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Plan

String theories as coset sigma models

Permutation cosets and WZ term

AdS3 theory with a mixed flux
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Supercoset sigma models can be used to describe a Superstring in an AdS background

COSETSSYMMETRICSEMI-

Ω :
G

H0
→ G

H0
Under which      elements are invarianth0

SYMMETRIC

supersymmetric case
Ω is Z4 symm Ω4 = Id

[hn, hm] ⊂ hm+n,mod4

h′ = h1 ⊕ h2 ⊕ h3
h0, h2 bosonic
h1, h3 fermionic
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Why is it useful to describe superstring with a coset sigma 
model? 

Z4 Coset sigma models possess the property to be INTEGRABLE

Classical Integrability Flat Lax connection
dL + LL = 0

To describe a string theory the sigma model has to be 
CONFORMAL 

zero beta function
good cosets classified by K.Zarembo in 2009

Bena,Polchinski,Roiban’03
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Two objects in string theory:
•Closed strings       
•branes                           RR fluxes

NSNS flux

Not all the backgrounds admit both type of fluxes,
but AdS3 backgraunds do!

AdS3 ×M7

GS superstring with RR and NSNS Fluxes

Supercoset sigma model + WZ term
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+ WZ

Z4 forbidden

Ω(Jn) = inJn

Semi-symmetric      superspace, invariant under    automorphism ΩG
H0

S =
1
2

∫

M
Str (J2 ∧ ∗J2 + J1 ∧ J3)

[Tn, Tm} = Tm+n,mod4

bosonic coset
Hull, Spence ’89

Witten ‘92 



Permutation Supercoset

+ WZ

G×G

GB
Ω =

(
0 id

(−1)F 0

)
.

Ω(Jn) = inJn

Semi-symmetric      superspace, invariant under    automorphism ΩG
H0

S =
1
2

∫

M
Str (J2 ∧ ∗J2 + J1 ∧ J3)

[Tn, Tm} = Tm+n,mod4

Babichenko, Stefanski and Zarembo



Permutation Supercoset

+ WZ

G×G

GB
Ω =

(
0 id

(−1)F 0

)
.

Ω(Jn) = inJn

Semi-symmetric      superspace, invariant under    automorphism ΩG
H0

S =
1
2

∫

M
Str (J2 ∧ ∗J2 + J1 ∧ J3)

[Tn, Tm} = Tm+n,mod4

RightLeft

Babichenko, Stefanski and Zarembo



Permutation Supercoset

+ WZ

G = PSU(1, 1|2)
AdS3 × S3 × T 4

G = D(2, 1;α)
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S =
1
2

∫

M
Str (J2 ∧ ∗J2 + κJ1 ∧ J3)

+χ

∫

B

(
2
3

J2 ∧ J2 ∧ J2 + J1 ∧ J3 ∧ J2 + J3 ∧ J1 ∧ J2

)Introduced because of integrability,
Kappa symmetry and conformality.

D ∗ J2 − κ J1 ∧ J1 + κ J3 ∧ J3 − 2χJ2 ∧ J2 − χJ1 ∧ J3 − χJ3 ∧ J1 = 0
(κJ1 + ∗J1) ∧ J2 + J2 ∧ (κJ1 + ∗J1) + χ (J2 ∧ J3 + J3 ∧ J2) = 0
(κJ3 − ∗J3) ∧ J2 + J2 ∧ (κJ3 − ∗J3) + χ (J2 ∧ J1 + J1 ∧ J2) = 0

Equations of motion

+ Maurer-Cartan equations

to find flat Lax Connection

dL + LL = 0

A.C., K.Zarembo
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Conclusions

S-matrix with deformation: proposal by Tsytlin and Hoare.
Direct string worldsheet calculation by Wulff and Sundin
To study the case                      could provide a link between integrability technique and CFT 
worldsheet methods.
Study of the finite gap equation to understand how to modify the receipt in absence of Z4 
symmetry 
Integrability of the full theory: non supersymmetric and MASSLESS MODES in the light cone 
gauge.

χ = 1 κ = 0

We have built the WZ term for a particular class of cosets, the Permutation cosets in order to 
Study superstring theory on            backgrounds, supported by both  type of fluxes RR and 
NSNS.
We have shown that this does not spoil Integrability, Kappa Symmetry and Conformality, 
though we have to introduce a relation between the coupling constants of the theory.
We have computed the BMN spectrum for the theory.

AdS3



Thank
you



We want to see if the theory is conformal.
Let’s expand the action around a classical background

ḡL,R ∈ GB

J̄L,R = A±K

Grading zero     Grading two

F + K ∧K = 0
DK = 0,

MC

EoM

D ∗K − 2χK ∧K = 0

dA + A ∧A

gL,R = ḡL,R e XL,R
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We want to see if the theory is conformal.
Let’s expand the action around a classical background

ḡL,R ∈ GB

J̄L,R = A±K

Grading zero     Grading two

F + K ∧K = 0
DK = 0,

MC

EoM

D ∗K − 2χK ∧K = 0

dA + A ∧A

gL,R = ḡL,R e XL,R

Fluctuation fields

J = J̄ +
1− e− ad X

adX
DX = J̄ +DX − 1

2
[X,DX] + . . .

DX = dX + [J̄ , X]
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=
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has solutions if:
1− κ2 − χ2 = 0
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FROM INTEGRABILITY 

AND KAPPA-SYMMETRY
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∫
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Hermitian Dirac Operator
I = (1, 3)
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AND KAPPA-SYMMETRY

S(2)
F =

1
2

∫
StrXI (D + σ1 adK∧)IJ (∗ − κσ3 − χσ1)

JL adK XL

Kappa-symmetry
A consistent WZW has not to spoil the Kappa-symmetry, so we expect that its introduction do not 

affect the rank of the Kappa-symmetry. 

rankκ = dimker adK+|h1
+ dim ker adK−|h3

[
K±, ε±

]
= 0 δXI = C±I ε±

δS(2)
F =

∫
StrX (D + σ1 adK∧) (±1− κσ3 − χσ1) C± adK ε±

(±1− κσ3 − χσ1) C± = 0

Hermitian Dirac Operator
I = (1, 3)



BMN limit
Background: point-like string moving along a light-like geodesic 

ḡL,R = ei(D+J)τ

Dilaton generator            Rotation generator           Worldsheet time

A = 0, K = i(D + J)dτ

S(2)
B =

1
2

∫
Str

{
Dχ∗KX2 ∧ ∗Dχ∗KX2 −

(
1− χ2

)
[K, X2] ∧ ∗ [K, X2]

}

M2
B = −κ2(adK)2

Without WZW: Babichenko, Stefanski and 
Zarembo

e−
i
2 sσ2

cos s = κ sin s = χ
After a rotation

S(2)
F =

1
4

∫
StrX {−∂+(1− σ3) + ∂−(1 + σ3) + 2(χ− iκσ2) adK} [K, X].

Field redefinition

X → e iχ(D+J)σX e−iχ(D+J)σ

MF = iκadK


