
Supersymmetric dualities and partition functions

Shlomo S. Razamat

IAS

Based on work with:

O. Aharony, A. Gadde, D. Gaiotto, L. Rastelli, N. Seiberg, B. Willett, M. Yamazaki, W. Yan

September 25, 2013 – DESY

September 25, 2013 - DESY

. . . . . .



. . . . . .

Dualities

Dualities in QFT: different looking descriptions of the same physics.

IR dualities: different UV descriptions flowing in the IR to the same fixed point.

I 4d IR (Seiberg) dualities:

SU(Nc )Nf
←→ SU(Nf − Nc )Nf

+W1

USp(2Nc)Nf
←→ USp(2(Nf − Nc − 2))Nf

+W3

I 3d IR (Aharony,Giveon-Kutasov,. . . ) dualities:

U(Nc)Nf
←→ U(Nf − Nc)Nf

+W ′
1

USp(2Nc )Nf
←→ USp(2(Nf − Nc − 1))Nf

+W ′
3

Conformal dualities: Equivalence of different-looking conformal field theories.

I 4d N = 2 Gaiotto dualities: theories obtained by compactifying 6d (2, 0) theory
down to four dimensions. (N = 4 SYM, τ ↔ − 1

τ
)
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Partition functions

In recent years there has been a lot of progress in computing exactly certain partition
functions for supersymmetric field theories in various dimensions.

I 2d: S2, T 2

I 3d: S2 × S1, S3/Zr

I 4d: S4, S3/Zr × S1

I ...

The supersymmetric partition functions usually are used for two main purposes:

I Exact checks of dualities – the computation is quite different in the different
descriptions but the result should be the same.

I Learn something new about the properties of the theories.
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Outline

Our goal today will be:

I Checking 4d N = 1 Seiberg dualities with S3/Zr × S1 partition functions.

I Deducing properties of the S3/Zr × S1 partition functions for 4d N = 2 theories
with no known Lagrangian.

I Relations between physics and partition functions in 4d and 3d .

(dualities↔partition functions) September 25, 2013 - DESY 4 / 23



. . . . . .

Basics of the S3/Zr × S1 partition function
The S3/Zr × S1 partition function of an N = 1 theory is given by the trace formula
(Benini-Nishioka-Yamazaki 11)

I(p, q, · · · ) = TrS3/Zr
(−1)F pj1+j2− R

2 qj1−j2− R
2 e−β{Q,Q†} · · · .

Here S3/Zr is given by

S3/Zr =
(
z1, z2; |z1|2 + |z2|2 = 1

)
, (z1, z2) ∼ (e

2πi
r z1, e

− 2πi
r z2) .

j1 ± j2 are rotations of z1,2, and R is the U(1)R R-symmetry charge. The partition
function is independent of β.

Useful special cases:

I r = 1: the supersymmetric index, S3 × S1.

I Sending r →∞ one obtains the S2 × S1 of the dimensionally reduced theory.∗

I Sending the radius of S1 to zero one obtains an S3/Zr partition function of a
dimensionally reduced theory.∗
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Partition function of a gauge theory

The space S3/Zr × S1 contains two non-contractable cycles for r > 1.

The partition function of a gauge theory with gauge group G localizes to flat connections
and is given by a formal sum over two gauge holonomies around the two cycles

I =
∑
g, h

I(g , h) .

The holonomies have to satisfy

g r = 1 ∈ G, g h g−1 h−1 = 1 ∈ G

Up to simultaneous conjugation by an element of G this gives a discrete sum over g and,
in general, an integral in h.

I =
∑
g

1

|Wg |

∮
[dh]∆g (h) I(G)

V (h, g)

Nχ∏
ℓ=1

I(Rℓ,(Rℓ,R̂ℓ))
χ (h, g , u) .

(dualities↔partition functions) September 25, 2013 - DESY 6 / 23
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Partition function of a gauge theory (cont.)

If G is not simply-connected let g̃ and h̃ be (a choice) of the lifts to the covering group G̃.
(G = G̃/Γ)

Then we have

g̃ r = µ ∈ Γ, g̃ h̃ g̃−1 h̃−1 = ν ∈ Γ .

The computation of the partition function can be thus organized as a sum over different
bundles labeled by (µ, ν),

IGc =
1

|Γ|
∑
µ,ν

e i c(µ,ν) Zµ,ν .

Here we leave open the possibility that different bundles are weighed differently.

In general the partition function on S3/Zr × S1 for r > 1 might be sensitive to the global
structure of the gauge group.
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Example of a check: so(N) Seiberg dualities

Seiberg duality for theories with so(N) Lie algebras:

so(N) theory with Nf vector flavors Q and W = 0 is dual to

so(Nf − N + 4) theory with Nf vectors Q̃, Nf (Nf +1)
2

singlets M, and W = Q̃MQ̃.

Numerous checks of these dualities exist.

In particular the S3 × S1 partition function match quite non-trivially
(Romelsberger 07, Dolan-Osborn 08, see also Spiridonov-Vartanov)

However these r = 1 checks do not distinguish between Spin and SO.
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Example of a check II: r = 2 (SR-Willett 13)

The different so(7) Nf = 8 (no mesons) sectors (Zµ,ν) contribute as follows (p = q = x)

ν/µ 1 −1

1 2 + 72x
3
4 + 1332x

3
2 − 127x2+ 1 + 36x

3
4 + 666x

3
2 + 56x

15
8 − 62x2+

+16872x
9
4 +16x

21
8 − 4300x

11
4 + . . . +8436x

9
4 +1800x

21
8 − 2096x

11
4 + . . .

−1 x2 + 36x
11
4 + · · · 1 + 36x

3
4 + 666x

3
2 − 56x

15
8 − 64x2+

+8436x
9
4−1800x

21
8 − 2168x

11
4 + . . .

The different so(5) Nf = 8 (with mesons) sectors (Ẑµ,ν) contribute as follows

ν/µ 1 −1

1 2 + 72x
3
4 + 1332x

3
2 − 127x2+ 1 + 36x

3
4 + 666x

3
2 + 56x

15
8 − 62x2+

+16872x
9
4 +8x

21
8 − 4300x

11
4 + . . . +8436x

9
4 +1808x

21
8 − 2096x

11
4 + . . .

−1 x2−8x
21
8 + 36x

11
4 + · · · 1 + 36x

3
4 + 666x

3
2 − 56x

15
8 − 64x2+

+8436x
9
4−1792x

21
8 − 2168x

11
4 + . . .

The different dualities are:

Spin(7)8 ↔ SO−(5)8 : 2Z1,1 = Ẑ1,1 + Ẑ−1,1 + Ẑ−1,−1−Ẑ1,−1 ,

Spin(5)8 ↔ SO−(7)8 : 2Ẑ1,1 = Z1,1 + Z−1,1 + Z−1,−1−Z1,−1 ,

SO+(7)8 ↔ SO+(5)8 : Z1,1 + Z−1,1 + Z−1,−1+Z1,−1 =

Ẑ1,1 + Ẑ−1,1 + Ẑ−1,−1+Ẑ1,−1 .
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Exploring spaces of theories: N = 2 theories of class S
(Gaiotto, Gaiotto-Moore-Neitzke)

N = 2 4d theories T [C] labeled by punctured Riemann surface C.

T [C] defined as the IR limit of the AN−1 (2, 0) theory on R4 × C, where C is a Riemann
surface with punctures.

∣∣∣ 4d theory T [C] 2d Riemann surface C
∣∣∣∣∣∣ Marginal gauge couplings Complex moduli of C
∣∣∣∣∣∣Flavor-symmetry factor G ⊂ SU(N) Puncture
∣∣∣∣∣∣ Gauging Gluing
∣∣∣∣∣∣ SU(N) gauge group Cylinder
∣∣∣∣∣∣ Weakly-coupled frame Pair-of-pant decomposition of C
∣∣∣∣∣∣ Different S-duality frames Different decompositions of C
∣∣∣
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. . . . . .

Analytic properties and difference operators

The S3/Zr × S1 partition function of theories of class S is a function depending on three
superconformal fugacities (p, q, t) and on the holonomies for the global symmetries
associated with the punctures.

I(C)p,q,t; r ({hℓ, gℓ}sℓ=1) .

Most of the theories of class S are strongly-coupled and these partition functions can not
be directly computed.∗

However, exploring analytical properties of these functions utilizing the S-dualities
interconnecting the underlying theories one can deduce that there exist commuting

difference operators D(m)
p,q,t;N; r (h, g) which have the property

D(m)
p,q,t;N; r (hi , gi ) · I

(C)
p,q,t; r ({hℓ, gℓ}sℓ=1) = D

(m)
p,q,t;N; r (hj , gj ) · I

(C)
p,q,t; r ({hℓ, gℓ}sℓ=1) .

These difference operators can be explicitly computed and are interpreted as introducing
surface defects into the computation of the partition function.
(Gaiotto-Rastelli-SR 12, SR-Yamazaki 13, see also Gadde-Gukov 13)
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Eigenfunctions of the difference operators
Using this property, given a set of orthonormal (under the integral measure obtained by
gauging global symmetries) eigenfunctions

D(m)
p,q,t;N; r (h, g) · ψλ(h, g) = E(m)(p, q, t;N; r) ψλ(h, g) ,

one can write the S3/Zr × S1 partition function of theories of class S with maximal
punctures as

I(C)p,q,t; r ({hℓ, gℓ}sℓ=1) =
∑
λ

C2g−2+s
λ

s∏
ℓ=1

ψλ(hℓ, gℓ)

This can be made very explicit in certain cases. E.g.,

I r = 1 the operators are elliptic Ruijsenaars-Schneider Hamiltonians.∗

I Taking (r = 1) p = 0 the eigenfunctions are proportional to (symmetric) Macdonald
polynomials.
((Gadde-Rastelli-SR-Yan 11, Gaiotto-Rastelli-SR 12), Alday-Bullimore-Fluder 13, SR-Yamazaki 13)

∗ In fact, the dualities interrelating the theories can be further exploited to solve for the
spectrum of the difference operators. (SR 13)
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What does this mean?

Assuming certain dualities one derives an exact formula for the partition functions of a
large class of theories: some admitting weakly-coupled descriptions but most not.

The Lagrangian, whether known or not, is not directly visible in the above expression of
the partition function.

Is there a physical computation which directly gives the expression of the partition
function of the previous slide?

What is the physical, 4d , meaning of the eigenfunctions?
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Example of a difference operator

Let us write an explicit example of a difference operator.

The following is a particular operator in the A1 case with r > 1,

Dp,q,t; 2; r (h, g = e
2πim

r ) f (h, g) =

θ(q2m t
pq

h−2; qr )θ(p2m pq
t
h2; pr )

θ(q2mh−2; qr )θ(p2mh2; pr )
f ((pq)−

1
2 h, g) +

θ(q2m pq
t
h−2; qr )θ(p2m t

pq
h2; pr )

θ(q2mh−2; qr )θ(p2mh2; pr )
f ((pq)

1
2 h, g) +

(p q

t

) 2+4m−r
r θ(q2m pq

t
h−2; qr )θ(p2m pq

t
h2; pr )

θ(q2mh−2; qr )θ(p2mh2; pr )
f ((p/q)

1
2 h, e

2πi
r g) +

(p q

t

) 2−4m+r
r

θ(q2m t
pq

h−2; qr )θ(p2m t
pq

h2; pr )

θ(q2mh−2; qr )θ(p2mh2; pr )
f ((q/p)

1
2 h, e−

2πi
r g) .
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From 4d to 3d : generalities

Given a duality in 4d can we deduce an analogous duality in 3d?

For IR dualities such a deduction is not completely straightforward: the two limits, small
compactification radius and focusing on small energies, do not in general commute.

What happens in general∗ is that a careful dimensional reduction of a 4d duality produces
a 3d duality between theories with same matter content and gauge interactions as in 4d
but with additional superpotentials.

Given such a duality in 3d one can can try and get rid of the superpotentials at least on
one side of the duality by playing 3d games: e.g. turning on real masses, gauging
topological symmetries.

Following these steps many of the known 3d dualities can be explicitly derived from 4d ,
and moreover new dualities can be deduced. (Aharony-SR-Seiberg-Willett 13×2)
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From 4d to 3d : partition functions

Reducing dualities from 4d to 3d can be mimicked at the level of the partition functions.

For example, the partition function on S3 × S1 when the radius of S1 is taken to zero
reduces to the S3 partition function of a theory with same matter content and gauge
interactions. (Unless the reduction diverges) (Dolan-Spiridonov-Vartanov, Gadde-Yan, Imamura 11)

In 4d some of the symmetries are anomalous and we are not allowed to refine the
partition functions with parameters corresponding to these symmetries: thus these
parameters are also absent in the reduction.

In 3d what breaks these symmetries are not anomalies but the additional superpotentials
one generates in the dimensional reduction. (For the partition functions at hand the only
effect of a superpotential is to restrict the allowed symmetries.)

Turning on real masses and gauging topological symmetries can be also directly
implemented at the level of 3d partition functions (Dolan-Spiridonov-Vartanov 11, Niarchos 12,

Aharony-SR-Seiberg-Willett 13, Park-Park 13, see also Benini-Closset-Cremonesi 11)
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From 4d index to 3d partition functions on S3

Let us consider the S3 × S1 partition function of a free chiral field.

Taking into account the twists coming from the fugacities this partition function can be
thought of as a partition function on S3

b × S̃1. (Imamura and Yokoyama)

For a chiral field reducing on S̃1 one can write thus the 4d partition function as a product
over S3

b partition functions of the KK modes,

I(4d)(p, q; u) ∝
∞∏

n=−∞
Z(3d)(ω1, ω2; m +

n

r̃
)

This product should be properly regularized and the 4d partition function appropriately
normalized so that the above becomes an exact equality,

eI0 Γe(e
2πimr̃ ; e2πiω1 r̃ , e2πiω2 r̃ ) =

e−∆
∞∏

n=−∞
e
−sign(n) πi

2ω1ω2

(
(m+ n

r̃
−ω)2−

ω2
1+ω2

2
12

)
Γh(m +

n

r̃
;ω1, ω2) .

(This equality is mathematically precisely the SL(3,Z) property of elliptic Gamma
functions.)

Sending the radius r̃ to zero only the zero mass KK mode survives and we get that the 4d
S3 × S1 partition function of a chiral reduces to the 3d S3

b partition function.

(dualities↔partition functions) September 25, 2013 - DESY 17 / 23



. . . . . .

Example I: reducing USp Seiberg duality to 3d

Consider 4d Seiberg duality USp(2Nc)Nf
←→ USp(2(Nf − Nc − 2))Nf

.

Start with Nf + 1 flavors and dimensionally reduce to obtain a duality in 3d with an
additional superpotential.

Turn on a real mass for the extra flavor. Following carefully the duality in presence of the
real mass the origins of the moduli space on the two sides of the duality map to each
other and the superpotential on one side of the duality is removed. The duality we obtain
is thus USp(2Nc)Nf

←→ USp(2(Nf − Nc − 1))Nf
.
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. . . . . .

Example II: reducing SU Seiberg dualities to 3d

Consider now Seiberg duality SU(Nc )Nf
←→ SU(Nf − Nc)Nf

.

Start with Nf + 1 flavors and dimensionally reduce to obtain a duality in 3d with an
additional superpotential.

Turn on a real mass for the extra flavor. Following carefully the duality in presence of the
real mass the origin of the moduli spaces on one side of the duality maps to a non trivial
vacuum on the other side: the gauge group SU(Nf − Nc + 1) is broken to
SU(Nf − Nc )× U(1). The duality we obtain is thus
SU(Nc )Nf

←→ SU(Nf − Nc )Nf
× U(1)Nf +1.

The subtleties with picking up the correct vacua when turning on real masses translate
into subtleties with orders of limits in the partition functions: taking the real masses to
infinity vs performing non-compact integrals.
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Reducing difference operators to 3d and mirror symmetry

The theories of class S can be dimensionally reduced to 3d .

In 3d these theories admit a mirror description a Lagrangian for which is known.

This description takes the form of a star-shaped quiver.

For example the mirror dual of a hypermultiplet in bifundamental representation of SU(2)
is

U(1)U(1)

SO(3)

U(1)
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. . . . . .

4d shards of 3d mirrors?
The S2 × S1 partition function of the star-shaped quiver is schematically given by (q = q

1
2

and t = tq
1
2 )

Iq,t; g ({aℓ,mℓ}sℓ=1) =
∞∑

n=−∞

∮
[db]q,t−1; g

s∏
ℓ=1

ψq,t−1 (aℓ,mℓ| b, n) ,

where ψq,t (a,m| b, n) is the S2 × S1 partition function of a single “leg” of the quiver.
The sum over n is over magnetic fluxes through S2.

This has the same schematic form as the general expression for the 4d partition functions
we obtained before. (Nishioka-Tachikawa-Yamazaki 11)

Moreover, ψq,t−1 (a,m| b, n) are eigenfunctions of the dimensionally reduced difference
operators,

[
lim

r→∞
Dp,q,t;2;r (b, e

2πi n
r )

]
· ψq,t(b, n|a,m) =

(aq
m
2 + a−1q−

m
2 )(aq−

m
2 + a−1q

m
2 ) ψq,t (b, n|a,m) .

This difference operator introduces a pair of line operators into the S2 × S1 partition
function. (Drukker-Okuda-Passerini 12)
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4d shards of 3d mirrors? (cont.)

Thus the 4d eigenfunctions have a physical meaning in 3d : they are partition functions of
T [SU(N)] theories, the “legs” of the star-shaped quivers.

To obtain an interpretation of the eigenfunctions in 3d we have to perform a (double)
mirror symmetry.

Can this picture be lifted to 4d?

At least in one limit of the S3 × S1 partition function (p = q = 0) the relevant
eigenfunctions, which are proportional to Hall-Littlewood polynomials, are mathematically
precisely what one would naively call the S3 × S1 partition function of the 4d version of
T [SU(N)]. (SR-Willett work in progress)
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Summary

Partition functions can provide refined checks of the supersymmetric dualities.

Alternatively, dualities themselves give a tool for computing exactly
certain partition functions.

There are deep interrelations between properties of supersymmetric theories in different
spacetime dimensions. Implications of these relations for partition functions are often
tractable and can be easily studied.

Thank You!!
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