(b) For pp → H + 1 jet the peak position remains stable and the
spectrum slightly broadens with increasing pJT .
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(c) The cross section decreases with increasing ηJ .
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(d) For pp → H + 1 jet the peak position shifts slightly and the
spectrum slightly broadens with increasing ηJ .
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(e) The cross section quickly decreases for larger Y .
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(f) For pp → H + 1 jet the peak position remains stable and the
spectrum slightly broadens with increasing Y .

FIG. 7: Dependence on the kinematic variables pJT , ηJ , and Y for the unnormalized and normalized NNLL jet mass spectra
for pp → H + 1 jet.

framework.
The main dependence on the total system rapidity

Y enters through the shape of the PDFs, causing the
cross section to strongly decrease with increasing |Y |, as

Fig. 7(e) shows. (This is also the reason for taking cen-
tral jets with Y = 0 for our default value when using
a single phase space point.) The value of Y also affects
the shape of the jet mass spectrum, as can be seen in
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FIG. 6: Effect of non-global logarithms on the NNLL jet mass spectrum for gg → Hg for different jet veto cuts. Left panel:
Including the leading NGLs (dashed lines) has a small effect on the unnormalized spectrum, and is well within the perturbative
uncertainty for a wide range of jet veto cuts. Right panel: The effect of including the leading NGLs (black solid, dashed, and
dotted curves) on the normalized NNLL spectrum (orange band) is still within the reduced perturbative uncertainty for a wide
range of jet veto cuts, but start to become important for T cut = 10GeV.

of the same size as the reduced perturbative uncertainty
in the normalized spectrum. This justifies our assertion
that the NGLs do not have to be considered as large log-
arithms for a significant range of cut values, so that our
NNLL result is complete at this order. In the small mJ

region of the spectrum the resummation of global loga-
rithms on top of the NGL term provides an appropriate
Sudakov suppression in the the cross section. For other
mJ values, and 25GeV ≤ T cut ≤ 150GeV, the argument
of the NGL remains between 1/8 and 8, which is the
range over which we expect that the NGLs do not dom-
inate over nonlogarithmic corrections, as mentioned in
the introduction. On the other hand, for T cut = 10GeV
one observes that the NGLs become large enough that
they are no longer contained within the perturbative un-
certainty, so this value is outside the range of validity of
our normalized NNLL results (though for this value the
unnormalized results in the peak region are still valid).
For this value the argument of the NGL involving mcut

J
becomes " 13, which is outside of the range mentioned
above.
Although we have only explored the gg → Hg channel

at a fixed kinematic point in this section, we have also
checked explicitly that the same conclusions about NGLs
hold when integrating over a kinematic range, and when
considering quark jets from gq → Hq.

V. RESULTS FOR pp → H + 1 JET

In this section we show results for the pp → H + 1 jet
cross section at NNLL, summing the contributions from
the various partonic channels: gg → Hg, gq → Hq, and
the (small) qq̄ → Hg. We present results for the depen-
dence of the jet mass spectrum on the jet kinematics, on
the choice of jet definition which affects the shape of the
jets, and on the jet size R. We also compare the mJ

spectrum obtained for a fixed point in the jet kinemat-
ics to that obtained from integrating over a range of jet
momenta.

A. Dependence on Kinematics

For pp → H + 1 jet there are three nontrivial kine-
matic variables: the transverse momentum of the jet pJT ,
rapidity of the jet ηJ , and the total rapidity Y of the
combined Higgs+jet system. We show how each of these
variables affect both the unnormalized and normalized jet
mass spectrum, which allows us to separate the impact
of kinematics on the normalization and the shape.
The falloff of the PDFs at larger x values causes the

cross section to strongly decrease for increasing pJT and
for increasing |ηJ | (for Y = 0). This is shown in Figs. 7(a)
and 7(c). The dependence on pJT and ηJ in the corre-
sponding normalized spectra are shown in Figs. 7(b) and
7(d). Here we see that there is a decrease in the height of
the peak and a compensating increase in the tail height
as pJT or |ηJ | are increased. Note that for these variables
there is a marked difference between the total pp → H+1
jet process compared to the individual partonic chan-
nels (which are not shown). For each partonic channel
the peak position of the jet mass spectrum increases as
mpeak

J ∝
√
pJT and also increases with increasing |ηJ |.

However, at the same time the contribution of gq → Hq
relative to gg → Hg is enhanced, and the peak of the
jet mass spectrum is at lower values for quark jets than
for gluon jets [see Fig. 4(b)]. These two effects largely
cancel for pp → H + 1 jet, such that the peak position
is practically unchanged with increasing pJT , whereas for
increasing ηJ a small net increase in the peak position
remains.
Note that our ability to calculate the ηJ dependence

implies that it is trivial to impose rapidity cuts in our

but also gains more quark jets
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(a) The cross section decreases with increasing pJT .
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(b) For pp → H + 1 jet the peak position remains stable and the
spectrum slightly broadens with increasing pJT .
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(c) The cross section decreases with increasing ηJ .
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(d) For pp → H + 1 jet the peak position shifts slightly and the
spectrum slightly broadens with increasing ηJ .
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(e) The cross section quickly decreases for larger Y .
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(f) For pp → H + 1 jet the peak position remains stable and the
spectrum slightly broadens with increasing Y .

FIG. 7: Dependence on the kinematic variables pJT , ηJ , and Y for the unnormalized and normalized NNLL jet mass spectra
for pp → H + 1 jet.

framework.
The main dependence on the total system rapidity

Y enters through the shape of the PDFs, causing the
cross section to strongly decrease with increasing |Y |, as

Fig. 7(e) shows. (This is also the reason for taking cen-
tral jets with Y = 0 for our default value when using
a single phase space point.) The value of Y also affects
the shape of the jet mass spectrum, as can be seen in
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FIG. 9: Dependence of the NNLL jet mass spectrum for pp → H + 1 jet on the N-jettiness measure used to define the jets.
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FIG. 10: Dependence of the NNLL jet mass spectrum for
the geometric R measure on the jet radius R. Only the R
dependence from singular terms in the factorization formula
is shown here.

ηJ = 2. The two bumps in the jet mass spectrum for
geometric pT at ηJ = 2 are caused by an increased sep-
aration between the peaks of the individual quark and
gluon channels [see Fig. 4(b)].

In Fig. 10 we show the jet mass spectrum for the ge-
ometric R measure for various values of the jet radius
R. A larger jet radius translates into a peak at slightly
higher mass and slightly larger tail. Note that the biggest
difference between the jet mass spectra for different val-
ues of R will be at large mJ in the tail of the spectrum,
since the size of the jet puts an effective upper bound-
ary on its mass mJ

<∼ pJTR/
√
2. 5 At this boundary the

jet mass spectrum has to fall off rapidly. This bound-
ary is seen in Pythia and LHC data but is not included
in our calculation, because we have not yet incorporated
the nonsingular contributions to the cross section which
are important for accounting for this effect and making

5 For a jet of fixed three momentum centered at η = 0, the abso-
lute bound on the jet mass is m2

J < pJ 2
T (1/ cos2 R − 1), which

is reached when the jet consists of two energetic narrow sub-
jets located at (η, φ) = (0,±R). Assuming a uniform energy
distribution in (η,φ)-space, leads to a more practical bound
m2

J
<∼ pJ 2

T R2/2.

realistic predictions in this part of the tail of the distri-
bution.

VI. MONTE CARLO COMPARISONS

In this section we study various aspects of the jet mass
spectrum in Pythia. Although formally the perturba-
tive accuracy of Pythia is significantly lower than that
of our NNLL calculation, it is also well known that after
sufficient tuning Pythia is able to reproduce the shape of
many jet observables. Here we are particularly interested
in testing the impact on the jet mass spectrum from using
different hard processes, using different jet algorithms,
and from adding hadronization and underlying event (the
latter being described by Pythia’s multi-parton interac-
tion model). We also perform a comparison between our
calculation and Pythia for the same geometric R = 1
N -jettiness jets used in our analysis. Finally we compare
our exclusive 1-jet mJ calculation with the inclusive jet
mass spectrum measured in pp → jets by ATLAS. We al-
ways use Pythia8 with its default tune 5 (“Tune 4C”),
which as we will see provides a good description of the
ATLAS jet mass data.

A. Hard Process and Jet Algorithm Dependence in
PYTHIA

We start by investigating to what extent the jet mass
spectrum depends on the underlying hard process in
Pythia. In Fig. 11 we show the spectrum for a gluon
jet from gg → gg (solid) and from gg → Hg (dotted),
demonstrating that in Pythia there is essentially negligi-
ble process dependence for individual partonic channels.
This is true both at the partonic level (blue curves with
peak on the left) and after including hadronization and
multiple interactions (red curves with peak on the right).
In reality one expects some differences from the hard pro-
cess due to the additional soft radiation produced with
more available colored particles, and from the different
color flow, where in particular gg → gg involves a matrix
of color channels with nontrivial interference. These ef-
fects may not be sufficiently described by Pythia so one
should not conclude that the hard process dependence on
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the geometric R measure on the jet radius R. Only the R
dependence from singular terms in the factorization formula
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ηJ = 2. The two bumps in the jet mass spectrum for
geometric pT at ηJ = 2 are caused by an increased sep-
aration between the peaks of the individual quark and
gluon channels [see Fig. 4(b)].

In Fig. 10 we show the jet mass spectrum for the ge-
ometric R measure for various values of the jet radius
R. A larger jet radius translates into a peak at slightly
higher mass and slightly larger tail. Note that the biggest
difference between the jet mass spectra for different val-
ues of R will be at large mJ in the tail of the spectrum,
since the size of the jet puts an effective upper bound-
ary on its mass mJ

<∼ pJTR/
√
2. 5 At this boundary the

jet mass spectrum has to fall off rapidly. This bound-
ary is seen in Pythia and LHC data but is not included
in our calculation, because we have not yet incorporated
the nonsingular contributions to the cross section which
are important for accounting for this effect and making

5 For a jet of fixed three momentum centered at η = 0, the abso-
lute bound on the jet mass is m2

J < pJ 2
T (1/ cos2 R − 1), which

is reached when the jet consists of two energetic narrow sub-
jets located at (η, φ) = (0,±R). Assuming a uniform energy
distribution in (η,φ)-space, leads to a more practical bound
m2

J
<∼ pJ 2

T R2/2.

realistic predictions in this part of the tail of the distri-
bution.

VI. MONTE CARLO COMPARISONS

In this section we study various aspects of the jet mass
spectrum in Pythia. Although formally the perturba-
tive accuracy of Pythia is significantly lower than that
of our NNLL calculation, it is also well known that after
sufficient tuning Pythia is able to reproduce the shape of
many jet observables. Here we are particularly interested
in testing the impact on the jet mass spectrum from using
different hard processes, using different jet algorithms,
and from adding hadronization and underlying event (the
latter being described by Pythia’s multi-parton interac-
tion model). We also perform a comparison between our
calculation and Pythia for the same geometric R = 1
N -jettiness jets used in our analysis. Finally we compare
our exclusive 1-jet mJ calculation with the inclusive jet
mass spectrum measured in pp → jets by ATLAS. We al-
ways use Pythia8 with its default tune 5 (“Tune 4C”),
which as we will see provides a good description of the
ATLAS jet mass data.

A. Hard Process and Jet Algorithm Dependence in
PYTHIA

We start by investigating to what extent the jet mass
spectrum depends on the underlying hard process in
Pythia. In Fig. 11 we show the spectrum for a gluon
jet from gg → gg (solid) and from gg → Hg (dotted),
demonstrating that in Pythia there is essentially negligi-
ble process dependence for individual partonic channels.
This is true both at the partonic level (blue curves with
peak on the left) and after including hadronization and
multiple interactions (red curves with peak on the right).
In reality one expects some differences from the hard pro-
cess due to the additional soft radiation produced with
more available colored particles, and from the different
color flow, where in particular gg → gg involves a matrix
of color channels with nontrivial interference. These ef-
fects may not be sufficiently described by Pythia so one
should not conclude that the hard process dependence on
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ηJ = 2. The two bumps in the jet mass spectrum for
geometric pT at ηJ = 2 are caused by an increased sep-
aration between the peaks of the individual quark and
gluon channels [see Fig. 4(b)].

In Fig. 10 we show the jet mass spectrum for the ge-
ometric R measure for various values of the jet radius
R. A larger jet radius translates into a peak at slightly
higher mass and slightly larger tail. Note that the biggest
difference between the jet mass spectra for different val-
ues of R will be at large mJ in the tail of the spectrum,
since the size of the jet puts an effective upper bound-
ary on its mass mJ

<∼ pJTR/
√
2. 5 At this boundary the

jet mass spectrum has to fall off rapidly. This bound-
ary is seen in Pythia and LHC data but is not included
in our calculation, because we have not yet incorporated
the nonsingular contributions to the cross section which
are important for accounting for this effect and making

5 For a jet of fixed three momentum centered at η = 0, the abso-
lute bound on the jet mass is m2

J < pJ 2
T (1/ cos2 R − 1), which

is reached when the jet consists of two energetic narrow sub-
jets located at (η, φ) = (0,±R). Assuming a uniform energy
distribution in (η,φ)-space, leads to a more practical bound
m2

J
<∼ pJ 2

T R2/2.

realistic predictions in this part of the tail of the distri-
bution.

VI. MONTE CARLO COMPARISONS

In this section we study various aspects of the jet mass
spectrum in Pythia. Although formally the perturba-
tive accuracy of Pythia is significantly lower than that
of our NNLL calculation, it is also well known that after
sufficient tuning Pythia is able to reproduce the shape of
many jet observables. Here we are particularly interested
in testing the impact on the jet mass spectrum from using
different hard processes, using different jet algorithms,
and from adding hadronization and underlying event (the
latter being described by Pythia’s multi-parton interac-
tion model). We also perform a comparison between our
calculation and Pythia for the same geometric R = 1
N -jettiness jets used in our analysis. Finally we compare
our exclusive 1-jet mJ calculation with the inclusive jet
mass spectrum measured in pp → jets by ATLAS. We al-
ways use Pythia8 with its default tune 5 (“Tune 4C”),
which as we will see provides a good description of the
ATLAS jet mass data.

A. Hard Process and Jet Algorithm Dependence in
PYTHIA

We start by investigating to what extent the jet mass
spectrum depends on the underlying hard process in
Pythia. In Fig. 11 we show the spectrum for a gluon
jet from gg → gg (solid) and from gg → Hg (dotted),
demonstrating that in Pythia there is essentially negligi-
ble process dependence for individual partonic channels.
This is true both at the partonic level (blue curves with
peak on the left) and after including hadronization and
multiple interactions (red curves with peak on the right).
In reality one expects some differences from the hard pro-
cess due to the additional soft radiation produced with
more available colored particles, and from the different
color flow, where in particular gg → gg involves a matrix
of color channels with nontrivial interference. These ef-
fects may not be sufficiently described by Pythia so one
should not conclude that the hard process dependence on
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ηJ = 2. The two bumps in the jet mass spectrum for
geometric pT at ηJ = 2 are caused by an increased sep-
aration between the peaks of the individual quark and
gluon channels [see Fig. 4(b)].

In Fig. 10 we show the jet mass spectrum for the ge-
ometric R measure for various values of the jet radius
R. A larger jet radius translates into a peak at slightly
higher mass and slightly larger tail. Note that the biggest
difference between the jet mass spectra for different val-
ues of R will be at large mJ in the tail of the spectrum,
since the size of the jet puts an effective upper bound-
ary on its mass mJ

<∼ pJTR/
√
2. 5 At this boundary the

jet mass spectrum has to fall off rapidly. This bound-
ary is seen in Pythia and LHC data but is not included
in our calculation, because we have not yet incorporated
the nonsingular contributions to the cross section which
are important for accounting for this effect and making

5 For a jet of fixed three momentum centered at η = 0, the abso-
lute bound on the jet mass is m2

J < pJ 2
T (1/ cos2 R − 1), which

is reached when the jet consists of two energetic narrow sub-
jets located at (η, φ) = (0,±R). Assuming a uniform energy
distribution in (η,φ)-space, leads to a more practical bound
m2

J
<∼ pJ 2

T R2/2.

realistic predictions in this part of the tail of the distri-
bution.

VI. MONTE CARLO COMPARISONS

In this section we study various aspects of the jet mass
spectrum in Pythia. Although formally the perturba-
tive accuracy of Pythia is significantly lower than that
of our NNLL calculation, it is also well known that after
sufficient tuning Pythia is able to reproduce the shape of
many jet observables. Here we are particularly interested
in testing the impact on the jet mass spectrum from using
different hard processes, using different jet algorithms,
and from adding hadronization and underlying event (the
latter being described by Pythia’s multi-parton interac-
tion model). We also perform a comparison between our
calculation and Pythia for the same geometric R = 1
N -jettiness jets used in our analysis. Finally we compare
our exclusive 1-jet mJ calculation with the inclusive jet
mass spectrum measured in pp → jets by ATLAS. We al-
ways use Pythia8 with its default tune 5 (“Tune 4C”),
which as we will see provides a good description of the
ATLAS jet mass data.

A. Hard Process and Jet Algorithm Dependence in
PYTHIA

We start by investigating to what extent the jet mass
spectrum depends on the underlying hard process in
Pythia. In Fig. 11 we show the spectrum for a gluon
jet from gg → gg (solid) and from gg → Hg (dotted),
demonstrating that in Pythia there is essentially negligi-
ble process dependence for individual partonic channels.
This is true both at the partonic level (blue curves with
peak on the left) and after including hadronization and
multiple interactions (red curves with peak on the right).
In reality one expects some differences from the hard pro-
cess due to the additional soft radiation produced with
more available colored particles, and from the different
color flow, where in particular gg → gg involves a matrix
of color channels with nontrivial interference. These ef-
fects may not be sufficiently described by Pythia so one
should not conclude that the hard process dependence on
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shift to lower values due to quark jets which is compensated by a shift to higher values due to hadronization and multiple
interactions.

effect of the underlying event.

Given that Pythia agrees well with the ATLAS inclu-
sive dijet spectrum, one might wonder what the purpose
of a higher-order NNLL dijet calculation would be. An
advantage of our calculational framework over Pythia is
that it follows from first principles and does not involve
the modeling and tuning present in Pythia. Specifically,
the input to our calculation is limited to αs(mZ), the par-
ton distributions functions, and simple soft function pa-
rameters like Ω for the hadronic effects. Furthermore, we
have a rigorous estimate of the higher-order perturbative
uncertainty from scale variation, as well as from order-
by-order convergence, which enable us to fully asses the
reliability of the result. Finally, it should be emphasized
that our calculation is fully analytic (up to the numer-
ical convolution with the PDFs) and hence provides an
analytic QCD calculation of an LHC spectrum for jets.

To the extent that the normalized jet mass spectrum is
independent of the hard process and independent of using

an inclusive or exclusive jet sample, which Pythia seems
to suggest in Figs. 11 and 12, a comparison between jet
mass spectra involving different hard processes and with
and without jet veto cuts is appropriate. The approx-
imate hard process independence only holds separately
for gluon or quark jets, which themselves have fairly dif-
ferent jet mass spectra, see Fig. 4(b). Therefore when
varying the hard process we expect the dominant change
in the jet mass spectrum to be related to the process
dependent fraction of quark and gluon jets produced.

In Fig. 17 we compare our NNLL result for pp → H+1
jet and for gg → Hg to the ATLAS data for pp → jets.
Recall that the peak location of the NNLLH+1 jet calcu-
lation matches well with that from Pythia, see Fig. 14.
Because of the significant contribution from quark jets
the H +1 jet spectrum peaks to the left of the spectrum
from dijets. On the other hand, the peak location with
pure gluon jets (gg → Hg) agrees remarkably well with
the data on dijets. From the results already obtained
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FIG. 12: Comparison of the normalized jet mass spectra for
exclusive and inclusive jet samples in Pythia.

the jet mass spectrum is as small as is shown.
Next, we look at the difference in Pythia between

the jet mass for exclusive and inclusive jet production.
We use the process gg → Hg, imposing the jet veto
T cut = 10, 25 GeV to obtain two exclusive samples, and
using no jet veto for our inclusive sample. The resulting
normalized jet mass spectra are shown in Fig. 12. The
difference between T cut = 25 GeV (our default value)
and the inclusive case is small, allowing our calculation
to be compared to inclusive spectra. The difference is
slightly larger for T cut = 10 GeV and increases signifi-
cantly for smaller values of T cut. However, we will not
consider such strong jet vetos, as they lead to large NGLs
(see Sec. IVC).
In Fig. 13 we compare the jet mass spectrum from

Pythia for different jet algorithms, specifically our 1-
jettiness R = 1-algorithm, Cambridge-Aachen with R =
1, and anti-kT with R = 1 and R = 1.2 [77]. To stay
close to a calculation for a single phase space point, we
restrict the jet to a narrow pT and rapidity bin, and im-
pose a veto using T cut = 25 GeV. The differences be-
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FIG. 13: Comparison of the anti-kT , CA, and geometric R
jet algorithms in Pythia.

tween the R = 1 curves are within the size of the uncer-
tainty band from our NNLL calculation in the same phase
space bin. This result agrees with the small differences
observed in each of the panels of Fig. 9 from comparing
different jet measures for 1-jettiness jets. The difference
between R = 1 and R = 1.2 for anti-kT is larger than
that observed in our calculation using geometric R jets
in Fig. 10. In Pythia the difference between R = 1
and R = 1.2 becomes smaller when T cut is decreased,
since with a stronger jet veto less additional radiation is
present that would be absorbed by larger jets. To be spe-
cific, the 15% difference in the peak heights for anti-kT
with R = 1 and R = 1.2 for T cut = 25 GeV reduces to 7%
for T cut = 5 GeV. From these results we conclude that
in our NNLL calculation, the R dependence of the non-
singular terms that are not included in our analysis may
well be numerically comparable or larger in size than the
formally leading R dependence that we have computed.

B. Comparison of NNLL with PYTHIA

A comparison between our NNLL calculation and par-
tonic Pythia results for gg → Hg are shown in Fig. 14,
both using the geometric R = 1 jet definition. The peak
positions in both cases agree very well. To ensure that
this is not an accident and that the peak position in
Pythia does not depend on the PDF set used by our de-
fault tune, we checked that an alternative tune (number
10, which is based on our default Pythia tune but uses
MSTW2008 LO PDFs) only shifts the peak by a small
amount, similar to the small difference in peak positions
between Pythia and our NNLL calculation. However, as
seen in Fig. 14, the NNLL calculation has a lower peak
and a correspondingly higher tail. Since the spectrum is
normalized these two effects are related, namely higher
values in the tail must be compensated by a lower peak.
There are several possibilities that may account for this
difference. Due to the stability of our order-by-order re-
sults in Fig. 4(c) it is unlikely to be related to the lower
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FIG. 14: Comparison between our NNLL calculation and par-
tonic Pythia for the gg → Hg channel. Both results use
geometric R = 1 jets and the same kinematic cuts.

order accuracy of Pythia’s LL parton shower resumma-
tion. Most likely the differences are related to the fact
that we have not yet included nonsingular contributions
to the spectrum which are important in the tail region,
in particular for the spectrum to fall off rapidly enough.
Due to the fact that the results are normalized, this mis-
match in the tail then also leads to a disagreement of the
peak heights. Thus we expect that the inclusion of the
nonsingular contributions will reduce this difference.

C. Hadronization in PYTHIA

We now explore the effect of hadronization on the jet
mass spectrum using Pythia. In the factorization for-
mula the hadronization is encoded through nonperturba-
tive corrections in the soft function S at a scale ∼ ΛQCD,
which must be separated from perturbative corrections
at the soft scale µS ∼ m2

J/p
J
T . For e+e− → 2 jets there

is an analytic understanding of the analogous nonpertur-
bative corrections originating in Refs. [78–81] as well as
a modern understanding in terms of field theory opera-
tors [19, 82–84]. For these processes, as soon as the rel-
evant soft scale µS is perturbative, the nonperturbative
corrections can be power expanded in ΛQCD/µS , and the
dominant power correction simply shifts the event shape
distribution, e → e − Ωe/Q. In the case at hand, the
nonperturbative soft function is built from more than
two Wilson lines, so the description of the power cor-
rections becomes more complicated. Nevertheless, for
a given kinematic configuration we still expect that the
dominant effect will be described by a shift involving a
parameter Ω ∼ ΛQCD. For a jet mass m2

J $ p+J p
−
J this

shift occurs due to nonperturbative soft radiation caus-
ing a shift in the small momentum p+J , so it takes the
form

m2
J → m2

J − 2Ω pJT R . (35)
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FIG. 15: The nonperturbative hadronization correction in
Pythia is well described by a shift in m2

J .

The factor of R accounts for the fact that there is a de-
creased amount of soft momentum contamination in the
jet for decreasing R [85]. It is straightforward to test
whether this shift agrees with the hadronization model
in Pythia, by comparing the results with and without
hadronization. As demonstrated in Fig. 15, a shift with
the choice Ω = 0.8 GeV works very well, in reasonable
agreement with the Ω = 1.0 GeV found earlier in Ref. [14]
for the inclusive ≥ 1 jet cross section.

D. Underlying Event and ATLAS Data

In Pythia the effect of the underlying event is mod-
eled by multiple partonic interactions, and its effect on
the jet mass spectrum is more pronounced than that
of hadronization. This is shown in Fig. 16 where we
plot the jet mass spectrum for inclusive pp → jets from
Pythia at parton level, including hadronization, and in-
cluding hadronization and multiple interactions. Also
shown are the corresponding ATLAS data from Ref. [26],
where the uncertainty bars are from linearly combining
the statistical and systematic uncertainties. This chan-
nel is dominated by the copious pp → dijet production
at the LHC. We use the same inputs and cuts as AT-
LAS, namely Ecm = 7TeV, anti-kT jets with R = 1,
|ηJ | ≤ 2, and consider both 300GeV ≤ pJT ≤ 400GeV
and 500GeV ≤ pJT ≤ 600GeV. The shift to the peak lo-
cation from hadronization is of similar magnitude as that
for gg → Hg in Fig. 15, namely $ 3.0GeV for gg → Hg
compared to $ 8.0GeV for the 300GeV ≤ pJT ≤ 400GeV
inclusive jets which have a slightly larger average pJT .
For the inclusive pp → jets in Pythia the additional
shift to the peak location from the underlying event is
$ 17.4GeV. The final Pythia results agree well with
the ATLAS data for both pJT bins. In a NNLL calcula-
tion the effect of hadronization and part of the effect of
the underlying event will be captured by corrections to
the soft function, but it is not clear if hadronic correc-
tions in the multi-jet soft function will fully capture the

smaller pT
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Power Corrections / Hadronization Effects
(Pythia 8 partonic     hadronization is a simple shift)

shift is:

m2
J → m2

J −QJΩ

Ω ∼ ΛQCD
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FIG. 14: Comparison between our NNLL calculation and par-
tonic Pythia for the gg → Hg channel. Both results use
geometric R = 1 jets and the same kinematic cuts.

order accuracy of Pythia’s LL parton shower resumma-
tion. Most likely the differences are related to the fact
that we have not yet included nonsingular contributions
to the spectrum which are important in the tail region,
in particular for the spectrum to fall off rapidly enough.
Due to the fact that the results are normalized, this mis-
match in the tail then also leads to a disagreement of the
peak heights. Thus we expect that the inclusion of the
nonsingular contributions will reduce this difference.

C. Hadronization in PYTHIA

We now explore the effect of hadronization on the jet
mass spectrum using Pythia. In the factorization for-
mula the hadronization is encoded through nonperturba-
tive corrections in the soft function S at a scale ∼ ΛQCD,
which must be separated from perturbative corrections
at the soft scale µS ∼ m2

J/p
J
T . For e+e− → 2 jets there

is an analytic understanding of the analogous nonpertur-
bative corrections originating in Refs. [78–81] as well as
a modern understanding in terms of field theory opera-
tors [19, 82–84]. For these processes, as soon as the rel-
evant soft scale µS is perturbative, the nonperturbative
corrections can be power expanded in ΛQCD/µS , and the
dominant power correction simply shifts the event shape
distribution, e → e − Ωe/Q. In the case at hand, the
nonperturbative soft function is built from more than
two Wilson lines, so the description of the power cor-
rections becomes more complicated. Nevertheless, for
a given kinematic configuration we still expect that the
dominant effect will be described by a shift involving a
parameter Ω ∼ ΛQCD. For a jet mass m2

J $ p+J p
−
J this

shift occurs due to nonperturbative soft radiation caus-
ing a shift in the small momentum p+J , so it takes the
form

m2
J → m2

J − 2Ω pJT R . (35)
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FIG. 15: The nonperturbative hadronization correction in
Pythia is well described by a shift in m2

J .

The factor of R accounts for the fact that there is a de-
creased amount of soft momentum contamination in the
jet for decreasing R [85]. It is straightforward to test
whether this shift agrees with the hadronization model
in Pythia, by comparing the results with and without
hadronization. As demonstrated in Fig. 15, a shift with
the choice Ω = 0.8 GeV works very well, in reasonable
agreement with the Ω = 1.0 GeV found earlier in Ref. [14]
for the inclusive ≥ 1 jet cross section.

D. Underlying Event and ATLAS Data

In Pythia the effect of the underlying event is mod-
eled by multiple partonic interactions, and its effect on
the jet mass spectrum is more pronounced than that
of hadronization. This is shown in Fig. 16 where we
plot the jet mass spectrum for inclusive pp → jets from
Pythia at parton level, including hadronization, and in-
cluding hadronization and multiple interactions. Also
shown are the corresponding ATLAS data from Ref. [26],
where the uncertainty bars are from linearly combining
the statistical and systematic uncertainties. This chan-
nel is dominated by the copious pp → dijet production
at the LHC. We use the same inputs and cuts as AT-
LAS, namely Ecm = 7TeV, anti-kT jets with R = 1,
|ηJ | ≤ 2, and consider both 300GeV ≤ pJT ≤ 400GeV
and 500GeV ≤ pJT ≤ 600GeV. The shift to the peak lo-
cation from hadronization is of similar magnitude as that
for gg → Hg in Fig. 15, namely $ 3.0GeV for gg → Hg
compared to $ 8.0GeV for the 300GeV ≤ pJT ≤ 400GeV
inclusive jets which have a slightly larger average pJT .
For the inclusive pp → jets in Pythia the additional
shift to the peak location from the underlying event is
$ 17.4GeV. The final Pythia results agree well with
the ATLAS data for both pJT bins. In a NNLL calcula-
tion the effect of hadronization and part of the effect of
the underlying event will be captured by corrections to
the soft function, but it is not clear if hadronic correc-
tions in the multi-jet soft function will fully capture the
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Of course it is also tempting to 
compare to the ATLAS inclusive jet data

This is only meaningful at the level that their jet mass 
results are gluon dominated and process independent

(please read this apples to oranges comparison carefully)
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FIG. 16: Comparison of the Pythia jet mass spectrum for inclusive pp → jets to the corresponding ATLAS data [26].
Pythia results are shown at parton level (dotted), including hadronization (dashed), and including hadronization and multiple
interactions (solid). The final Pythia results reproduce the data well.
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FIG. 17: Comparison of our exclusive NNLL calculation with ATLAS inclusive jet mass data [26]. The peak position of our
gluon jets from gg → Hg agrees remarkably well with the inclusive dijet data. For the ATLAS date there is presumably a
shift to lower values due to quark jets which is compensated by a shift to higher values due to hadronization and multiple
interactions.

effect of the underlying event.

Given that Pythia agrees well with the ATLAS inclu-
sive dijet spectrum, one might wonder what the purpose
of a higher-order NNLL dijet calculation would be. An
advantage of our calculational framework over Pythia is
that it follows from first principles and does not involve
the modeling and tuning present in Pythia. Specifically,
the input to our calculation is limited to αs(mZ), the par-
ton distributions functions, and simple soft function pa-
rameters like Ω for the hadronic effects. Furthermore, we
have a rigorous estimate of the higher-order perturbative
uncertainty from scale variation, as well as from order-
by-order convergence, which enable us to fully asses the
reliability of the result. Finally, it should be emphasized
that our calculation is fully analytic (up to the numer-
ical convolution with the PDFs) and hence provides an
analytic QCD calculation of an LHC spectrum for jets.

To the extent that the normalized jet mass spectrum is
independent of the hard process and independent of using

an inclusive or exclusive jet sample, which Pythia seems
to suggest in Figs. 11 and 12, a comparison between jet
mass spectra involving different hard processes and with
and without jet veto cuts is appropriate. The approx-
imate hard process independence only holds separately
for gluon or quark jets, which themselves have fairly dif-
ferent jet mass spectra, see Fig. 4(b). Therefore when
varying the hard process we expect the dominant change
in the jet mass spectrum to be related to the process
dependent fraction of quark and gluon jets produced.

In Fig. 17 we compare our NNLL result for pp → H+1
jet and for gg → Hg to the ATLAS data for pp → jets.
Recall that the peak location of the NNLLH+1 jet calcu-
lation matches well with that from Pythia, see Fig. 14.
Because of the significant contribution from quark jets
the H +1 jet spectrum peaks to the left of the spectrum
from dijets. On the other hand, the peak location with
pure gluon jets (gg → Hg) agrees remarkably well with
the data on dijets. From the results already obtained

underlying event
    pushes to right 

quark channels
    push to left

•

•
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Jets in e-p



Using -Jettiness

to Measure Jets in DIS

in Ways

50

τ1 =
2

Q2

�

i

min{qB · pi, qJ · pi} How shall we pick qB and qJ?

C.Lee, D.Kang, IS  arXiv:1303.xxxx  (soon)



τa
1

Three choices for DIS 1-jettiness

(c) τm
1

pT
B averaged over, pT

J = 0

qJ true jet axis

HJ
HB

qB = xP
q

pB

pJ

qB = xP

qJ = true jet axis

qJ is Aligned with the jet momentum, 
find by jet algorithm or minimization

Kang, Mantry, Qiu (2012)

CM frame

not the same as  
min

n̂
τn̂Q



τ b
1

(b) τB
1

HJ
HB

q

pT
J = pT

B

qJ = q + xP

qB = xP

pB

pJ

Three choices for DIS 1-jettiness

qJ no longer aligned with jet, but 
q+xP is given only by lepton and proton momenta

CM frame

qB = xP

qJ = q + xP

same as DIS thrust 
of Antonelli, Dasgupta, 
Salam (1999)

qB = Qn̄z qJ = Qnz

Breit frame:

1-jettiness regions are hemispheres in Breit frame

Boost

e e�

P

HJHB

pB

pJ

q = (0, 0, 0, Q)

τẑQ



has to be small for 1-jettiness 

qB = P

qJ = k

Three choices for DIS 1-jettiness

CM frame

measures thrust in back-to-back hemispheres in Center-of-momentum frame

q = y
√

s
nz

2
− xy

√
s
n̄z

2
+

�
1− y Qn̂⊥

momentum transfer q itself has a nonzero transverse component:

seemingly simplest definition: in practice hardest to calculate!

HJHB

p⊥J = p⊥B + q⊥

qJ = kqB = P
q

(a) τCM
1

pJ

pB
p⊥J

p⊥J

τ c
1

τ c
1 to be small ⇒ 1− y ∼ λ2Restriction:

(electron momentum)



Factorization Theorem for 1-Jettiness

Start in QCD:

dσ(x, Q2)
dτ1

= Lµν(x,Q2)Wµν(x, Q2, τ1)

τ̂1|X� = τ1(X)|X�

leptonic tensor hadronic tensor

u
ud

Wµν(x,Q2, τ1) =

�
d4x eiq·x�P |q̄γµq(x)δ(τ1 − τ̂1)q̄γ

νq(0)|P �

u
ud

µ ν

x 0

τ1Measure of particles crossing the cut



Factorization Theorems for 1-Jettiness

1

σ0

dσ(x,Q2)

dτ
c
1

= H(Q2
, µ)

�
d
2
p⊥dtJdtBdkSδ

�
τ
c
1 − tJ

Q2
− tB

xQ2
− kS√

xQ

�

× Jq(tJ − (q⊥ + p⊥)
2
, µ)Bq(tB , x,p

2
⊥, µ)S(kS , µ)

1

σ0

dσ(x,Q2)

dτ
b
1

= H(Q2
, µ)

�
d
2
p⊥dtJdtBdkSδ

�
τ
b
1 − tJ

Q2
− tB

Q2
− kS

Q

�

× Jq(tJ − p2
⊥, µ)Bq(tB , x,p

2
⊥, µ)S(kS , µ)

1

σ0

dσ(x,Q2)

dτ
a
1

= H(Q2
, µ)

�
dtJdtBdkSδ

�
τ
a
1 − tJ

Q2
− tB

Q2
− kS

Q

�

× Jq(tJ , µ)Bq(tB , x, µ)S(kS , µ)



Predictions for DIS 1-jettiness
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Predictions for DIS 1-jettiness
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Ligeti, Stewart, Tackmann (2008)



Predictions for DIS 1-jettiness
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Power Correction / Hadronization 
Universality 

& 
Hadron Masses

back to e+e- V. Mateu, IS, J. Thaler  arXiv:1301.4555

Salam and Wicke;   Lee and Sterman;



Event Shapes e+ e− → jets

study power corrections 
and hadron mass effects 
in tail region, where an 
OPE is well defined

peak

tail far-tail

0.1 0.2 0.3 0.4
0

5

10

15

Τ

1
Σ0

dΣ
dΤ

Q = 91.2GeV

Dispersive approach

[Dokshitzer & Webber]

Shape Function Approach

Se(�) =

�
dp Ŝe(�− p)Fe(p)



We will concentrate on event shapes
that are not recoil sensitive,

They can be written in the dijet limit as:

y =
1

2
log

�E + pz
E − pz

�

r ≡ p⊥

m⊥

rapidity

transverse velocity

transverse mass

All event shapes can 
be expressed

in terms of these 
two variables

massless limit

�

m⊥ =
�

p2
⊥ + m2

for p⊥ ∼ ΛQCD can not neglect m

e(N) =
1
Q

�

i∈N

m⊥
i fe(ri, yi)

62

r = 1



Hadron masses and Schemes

What can be measured for a particle in the detector?

Ideally we would like energy and momentum 
separately, but this is not always possible.

If a particle is not identified, mass is not known, no 
information on magnitude of momentum.

One can assume all particles are pions [“default” scheme]

Alternatively one can use only energy and directions [E scheme]

Finally one can use only momenta and directions [P scheme]

These considerations are irrelevant in perturbation theory,
but change the function             , so they have important

consequences for power corrections!

E → |�p |

fe(r, y)



Ωe
1 =

�
dr dy fe(r, y)� 0 |Y

†
n̄Y

†
nET (r, y)YnY n̄ | 0 � = ce

�
dr ge(r)Ω1(r)

e(N) =
1

Q

�

i∈N

m⊥
i fe(ri, yi)

Mass Effects in SCET

t̂

δηδvÊT (r, y)

η(r, y)
v(r, y)

measures momenta of particles with given 
transverse velocity flowing at a given rapidity

r-dependent anomalous dimension
no mixing between various r valuesγΩ1(r) = −αsCA

π
ln(1− r2)



Boost invariance requires this 
term is y-independent

[VM, I. W. Stewart, J. Thaler]
arXiv: 1209.3781

e(N) =
1

Q

�

i∈N

m⊥
i fe(ri, yi)

Mass Effects in SCET

Operator definition of power correction

Same as for massless computation

Ωe
1 =

�
dr dy fe(r, y)� 0 |Y

†
n̄Y

†
nET (r, y)YnY n̄ | 0 � = ce

�
dr ge(r)Ω1(r)

ce =

� ∞

−∞
dy fe(1, y)

ge(r) =
1

ce

�
dy fe(r, y)

encodes all mass effects
each         defines a universality class 

of events with same power correction
ge(r)

Ω1(r) = � 0 |Y †
n̄Y

†
nET (r, 0)YnY n̄ | 0 �



Event shapes considered

Same color means same power correction

Thrust

Jet Masses

C-parameter

Angularities

2-Jettiness

mass scheme (default definition)
ge(r)

r =
p⊥

m⊥

C− parameter

Thrust

τ−1

τ−∞

Jet Masses
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1

C-parameter � Thrust



Event shapes considered

Thrust

Jet Masses

C-parameter

Angularities

2-Jettiness

Scheme changes
event shape definition

P-scheme
ge(r)

r =
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Event shapes considered

Thrust

Jet Masses

C-parameter

Angularities

2-Jettiness

Scheme changes
event shape definition

E-scheme
ge(r)

r =
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Summary

Factorization Theorems for DIS event shapes

Jet Mass at NNLL for exclusive jets from pp

•

Hadronization/Power Corrections

ΩC
1
� 3π

2
Ωτ

1

ΩHJM

1
�= 2Ωτ

1

•

agrees with data

• anomalous dimension
gives extra ln(Q) 
dependence

• framework can
also be applied
to pp and e-p

NNLL analytic jet mass computations with 
control over most of the things that 
influence this spectrum

•
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(a) Unnormalized jet mass spectrum for quark and gluon jets
at NNLL. The uncertainties are sizable even at NNLL.
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(b) Normalized jet mass spectrum for quark and gluon jets at
NNLL. Compared to Fig. 4(a), the normalization significantly
reduces the perturbative uncertainties.
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(c) Convergence of the resummed calculation for gluon jets.
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(d) Convergence of the resummed calculation for quark jets.
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(e) Individual scale variations that enter the uncertainty estimate
for gluon jets at NNLL. Shown are the variations relative to
the central NNLL curve.
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(f) Individual scale variations that enter the uncertainty estimate
for quark jets at NNLL. Shown are the variations relative to
the central NNLL curve.

FIG. 4: Perturbative uncertainties and convergence for the jet mass spectrum in gg → Hg and gq → Hq with default inputs.

There are several classes of perturbative scale uncer-
tainties, the “Fixed Order” scale variation that is cor-
related with the total cross section, the “Beam” scale
variation from varying µB and µSB that is related to the

presence of the jet veto, the “Jet” scale variation from
varying µJ and µSJ that is related to the jet mass mea-
surement, and the uncertainty from “r” that is related
to the perturbative freedom in the refactorized formula
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Backup Slides



Varying the jet radius:

geometric
measure E

radius = R 

       
to match area for
cone of radius R
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out explicitly between the terms, so the choice of this
scale is arbitrary and irrelevant. It is introduced for cod-
ing purposes, since it is convenient to have the same type
of Ln distributions as in the non-NGL part of the soft
function. When the NGLs are included in this manner,
via the soft function in the factorization, one automati-
cally resums an infinite series of global logarithms that
multiply the NGL. In particular, this includes terms that
are schematically [α2

s ln
2][

∑
k(αs ln

2)k] where the first ln2

is non-global and the second ln2 is a large global loga-
rithm. The all-order structure of this series of terms is
correctly predicted by the factorization.
For our analysis we will mostly be interested in the

normalized spectrum in Eq. (19). Here in the numerator
the two jet veto variables are in cumulant space and mJ

is in distribution space, while in the denominator all the
variables are in cumulant space. This result has two types
of NGLs

i) α2
s(µS) ln

2

(
mcut 2

J

pJTT cut

)
, (34)

ii) α2
s(µS)

2

T cut
L1

(
m2

J

pJTT cut

)
.

For the denominator the relevant form of the NGL log-
arithms is as in Eq. (32), yielding the terms i). For the
numerator the form of the NGL is as in ii). The presence
of two types of NGLs in the normalized spectrum implies
a somewhat different dependence than for the unnormal-
ized cross section. The effect of NGLs in these two cases
are analyzed in detail in Sec. IVC. There we will show
that there is indeed a fairly large range of mcut

J values
where the NGL terms in the exclusive jet cross section
are not large logarithms.

IV. RESULTS FOR GLUON AND QUARK JETS

In this section we focus on the individual quark and
gluon channels, leaving results for pp → H + 1 jet to be
discussed in Sec. V below. We first study the theoret-
ical predictions for the mJ spectrum with and without
normalization, and show that normalizing substantially
reduces the perturbative uncertainty. We also study the
order-by-order convergence of this differential cross sec-
tion, and the size of various contributions to the pertur-
bative uncertainty bands. Next, the dependence on the
jet veto T cut is studied. Finally, we investigate the size
of non-global logarithms as a function of mJ and T cut.

A. Default Parameter Choices

Unless indicated otherwise we use the following default
parameter choices for all plots in Secs. IV, V, and VI. For
the Higgs mass we take mH = 125GeV [74, 75], and for
the LHC center-of-mass energy we take Ecm = 7TeV.
We always use the MSTW NLO PDFs [76] with the

corresponding value of αs(mZ) = 0.1202 for the strong
coupling constant. As our default we use the geometric
R = 1 measure for defining the jets, T cut = 25GeV for
the jet veto, and mcut

J = 200GeV for the normalization
range. Our default hard kinematics are pJT = 300GeV,
ηJ = 0, and Y = 0. Finally, for the scale functions
µH , µB(τ), µJ(τ), and µSi(τ) defined in Sec. III C, the
central parameter values are given in App. B. There we
also discuss the combination of scale variations used for
estimating the perturbative uncertainties.

B. Normalization and Convergence

The unnormalized jet mass spectrum at NNLL with
our default inputs for the quark and gluon channels are
shown in Fig. 4(a). As one expects, the gluon jets peak
at a much higher jet mass than the quark jets. We also
see that the perturbative uncertainties are quite sizable,
even at NNLL.
Normalizing the jet mass spectrum allows one to study

its shape without contamination from the slow conver-
gence of the integrated 1-jet cross section, and also re-
duces the experimental uncertainties significantly. We
denote the normalized cross section as dσ̂/dmJ and cal-
culate it using Eq. (19) where we normalize over the range
0 ≤ mJ ≤ mcut

J .
We first study the impact of normalization on the

perturbative uncertainty. To preserve the normaliza-
tion, we simultaneously vary the scales in the numera-
tor and denominator of Eq. (19). Comparing the unnor-
malized cross section at NNLL for the gluon and quark
channels shown in Fig. 4(a) to the normalized ones in
Fig. 4(b), we observe that a substantial portion of the un-
certainty is related to the integrated cross section rather
than the shape. In the peak region of the mJ spectrum,
30GeV ≤ mJ ≤ 150GeV the normalized cross sections
have a quite reasonable remaining perturbative uncer-
tainty of # 5–10%.
A big part of the sizable uncertainty in the unnormal-

ized 1-jet cross section is due to the poor convergence of
the hard function for pp → H + 1 jet, and thus specific
to the Higgs process. By keeping the hard function as an
overall multiplicative factor as in Eq. (20), it cancels ex-
actly in the normalized cross section for a given partonic
channel and fixed phase space point (which we use for
most of our plots). This cancellation still takes place ap-
proximately for the integrated cross section summed over
partonic channels as we show below in Sec. VB. Our re-
sults with fixed kinematics are therefore representative
of results integrated over the jet phase space.
The order-by-order convergence of our resummed jet

mass calculation is displayed in Figs. 4(c) and 4(d) for
the gluon and quark jet channels, where results at LL,
NLL, and NNLL are shown. The various bands overlap
with those of lower orders, providing direct evidence that
our scale variations yield a reasonable estimate of the
higher-order perturbative uncertainties.

α2
s(µS)

pJ
T ln(m2

J/pJ
TT cut)

m2
J
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FIG. 6: Effect of non-global logarithms on the NNLL jet mass spectrum for gg → Hg for different jet veto cuts. Left panel:
Including the leading NGLs (dashed lines) has a small effect on the unnormalized spectrum, and is well within the perturbative
uncertainty for a wide range of jet veto cuts. Right panel: The effect of including the leading NGLs (black solid, dashed, and
dotted curves) on the normalized NNLL spectrum (orange band) is still within the reduced perturbative uncertainty for a wide
range of jet veto cuts, but start to become important for T cut = 10GeV.

of the same size as the reduced perturbative uncertainty
in the normalized spectrum. This justifies our assertion
that the NGLs do not have to be considered as large log-
arithms for a significant range of cut values, so that our
NNLL result is complete at this order. In the small mJ

region of the spectrum the resummation of global loga-
rithms on top of the NGL term provides an appropriate
Sudakov suppression in the the cross section. For other
mJ values, and 25GeV ≤ T cut ≤ 150GeV, the argument
of the NGL remains between 1/8 and 8, which is the
range over which we expect that the NGLs do not dom-
inate over nonlogarithmic corrections, as mentioned in
the introduction. On the other hand, for T cut = 10GeV
one observes that the NGLs become large enough that
they are no longer contained within the perturbative un-
certainty, so this value is outside the range of validity of
our normalized NNLL results (though for this value the
unnormalized results in the peak region are still valid).
For this value the argument of the NGL involving mcut

J
becomes " 13, which is outside of the range mentioned
above.
Although we have only explored the gg → Hg channel

at a fixed kinematic point in this section, we have also
checked explicitly that the same conclusions about NGLs
hold when integrating over a kinematic range, and when
considering quark jets from gq → Hq.

V. RESULTS FOR pp → H + 1 JET

In this section we show results for the pp → H + 1 jet
cross section at NNLL, summing the contributions from
the various partonic channels: gg → Hg, gq → Hq, and
the (small) qq̄ → Hg. We present results for the depen-
dence of the jet mass spectrum on the jet kinematics, on
the choice of jet definition which affects the shape of the
jets, and on the jet size R. We also compare the mJ

spectrum obtained for a fixed point in the jet kinemat-
ics to that obtained from integrating over a range of jet
momenta.

A. Dependence on Kinematics

For pp → H + 1 jet there are three nontrivial kine-
matic variables: the transverse momentum of the jet pJT ,
rapidity of the jet ηJ , and the total rapidity Y of the
combined Higgs+jet system. We show how each of these
variables affect both the unnormalized and normalized jet
mass spectrum, which allows us to separate the impact
of kinematics on the normalization and the shape.
The falloff of the PDFs at larger x values causes the

cross section to strongly decrease for increasing pJT and
for increasing |ηJ | (for Y = 0). This is shown in Figs. 7(a)
and 7(c). The dependence on pJT and ηJ in the corre-
sponding normalized spectra are shown in Figs. 7(b) and
7(d). Here we see that there is a decrease in the height of
the peak and a compensating increase in the tail height
as pJT or |ηJ | are increased. Note that for these variables
there is a marked difference between the total pp → H+1
jet process compared to the individual partonic chan-
nels (which are not shown). For each partonic channel
the peak position of the jet mass spectrum increases as
mpeak

J ∝
√
pJT and also increases with increasing |ηJ |.

However, at the same time the contribution of gq → Hq
relative to gg → Hg is enhanced, and the peak of the
jet mass spectrum is at lower values for quark jets than
for gluon jets [see Fig. 4(b)]. These two effects largely
cancel for pp → H + 1 jet, such that the peak position
is practically unchanged with increasing pJT , whereas for
increasing ηJ a small net increase in the peak position
remains.
Note that our ability to calculate the ηJ dependence

implies that it is trivial to impose rapidity cuts in our

13
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FIG. 6: Effect of non-global logarithms on the NNLL jet mass spectrum for gg → Hg for different jet veto cuts. Left panel:
Including the leading NGLs (dashed lines) has a small effect on the unnormalized spectrum, and is well within the perturbative
uncertainty for a wide range of jet veto cuts. Right panel: The effect of including the leading NGLs (black solid, dashed, and
dotted curves) on the normalized NNLL spectrum (orange band) is still within the reduced perturbative uncertainty for a wide
range of jet veto cuts, but start to become important for T cut = 10GeV.

of the same size as the reduced perturbative uncertainty
in the normalized spectrum. This justifies our assertion
that the NGLs do not have to be considered as large log-
arithms for a significant range of cut values, so that our
NNLL result is complete at this order. In the small mJ

region of the spectrum the resummation of global loga-
rithms on top of the NGL term provides an appropriate
Sudakov suppression in the the cross section. For other
mJ values, and 25GeV ≤ T cut ≤ 150GeV, the argument
of the NGL remains between 1/8 and 8, which is the
range over which we expect that the NGLs do not dom-
inate over nonlogarithmic corrections, as mentioned in
the introduction. On the other hand, for T cut = 10GeV
one observes that the NGLs become large enough that
they are no longer contained within the perturbative un-
certainty, so this value is outside the range of validity of
our normalized NNLL results (though for this value the
unnormalized results in the peak region are still valid).
For this value the argument of the NGL involving mcut

J
becomes " 13, which is outside of the range mentioned
above.
Although we have only explored the gg → Hg channel

at a fixed kinematic point in this section, we have also
checked explicitly that the same conclusions about NGLs
hold when integrating over a kinematic range, and when
considering quark jets from gq → Hq.

V. RESULTS FOR pp → H + 1 JET

In this section we show results for the pp → H + 1 jet
cross section at NNLL, summing the contributions from
the various partonic channels: gg → Hg, gq → Hq, and
the (small) qq̄ → Hg. We present results for the depen-
dence of the jet mass spectrum on the jet kinematics, on
the choice of jet definition which affects the shape of the
jets, and on the jet size R. We also compare the mJ

spectrum obtained for a fixed point in the jet kinemat-
ics to that obtained from integrating over a range of jet
momenta.

A. Dependence on Kinematics

For pp → H + 1 jet there are three nontrivial kine-
matic variables: the transverse momentum of the jet pJT ,
rapidity of the jet ηJ , and the total rapidity Y of the
combined Higgs+jet system. We show how each of these
variables affect both the unnormalized and normalized jet
mass spectrum, which allows us to separate the impact
of kinematics on the normalization and the shape.
The falloff of the PDFs at larger x values causes the

cross section to strongly decrease for increasing pJT and
for increasing |ηJ | (for Y = 0). This is shown in Figs. 7(a)
and 7(c). The dependence on pJT and ηJ in the corre-
sponding normalized spectra are shown in Figs. 7(b) and
7(d). Here we see that there is a decrease in the height of
the peak and a compensating increase in the tail height
as pJT or |ηJ | are increased. Note that for these variables
there is a marked difference between the total pp → H+1
jet process compared to the individual partonic chan-
nels (which are not shown). For each partonic channel
the peak position of the jet mass spectrum increases as
mpeak

J ∝
√
pJT and also increases with increasing |ηJ |.

However, at the same time the contribution of gq → Hq
relative to gg → Hg is enhanced, and the peak of the
jet mass spectrum is at lower values for quark jets than
for gluon jets [see Fig. 4(b)]. These two effects largely
cancel for pp → H + 1 jet, such that the peak position
is practically unchanged with increasing pJT , whereas for
increasing ηJ a small net increase in the peak position
remains.
Note that our ability to calculate the ηJ dependence

implies that it is trivial to impose rapidity cuts in our
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Figure 13: Estimation of the effect of leading non-global log resummation. Note that it affects
significantly only the peak region of the distribution.

NNLL. The ΓNGL term parameterizing the unknown leading NGL. The γNGL anomalous

dimension accounts for sub-leading NGLs, and the remaining non-global structure in the

finite part of the two-loop soft function has effects which are formally N3LL.

Without performing a two-loop calculation, the expressions for ΓNGL and γNGL are

unknown. We estimate the effect of the missing terms by varying ΓNGL between ±100,

since 100 ∼ 4CFΓ1 ∼ 8π2

3 CFCA. The result of performing such a variation is shown in

Figure 13. The band in this plot shows a reasonable expectation of the improvement one

could expect if the leading non-global logarithm could be resummed. We see that the NGL

only affects significantly the distribution in the peak region.

8. Conclusions

In this paper we have calculated the distribution of jet mass at a hadron collider, for events

in which the jet recoils against a hard photon. Our calculation includes resummation at

the next-to-leading logarithmic level (NLL) which involves both final state radiation of the

jet and initial state radiation of the colliding partons. We also have included resummation

of all the global logarithmic terms at next-to-next-to-leading logarithmic level producing a

distribution we label NNLLp (“p” for partial, since the non-global logarithmic terms have

not been resummed). Our approach is based on expanding around the threshold limit,

where the photon has very large momentum. By demanding the photon be hard, we force

the hadronic final state to be that of a single jet for which a simple factorization formula

exists. Our result is differential in the jet and photon rapidities and transverse momenta,

although we assume the photon and jet have equal and opposite transverse momenta, which

is true at leading power.

We have compared our theoretical calculation to the output from pythia, and find

very good agreement. Although pythia is only formally accurate to the leading-logarithmic

level, it has elements of subleading logarithms, and is expected to be in good agreement

with collider data. Since we are able to include color coherence effects, from initial state

radiation, as well as subleading logarithms, our calculation is more precise than pythia,

as far as perturbative QCD is concerned. Since pythia also includes hadronization it is
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Figure 1: Comparison between different approximations to the resummed exponent: jet functions
(blue), with full resummation of the global contribution (green) and with non-global logarithms as
well (red). The jet radius is R = 0.6.

properly treated. Finally, in the red curve we also take into account the resummation of

non-global logarithms as described by Eq. (4.9). The first, O(α2
s), coefficient on the non-

global contribution is computed exactly, while the subsequent resummation is performed

using a numerical dipole-evolution code in the large-Nc limit. We note that the inclusion

of O(R2) terms in the resummed exponent as well as non-global logarithms, noticeably

corrects the simple jet-function picture, based on collinear evolution. The peak height is

reduced by more than 30% for R = 0.6 and it is nearly halved for R = 1.0. The effect

of non-global logarithms is reduced in the latter case, but the O(R2) corrections to the

jet-function approximation become bigger.
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Ce
1(�, r, µ) for Ω1(r, µ). The formula in Eq. (16) becomes

Fe(�) = δ(�) +

�
dr Ce

1(�, r, µ) ce ge(r)Ω1(r, µ)

+O

�Λ2
QCD

�3

�
. (68)

As usual the µ dependence of Ce
1(�, r, µ) cancels that of

Ω1(r, µ). The dependence of Ce
1(�, r, µ) on � and µ will

determine the appropriate scale µ where there are no
large logarithms in this Wilson coefficient. This in turn
will determine the appropriate perturbative scale µ for
the endpoint of the evolution derived in Eq. (64). Since
the � dependence is treated differently by event shape
distributions and by their first moments, a different scale
µ will be found for these two observables.

Taking Eq. (63) together with the cancellation of the
µ dependence implies

µ
d

dµ
Ce

1(�, r, µ) =
CAαs(µ)

π
ln(1−r2)Ce

1(�, r, µ) . (69)

At order αs using Eq. (16) this becomes

µ
d

dµ
Ce

1(�, r, µ) = − CAαs(µ)

π
ln(1−r2) δ�(�). (70)

Note that Ce
1(�, r, µ) must have mass dimension −2. At

O(αs) the simplest potential solution has the dependence
ln(µ/κ)δ�(�), but by dimensional analysis the only pos-
sibility for κ is � which leads to a singular result. The
correct solution is

Ce
1(�, r, µ) = − δ �(�) +

CAαs(µ)

π
ln(1−r2)

d

d�

�
1

µ

�µ
�

�

+

�

+
αs(µ)

π
δ �(�) de1(r) +O(α2

s) , (71)

which can be deduced since the derivative of the plus
function has the right dimension and has the required
logarithmic scale dependence

µ
d

dµ

d

d�

1

µ

�µ
�

�

+
= − δ �(�) . (72)

In this way, the plus function term in the Wilson coeffi-
cient exactly compensates for the first order αs(µ) ln(µ)
dependence in Ω1(r, µ). Note that

d

d�

1

µ

�µ
�

�

+
= − 1

µ2

�µ2

�2

�

++
+

1

µ
δ(�) , (73)

where the ++-distribution induces two subtractions
about � = 0 and is defined so that its zeroth and first
moments integrate to zero for the limits �/µ ∈ [0, 1].

The function de1(r) in Eq. (71) is also a perturbatively
computable contribution to the Wilson coefficient. The
matching calculation for this term involves considering
the difference between renormalized Feynman diagrams
for the full theory soft function matrix element

Se(�) = � 0 |Y †
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and for the low-energy matrix elements describing
Ω1(r, µ). A complete one-loop calculation of de1(r) is be-
yond the scope of our work. In App. D we carry out this
matching procedure for thrust in order to directly derive
the term that involves the derivative of the plus-function
shown in Eq. (71). Many of the complications required
to derive de1(r) do not enter for this term.
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