Calculating amplitudes in the multi-Regge regime of strongly coupled $\mathcal{N} = 4$ SYM

Martin Sprenger

DESY Theory Workshop 2013

based on 1207.4204 and 1310.xxxx with J. Bartels and V. Schomerus

Particles, Strings, and the Early Universe Collaborative Research Center SEB 676

- planar $\mathcal{N} = 4$ integrable \leftrightarrow can compute observables for any coupling
- **•** scattering amplitudes particularly interesting \rightarrow techniques for less symmetric theories
- **•** enormous progress on weak coupling side
- how do amplitudes behave at strong coupling?
	- interpolation to intermediate coupling
	- regime inaccessible (analytically) for QCD

Scattering Amplitudes via AdS/CFT

[Alday/Maldacena, A/M/Gaiotto, A/M/Sever/Vieira]

\n- $$
A \sim e^{-\frac{\sqrt{\lambda}}{2\pi} \text{Area}}
$$
\n- $k_i = x_{i-1} - x_i$
\n- \rightarrow polygon depends only on $u = \frac{x_i^2 x_{kj}^2}{x_{ik}^2 x_{jl}^2}$
\n- $Y_{a,s}(\theta)$ generalised cross ratios
\n

 \rightarrow for n gluons: 3n – 15 Y-functions

[Figure from 1002.2459]

$$
\log Y_{a,s}(\theta) = -m_s \cosh \theta \pm C_s
$$

+
$$
\sum_{a',s'} \int d\theta' K_{s,s'}^{a,a'} (\theta - \theta' + i\varphi_s - i\varphi_{s'}) \log (1 + Y_{a',s'}(\theta'))
$$

Scattering Amplitudes via AdS/CFT

[Alday/Maldacena, A/M/Gaiotto, A/M/Sever/Vieira]

\n- $$
A \sim e^{-\frac{\sqrt{\lambda}}{2\pi} \text{Area}}
$$
\n- $k_i = x_{i-1} - x_i$
\n- \rightarrow polygon depends only on $u = \frac{x_i^2 x_{ki}^2}{x_{ik}^2 x_{jl}^2}$
\n- $Y_{a,s}(\theta)$ generalised cross ratios
\n

 \rightarrow for n gluons: 3n – 15 Y-functions

[Figure from 1002.2459]

$$
\log Y_{a,s}(\theta) = -\frac{m_s}{\log \cosh \theta} \pm \frac{C_s}{C_s} + \sum_{a',s'} \int d\theta' K_{s,s'}^{a,a'} \left(\theta - \theta' + \frac{i\varphi_s - i\varphi_{s'}}{i\varphi_s - i\varphi_{s'}}\right) \log \left(1 + Y_{a',s'}(\theta')\right)
$$

Scattering Amplitudes via AdS/CFT

[Alday/Maldacena, A/M/Gaiotto, A/M/Sever/Vieira]

\n- $$
A \sim e^{-\frac{\sqrt{\lambda}}{2\pi} \text{Area}}
$$
\n- $k_i = x_{i-1} - x_i$
\n- \rightarrow polygon depends only on $u = \frac{x_{ij}^2 x_{kl}^2}{x_{ik}^2 x_{jl}^2}$
\n- $Y_{a,s}(\theta)$ generalised cross ratios
\n

 \rightarrow for n gluons: 3n – 15 Y-functions

[Figure from 1002.2459]

$$
\log Y_{a,s}(\theta) = -\frac{m_s \cosh \theta \pm C_s}{\sum_{a',s'} \int d\theta' \frac{K_{s,s'}^{a,a'}}{K_{s,s'}^{a,a'}} \left(\theta - \theta' + i\varphi_s - i\varphi_{s'}\right) \log \left(1 + Y_{a',s'}(\theta')\right)}
$$

Area = A_{div} (x_i) + A_{periods} (m_s,
$$
\varphi_s
$$
) + $\Delta(u_i)$
+ $\sum_{s} \int \frac{d\theta}{2\pi} |m_s| \cosh \theta \log \left[(1 + Y_{1,s}) (1 + Y_{3,s}) (1 + Y_{2,s})^{\sqrt{2}} \right] (\theta)$

- non-divergent piece: remainder function $e^{-\frac{\sqrt{\lambda}}{2\pi}R}$
- Y-system easy to solve numerically
- BUT: not solvable analytically for arbitrary kinematics! \bullet

Multi-Regge Limit

 \bullet for 2 → n – 2 scattering: 3n – 10 Mandelstam invariants

• Multi-Regge limit: rapidities of produced particles strongly ordered

 \rightarrow Regge limit in all subchannels $s \gg s_i \gg -t_i$

 \bullet N = 4 dual conformal \rightarrow choose 3n – 15 cross ratios u_{as}

• kinematical analysis:

 $u_{1s} \to 1$, u_{2s} , $u_{3s} \to 0$ with $\tilde{u}_{2s} = \frac{u_{2s}}{1-u_{1s}} = \mathcal{O}(1)$, $\tilde{u}_{3s} = \frac{u_{3s}}{1-u_{1s}} = \mathcal{O}(1)$

[1207.4204]

$$
\bullet \ \ u_{as} = \left. \frac{Y_{2s}}{1+Y_{2s}} \right|_{\theta=i(k\pi/4-\varphi_s)}
$$

- \bullet demand that cross ratios show behaviour predicted by MRL
- MRL corresponds to choice m_s large, $\varphi_s \to -(s-1)\frac{\pi}{4}$, $C_s \to \text{const.}$ \bullet
- in this limit, integrals in Y-system can be neglected

$$
\log Y_{a,s}\left(\theta\right)\cong -m_{s}\cosh\theta\pm\mathcal{C}_{s}+\mathcal{O}(e^{-m})
$$

 \bullet in this limit, R trivial

Multi-Regge regions

- 2^{n-4} regions, corresponding to the signs of $k_i^0 = E_i$
- different regions connected by analytic continuation in $s_i \rightarrow s_i e^{i\alpha}$

o for the above example: $s_{34} \rightarrow e^{i\pi} s_{34}$ $s_{56} \rightarrow e^{i\pi} s_{56}$, $s_{345} \rightarrow e^{i\pi} s_{345}$, $s_{456} \rightarrow e^{i\pi} s_{456}$ $\Rightarrow u_1 \rightarrow e^{-2\pi i}u_1$, $u_2 \rightarrow u_2$, $u_3 \rightarrow u_3$

Multi-Regge regions in the Y-system

- **•** continuation in u_{as} ∼ continuation in m, C, φ
- (numerical) inversion of $u_{as} = \frac{Y_{2s}}{1+Y_{2s}}\Big|_{\theta=i(k\pi/4-\varphi_s)}$ to find paths for parameters
- solutions of $Y_{as}(\theta) = -1$ can cross real axis

$$
\log Y_{a,s}(\theta) = -m_s \cosh \theta \pm C_s
$$

+
$$
\sum_{a',s'} \int d\theta' K_{s,s'}^{a,a'}(\theta - \theta' + i\varphi_s - i\varphi_{s'}) \log (1 + Y_{a',s'}(\theta'))
$$

 \bullet crossing leads to contributions to R

$$
R' = \int \frac{d\theta}{2\pi} |m_s| \cosh \theta \log [(1 + Y_{a,s}(\theta))] \pm i |m_s| \sinh (\theta_0) + \ldots
$$

Multi-Regge regions in the Y-system

- **•** continuation in u_{as} ∼ continuation in m, C, φ
- (numerical) inversion of $u_{as} = \frac{Y_{2s}}{1+Y_{2s}}\Big|_{\theta=i(k\pi/4-\varphi_s)}$ to find paths for parameters
- solutions of $Y_{as}(\theta) = -1$ can cross real axis

$$
\log Y_{a,s}(\theta) = -m_s \cosh \theta \pm C_s + \sum \log S_{s,s'}^{a,a'}(\theta - \theta_0 + i\varphi_s - i\varphi_{s'})
$$

$$
+ \sum_{a',s'} \int d\theta' K_{s,s'}^{a,a'}(\theta - \theta' + i\varphi_s - i\varphi_{s'}) \log (1 + Y_{a',s'}(\theta'))
$$

 \bullet crossing leads to contributions to R

$$
R' = \int \frac{d\theta}{2\pi} |m_s| \cosh \theta \log [(1 + Y_{a,s}(\theta))] \pm i |m_s| \sinh (\theta_0) + \ldots
$$

Multi-Regge regions in the Y-system

- **•** continuation in u_{as} ∼ continuation in m, C, φ
- (numerical) inversion of $u_{as} = \frac{Y_{2s}}{1+Y_{2s}}\Big|_{\theta=i(k\pi/4-\varphi_s)}$ to find paths for parameters
- solutions of $Y_{as}(\theta) = -1$ can cross real axis

$$
\log Y_{a,s}(\theta) = -m_s \cosh \theta \pm C_s + \sum \log S_{s,s'}^{a,a'}(\theta - \theta_0 + i\varphi_s - i\varphi_{s'})
$$

 \bullet crossing leads to contributions to R

$$
R' = \int \frac{d\theta}{2\pi} |m_s| \cosh \theta \log [(1 + Y_{a,s}(\theta))] \pm i |m_s| \sinh (\theta_0) + \ldots
$$

Example: 6-point case

[Bartels/Kotanski/Schomerus]

Solutions of $Y_3(\theta) = -1$ along continuation

Remainder function has Regge behaviour: \bullet

$$
e^{-\frac{\sqrt{\lambda}}{2\pi}R_6}\sim \left((1-u_1)\sqrt{\tilde{u}_2\tilde{u}_3}\right)^{\frac{\sqrt{\lambda}}{2\pi}e_2}
$$

•
$$
e_2 = -\sqrt{2} + \frac{1}{2} \text{log} (3 + 2\sqrt{2}) < 0
$$

 $[1310.xxxx]$

strong coupling results consistent with weak coupling LLA identities! \bullet

- studied scattering amplitudes in strongly coupled $\mathcal{N} = 4$ SYM
- **•** showed that Y-system equations simplify in MRL
- calculated 6-point and 7-point remainder function for specific continuations \rightarrow confirmed weak coupling LLA prediction

next steps:

- **•** remaining 7-point continuations
- weak coupling: new contribution for 8-point case
- make contact with weak coupling results

