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Physical Motivation

• non-perturbative definition of QCD in the continuum

• ``exact’’ asymptotics in QFT and string theory

• analytic continuation of path integrals

• dynamical and non-equilibrium physics from path integrals

IĪ

•  Infrared renormalon puzzle in asymptotically free QFT
             (i) IR renomalons: perturbation theory ill-defined
             (ii)       interaction: non-pert. instanton gas ill-defined

• non-perturbative physics without instantons

The Bigger Picture:



SU(N) Yang-Mills on ℝ4 and ℂℙN-1 on ℝ2

• asymptotically free
• instantons, theta vacua, ...

two serious long-standing problems:

• perturbative sector: infrared (IR) renormalons 
                                       ⇒ perturbation theory ill-defined
• non-perturbative sector: instanton scale moduli
                                       ⇒  instanton gas picture ill-defined

IR renormalon problem

‘t Hooft, 1979; Affleck, 1980; David, 1981



new idea: ``resurgence’’

J. Écalle (1980); Stokes (1850), ...

• unify perturbation theory and non-perturbative physics

• ``trans-series’’: 

• mathematics: differential equations, improved asymptotics

• physics: quantum mechanics, and recent applications to QFT
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analogue of IR renormalon problem in QM: Bogomolny/Zinn-Justin (BZJ) 

degenerate classical vacua: double-well or Sine-Gordon

... ...

single-instanton sector: (i) level or band splitting 
                                         (ii) real and unambiguous

⇠ e�S
instanton
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             (i) imaginary contribution to real energy 
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recap: basics of Borel summation

(i) divergent, alternating: 

⇒ ambiguous imaginary non-perturbative term: ± i⇡

g2
e�1/g2

often identified with vacuum instability
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resolution in QM: Bogomolny/Zinn-Justin (BZJ) mechanism

degenerate classical vacua: double-well or Sine-Gordon

... ...
perturbation theory is non-Borel-summable:

             (i) ambiguous imaginary contrib. to real energy 
            (ii)  ⇠ ± i e�2S

instanton

BZJ idea: non-perturbative sector:        attractive
                 rotate g2 → - g2; interaction repulsive; rotate back again

ambiguous imaginary non-perturbative contribution 
which exactly cancels the term from perturbation theory

Bogomolny, 1980; Zinn-Justin, 1981; Balitsky/Yung 1986
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SU(N) Yang-Mills on ℝ4 and ℂℙN-1 on ℝ2

• asymptotically free, instantons, chiral symmetry breaking, ...

two serious long-standing problems:

• perturbative sector: infrared (IR) renormalons 
                                       ⇒ perturbation theory ill-defined

• non-perturbative sector: instanton/anti-instanton attraction
                                       ⇒  instanton gas picture ill-defined

analogous problem in asymptotically free QFT

± i e�2S
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        perturbation theory remains incomplete and inconsistent

cannot cancel!



resolution: correct BZJ mechanism for SU(N) YM or ℂℙN-1

Argyres/Ünsal, GD/Ünsal, 2012

• instanton gas picture has another problem: instanton scale moduli

• regulate with compactification: instantons fractionalize

• spatial compactification: semiclassical (small L) continuously 
                 connected to large L: ``principle of continuity’’

ℝ2ℝ1
ℝ1 x Sᵦ1

low Thigh T

•temporal compactification:  information only about deconfined phase

ℝ2ℝ1
SL1 x ℝ1

“continuity”

SUSY (Witten); non-SUSY (Ünsal, Yaffe, Poppitz, Shifman, Argyres, Schaefer, ...)



Fractionalized Instantons in the ℂℙN-1 Model on SL1 x ℝ1 

ℂℙ1 on SL1 x ℝ1 :

ℤN twisted boundary conditions:

there is no clear interpretation of what an instanton with size modulus ⇢ ⇠ � > ⇤�1 actually

means. No such semi-classical configuration actually exists.

4.5 Small spatial circle: fractionalization of 2d instantons

We have already shown in Section 4.2 that the theory in a ZN symmetric background at weak

coupling has N -types of elementary kink configuration with action S
0

= S
I

N . In this section,

we re-derive this result in an alternative way. We show that a 2d instanton decomposes into

N kink-instantons in the presence of a stable ZN symmetric spatial twist.

Returning to the CP1 example, we now incorporate a spatial twist by multiplying the

second component of the homogeneous coordinate (4.4) v
2

by a factor e
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µ2 z, where µ
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= 1/2,
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To satisfy the twisted boundary condition (2.16) it would be enough to take a factor e
2⇡i

L

µ2 x2 ,

but for an instanton v must be holomorphic, so we need to take e
2⇡
L

µ2 z, which therefore

prescribes also a certain dependence on the non-compact direction x
1

. This is the essence of

how the twisted spatial boundary conditions a↵ect the structure of instantons on R1⇥S1.
The twisted instanton (4.35) has charge Q = 1, but at long distances it splits into

two distinct kink-instantons, each of charge 1/2. In general, for CPN�1 a charge Q = 1

decomposes into N distinct kink-instantons, each of topological charge 1/N . To see how this

works for the twisted CP1 instanton in (4.35), note that
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Thus, A
2

! ± ⇡
L as x

1

! ±1, and so Q = 1. However, inspection of the form of A
2

shows

that A
2

behaves like two separate kinks, each of charge 1/2, one located at x
1

⇡ �L
⇡ ln �

1

,

and the other at x
1

⇡ L
⇡ ln �

2

. The corresponding topological charge densities are plotted in

Figure 5.

Another useful way to visualize these kink-instanton constituents is using the Wilson loop

(2.33). As the Euclidean time coordinate x
1

goes from x
1

= �1 to x
1

= +1, the Wilson

loop winds around on a unit circle. For the twisted Q = 1 CP1 instanton in (4.35), the

Wilson line W (x
1

) is plotted in Figure 6. A small instanton on R ⇥ S1L behaves like a single

instanton on R2, and winds fully around the circle. A su�ciently large instanton, on the other

hand, decomposes into its two constituents, each of which winds half-way around the circle,

but displaced from one another in the non-compact x
1

direction. The CP2 case (N = 3) is

– 41 –

(twist in x2) + (holomorphicity) ⇒ fractionalization in x1 direction

ℂℙN-1  : Q=1 instanton splits into N distinct Q=1/N “kink-instantons”

• technically analogous to 3d monopole constituents of 4d calorons
Lee & Yi; Kraan & van Baal; 
Bruckmann; Brendel et al

Figure 5. Small and large Q = 1 instantons in CP1in a weak coupling center-symmetric background.
Large instantons split into two Q = 1

2 instantons.

Figure 6. The Wilson loop for a small Q = 1 instanton is shown in purple. The large instanton
splits into two separate kink-instantons. Each wraps half-way around the cylinder.

illustrated in Figures. 7 and 8. Again, the small instanton is essentially the same as a small

instanton on R2, however, the large-instanton splits into three constituent kink-instantons,

each of which has topological charge Q = 1

3

.

4.6 Matching and reinterpreting the bosonic zero modes

As reviewed in Section 4.1, in the CPN�1 model on R2, the 2d instanton zero modes are

associated with the classical symmetries of the self-duality equations: 2 are the position of

the instanton (aI 2 R2) and arise due to translation invariance, one is the size modulus

(⇢ 2 R+) and is associated with invariance under dilatations, and the remaining 2N � 3 are

internal orientational modes. This is equally true for the small instantons (4.25) on R ⇥ S1L:

2N
short-distance��������! 2 + 1 + (2N � 3) = (aI 2 R2) + (⇢ 2 R+) + (orientation). (4.38)

As emphasized earlier, for the theory on R2, the existence of the size modulus ⇢ implies

that the instanton comes in all sizes at no cost in action, and prevents a meaningful long-

wavelength description of a dilute instanton gas from first principles. However, in the small

R1⇥S1 regime of CPN�1, the instanton has a maximal size set by the eigenvlaue separation of

the holonomy matrix L⌦. In this regime, and at long distances, the 2-d instanton is described

as a composite of N separate 1d kinks. The 2N bosonic zero modes of the 2-d instanton on

– 42 –

ℂℙ1 (N=2)

v(x1, x2 + L) = ⌦N v(x1, x2)
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As emphasized earlier, for the theory on R2, the existence of the size modulus ⇢ implies

that the instanton comes in all sizes at no cost in action, and prevents a meaningful long-

wavelength description of a dilute instanton gas from first principles. However, in the small

R1⇥S1 regime of CPN�1, the instanton has a maximal size set by the eigenvlaue separation of

the holonomy matrix L⌦. In this regime, and at long distances, the 2-d instanton is described

as a composite of N separate 1d kinks. The 2N bosonic zero modes of the 2-d instanton on

– 42 –

ℂℙ1 (N=2)

Figure 7. Same as Fig.5, but now for CP2. Large instantons split into three Q = 1
3 kink-instantons,

as the scale changes.

Figure 8. Same as Fig.6, but now for CP2. The large instanton splits into three separate kink-
instantons, as the scale changes.

R2 matches the counting of the zero modes of the N kinks of the theory on R ⇥ S1. Each

kink has two zero modes: One is the position of the kink, and arises due to translational

invariance, and the other is an angular zero mode, associated with an internal symmetry.

Therefore, the 2N collective coordinates split as

2N
long-distance��������! N [1 + 1] = N [(a 2 R) + (� 2 U(1))]. (4.39)

In particular the size modulus of the 2-d instanton is no longer present in the long distance

description of the CPN�1 on small R ⇥ S1. This permits a meaningful dilute gas expansion.

Collective coordinates of kink-instantons: The one-loop measure for integrating

over configurations of a type-j kink-instanton is

dµj
B

dµj
F

= e�S
j · da d�

(2⇡)

N
fY
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d2⇠f · µ2�N
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.

• a 2 R is the kink-instanton position, � 2 U(1) is an angle, ⇠f are the Grassmann-valued

fermionic zero modes.

• µ is the (Pauli-Villars) renormalization scale. Each bosonic zero mode gives a contribu-

tion proportional to µ and each Grassmann zero modes gives a contribution proportional

to µ�1/2, yielding µ2�N
f .

– 43 –

ℂℙ2 (N=3)

v(x1, x2 + L) = ⌦N v(x1, x2)



Resurgence in 2d asymptotically free QFT: ℂℙN-1

non-perturbative sector: bion-bion amplitudes
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resolution: correct BZJ mechanism for ℂℙN-1

IR renormalon polesUV renormalon poles

instanton/anti-instanton poles

neutral bion poles

• spatially compactified ℂℙN-1 generates fractionalized instantons and 
bions, cancelling perturbative IR renormalon ambiguities against non-
perturbative ambiguities in instanton/bion gas picture

±i e�2S
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/N
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/N

GD, Ünsal: 1210.2423, 1210.3646

http://arxiv.org/abs/arXiv:1210.2423
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graded resurgence triangle and extended SUSY

bion x (pert. flucs.)
pert. theory around pert. vacuum

bi-instanton
x (flucs.)

instanton x (flucs.)

sectors with different ϴ 
dependence cannot 

mix or cancel 

GD, Ünsal: 1210.2423, 
1210.3646

3) Therefore, the non-Borel summability of the large orders in perturbation theory can

never be cancelled by configurations which carry non-vanishing topological charge.

Rather it can only be cancelled by topological configurations with zero topological

charge, or equivalently, without any ⇥-angle dependence.

This structure leads to a sectorial mechanism of cancellation, which we call “graded resur-

gence”. To apply these ideas to CPN�1 , define a “cell” [n, m] as follows:

n = n
kink

+ n
anti�kink

, m = n
kink

� n
anti�kink

(7.20)

Here nS
I

N = n 4⇡
g2N

is the action and m
N denotes the topological charge. The [n, m] sector

is composed of n
kink

+ n
anti�kink

correlated kink-instanton events. For example, a single

kink event belongs to Kj 2 [1, 1]. The proliferation of single-kink events in the Euclidean

vacuum is the leading ⇥ dependent contribution to any observable. Neutral and charged

bions belong to B 2 [2, 0], and their proliferation generates various physical e↵ects, such as

the non-perturbative mass gap for the Nf � 1 theories.

The general form of the contribution of the events in the [n, m] cell to an observable is

given by
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e�n 4⇡
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+im⇥+2⇡k

N P
[n,m]

(�) (7.21)

where A
[n,m]

is the pre-factor of the associated [n, m]-defect amplitude, and P
[n,m]

(�) denotes

the formal perturbative fluctuation series around the [n, m]-defect. The appearance of k =

0, . . . , N � 1 along with ⇥ is tied with the multi-branched structure of physical observables

in bosonic CPN�1 , either on R2 or R ⇥ S1L.

Definition 5: Graded resurgence triangle: The sectors in the CPN�1 model form

a structure that we refer to as the graded resurgence triangle (7.22), where the rows are at

fixed-n (fixed-action). As one moves downward in the triangle, the action of the whole row

increases by one-unit (in kink-instanton action), namely n = 0, 1, 2, . . ..

[0, 0]

[1, 1] [1, �1]

[2, 2] [2, 0] [2, �2]

[3, 3] [3, 1] [3, �1] [3, �3]

[4, 4] [4, 2] [4, 0] [4, �2] [4, �4]

. .
. ...

. . . (7.22)

The row labelled with n has n + 1 ”cells”, these are m = n, n � 2, . . . , �n + 2, �n. Columns

are fixed-m (fixed topological charge) sectors. The graded structure inherent to QFTs and

– 68 –

http://arxiv.org/abs/arXiv:1210.2423
http://arxiv.org/abs/arXiv:1210.2423
http://arxiv.org/abs/arXiv:1210.3646
http://arxiv.org/abs/arXiv:1210.3646


graded resurgence triangle and extended SUSY

bion x (pert. flucs.)
pert. theory around pert. vacuum

bi-instanton
x (flucs.)

instanton x (flucs.)

sectors with different ϴ 
dependence cannot 

mix or cancel 

GD, Ünsal: 1210.2423, 
1210.3646

3) Therefore, the non-Borel summability of the large orders in perturbation theory can

never be cancelled by configurations which carry non-vanishing topological charge.

Rather it can only be cancelled by topological configurations with zero topological

charge, or equivalently, without any ⇥-angle dependence.

This structure leads to a sectorial mechanism of cancellation, which we call “graded resur-

gence”. To apply these ideas to CPN�1 , define a “cell” [n, m] as follows:

n = n
kink

+ n
anti�kink

, m = n
kink

� n
anti�kink

(7.20)

Here nS
I

N = n 4⇡
g2N

is the action and m
N denotes the topological charge. The [n, m] sector

is composed of n
kink

+ n
anti�kink

correlated kink-instanton events. For example, a single

kink event belongs to Kj 2 [1, 1]. The proliferation of single-kink events in the Euclidean

vacuum is the leading ⇥ dependent contribution to any observable. Neutral and charged

bions belong to B 2 [2, 0], and their proliferation generates various physical e↵ects, such as

the non-perturbative mass gap for the Nf � 1 theories.

The general form of the contribution of the events in the [n, m] cell to an observable is

given by

[n, m] =) A
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+im⇥+2⇡k

N P
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where A
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is the pre-factor of the associated [n, m]-defect amplitude, and P
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(�) denotes

the formal perturbative fluctuation series around the [n, m]-defect. The appearance of k =

0, . . . , N � 1 along with ⇥ is tied with the multi-branched structure of physical observables

in bosonic CPN�1 , either on R2 or R ⇥ S1L.

Definition 5: Graded resurgence triangle: The sectors in the CPN�1 model form

a structure that we refer to as the graded resurgence triangle (7.22), where the rows are at

fixed-n (fixed-action). As one moves downward in the triangle, the action of the whole row

increases by one-unit (in kink-instanton action), namely n = 0, 1, 2, . . ..

[0, 0]

[1, 1] [1, �1]

[2, 2] [2, 0] [2, �2]

[3, 3] [3, 1] [3, �1] [3, �3]

[4, 4] [4, 2] [4, 0] [4, �2] [4, �4]
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. . . (7.22)

The row labelled with n has n + 1 ”cells”, these are m = n, n � 2, . . . , �n + 2, �n. Columns

are fixed-m (fixed topological charge) sectors. The graded structure inherent to QFTs and
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[0, 0]

[1, 1] [1, �1]

[2, 2] ? [2, �2]

[3, 3] ? ? [3, �3]

[4, 4] ? ? ? [4, �4]

. .
. ...

. . . (7.34)

Since there are no neutral bion configurations, the confluence equation (7.25) and (7.28)

simplify into

0 = Im
⇣
B
[0,0],✓=0

±

⌘
, 0 = Im

⇣
B
[1,1],✓=0

±

⌘
(7.35)

meaning that there is no imaginary ambiguity in the Borel sum of ordinary perturbation

theory, as well as in perturbation theory around the instantons. In other words, the cells

[n, ±n], n = 0, 1, 2, . . . must be Borel summable, or equivalently, there are no singularities in

the Borel plane along R+ for extended supersymmetric theories. This is the major di↵erence

between the bosonic theory and extended supersymmetric theory.

It should be noted that the existence of instantons implies that perturbation theory is a

divergent asymptotic series. However, whether such a series is Borel summable (alternating,

Gevrey-one) or non-Borel summable (non-alternating, Gevrey-one) is a more refined question,

which is tied with the existence of singularities on the Borel complex-t plane along the R+ ray.

These singularities, in the semi-classical regime, would be associated with neutral topological

events as opposed to single instanton events. Consequently, the absence of such neutral

molecules in the semi-classical regime of a given theory is the same as Borel summability.

Our argument for the Borel summability of the extended supersymmetric theory is for the

semi-classical regime. In these theories, it is believed that there are no phase transition as the

holomorphic parameters are varied. Therefore, if this is true, then as the theory moves from

the semi-classical regime to the regime of strong coupling, the Borel summability must still

hold. This implies the Borel summability of the extended supersymmetric quantum theory

on R2.

7.6 ⇥-dependence of vacuum energy density and topological susceptibility

Once the cancellation of the ambiguous imaginary parts is assured, we obtain finite and

physical results for observables, such as vacuum energy density, topological susceptibility,
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graded resurgence triangle and extended SUSY

bion x (pert. flucs.)
pert. theory around pert. vacuum

bi-instanton
x (flucs.)

instanton x (flucs.)

sectors with different ϴ 
dependence cannot 

mix or cancel 
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3) Therefore, the non-Borel summability of the large orders in perturbation theory can

never be cancelled by configurations which carry non-vanishing topological charge.

Rather it can only be cancelled by topological configurations with zero topological

charge, or equivalently, without any ⇥-angle dependence.

This structure leads to a sectorial mechanism of cancellation, which we call “graded resur-

gence”. To apply these ideas to CPN�1 , define a “cell” [n, m] as follows:

n = n
kink

+ n
anti�kink

, m = n
kink

� n
anti�kink

(7.20)

Here nS
I

N = n 4⇡
g2N

is the action and m
N denotes the topological charge. The [n, m] sector

is composed of n
kink

+ n
anti�kink

correlated kink-instanton events. For example, a single

kink event belongs to Kj 2 [1, 1]. The proliferation of single-kink events in the Euclidean

vacuum is the leading ⇥ dependent contribution to any observable. Neutral and charged

bions belong to B 2 [2, 0], and their proliferation generates various physical e↵ects, such as

the non-perturbative mass gap for the Nf � 1 theories.

The general form of the contribution of the events in the [n, m] cell to an observable is

given by

[n, m] =) A
[n,m]

e�n 4⇡
�

+im⇥+2⇡k

N P
[n,m]

(�) (7.21)

where A
[n,m]

is the pre-factor of the associated [n, m]-defect amplitude, and P
[n,m]

(�) denotes

the formal perturbative fluctuation series around the [n, m]-defect. The appearance of k =

0, . . . , N � 1 along with ⇥ is tied with the multi-branched structure of physical observables

in bosonic CPN�1 , either on R2 or R ⇥ S1L.

Definition 5: Graded resurgence triangle: The sectors in the CPN�1 model form

a structure that we refer to as the graded resurgence triangle (7.22), where the rows are at

fixed-n (fixed-action). As one moves downward in the triangle, the action of the whole row

increases by one-unit (in kink-instanton action), namely n = 0, 1, 2, . . ..

[0, 0]

[1, 1] [1, �1]

[2, 2] [2, 0] [2, �2]

[3, 3] [3, 1] [3, �1] [3, �3]

[4, 4] [4, 2] [4, 0] [4, �2] [4, �4]

. .
. ...

. . . (7.22)

The row labelled with n has n + 1 ”cells”, these are m = n, n � 2, . . . , �n + 2, �n. Columns

are fixed-m (fixed topological charge) sectors. The graded structure inherent to QFTs and
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[0, 0]

[1, 1] [1, �1]

[2, 2] ? [2, �2]

[3, 3] ? ? [3, �3]

[4, 4] ? ? ? [4, �4]

. .
. ...

. . . (7.34)

Since there are no neutral bion configurations, the confluence equation (7.25) and (7.28)

simplify into

0 = Im
⇣
B
[0,0],✓=0

±

⌘
, 0 = Im

⇣
B
[1,1],✓=0

±

⌘
(7.35)

meaning that there is no imaginary ambiguity in the Borel sum of ordinary perturbation

theory, as well as in perturbation theory around the instantons. In other words, the cells

[n, ±n], n = 0, 1, 2, . . . must be Borel summable, or equivalently, there are no singularities in

the Borel plane along R+ for extended supersymmetric theories. This is the major di↵erence

between the bosonic theory and extended supersymmetric theory.

It should be noted that the existence of instantons implies that perturbation theory is a

divergent asymptotic series. However, whether such a series is Borel summable (alternating,

Gevrey-one) or non-Borel summable (non-alternating, Gevrey-one) is a more refined question,

which is tied with the existence of singularities on the Borel complex-t plane along the R+ ray.

These singularities, in the semi-classical regime, would be associated with neutral topological

events as opposed to single instanton events. Consequently, the absence of such neutral

molecules in the semi-classical regime of a given theory is the same as Borel summability.

Our argument for the Borel summability of the extended supersymmetric theory is for the

semi-classical regime. In these theories, it is believed that there are no phase transition as the

holomorphic parameters are varied. Therefore, if this is true, then as the theory moves from

the semi-classical regime to the regime of strong coupling, the Borel summability must still

hold. This implies the Borel summability of the extended supersymmetric quantum theory

on R2.

7.6 ⇥-dependence of vacuum energy density and topological susceptibility

Once the cancellation of the ambiguous imaginary parts is assured, we obtain finite and

physical results for observables, such as vacuum energy density, topological susceptibility,

– 73 –

extended SUSY: no superpotential;
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       perturbative expansions 
      must be Borel summable
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the bigger picture: resurgence and non-perturbative QFT

“resurgence” unifies perturbative and non-perturbative sectors in 
such a way that the combination is unambiguous and well-defined 

under analytic continuation of the expansion parameter



Resurgence and Trans-Series

J. Écalle (1980): set of functions with these trans-monomial elements 
is closed; “any reasonable function’’ has a trans-series expansion

(Borel transform) + (analytic continuation) + (Laplace transform)

dramatic consequence: expansion coefficients extremely constrained 
                   (cf. BZJ cancellation mechanism)

f(g2) =
1X

n=0

1X

k=0

k�1X

q=0

cn,k,q g
2n


exp

✓
� S

g2

◆�k 
ln

✓
� 1

g2

◆�q

• exponentially improved asymptotic expansions (dlmf.nist.gov)

• philosophical shift: 
view semi-classical asymptotic expansions as `exact encoding’ of the function



What is Resurgence?

Écalle, 1980

resurgent functions display at each of their singular points a behaviour 
closely related to their behaviour at the “origin”. Loosely speaking, 
these functions resurrect, or surge up - in a slightly different guise, as it 
were - at their singularities

n

m



What is Resurgence?

Écalle, 1980

resurgent functions display at each of their singular points a behaviour 
closely related to their behaviour at the “origin”. Loosely speaking, 
these functions resurrect, or surge up - in a slightly different guise, as it 
were - at their singularities

n

m

 `in principle’, we can reconstruct the full function from the perturbative series 
cf. GD, Ünsal: 1306.4405

http://arxiv.org/abs/arXiv:1306.4405
http://arxiv.org/abs/arXiv:1306.4405


Full Trans-Series from Perturbation Theory

2

presentation is in terms of two important quantum mechanical examples, the double-well and Sine-Gordon potentials,
since these contain already much of the physics relevant for the discussion of non-perturbative e↵ects due to degenerate
minima in gauge theories and CPN�1 models. But we stress that the basic idea of resurgent trans-series analysis is
much more general, applying to both linear and nonlinear problems, and to functional problems like QFT.

B. What are trans-series, and where do they come from?

In this paper we concentrate on trans-series expressions for energy eigenvalues in certain QM problems, with a
coupling constant g2. Our notation is chosen to match the coupling parameter g2 in certain QFTs such as Yang-Mills
or CPN�1 models. One could also discuss trans-series representations of the wave-function; this is implicit in our
analysis, but since we are motivated by attempts to compute QFT quantities such as a mass gap, to be very concrete
we focus on energy eigenvalues. For a complementary discussion of trans-series as solutions to di↵erential equations
see [Pham, ...].

The general perturbative expansion of an energy level has the form

E(N)

pert. theory(g
2) =

1X

k=0

g2kE(N)

k (1)

where N is an integer labeling the energy level, and the perturbative coe�cients E(N)

k can be computed by straight-
forward iterative procedures. For the cases we study here, this perturbative expansion is not Borel summable, which
means that on its own it is incomplete and indeed inconsistent.

This situation can be remedied by recognizing that the full expansion of the energy at small coupling is in fact of
the “trans-series” form:

E(N)(g2) = E(N)

pert. theory(g
2) +

1X

k=1

k�1X

l=1

1X

p=0

ck,l,p

✓
1

g2N+1

exp


� c

g2

�◆k ✓
ln


� 1

g2

�◆l

g2p (2)

The second part of the trans-series involves a sum over non-perturbative factors exp[�k c/g2], multiplied by prefactors
that are themselves series in g2 and in ln(1/g2). The basic building blocks of the trans-series, g2, exp[�c/g2] and
ln(1/g2), are called “trans-monomials”, and are all familiar from QM and QFT. Remarkably, the expansion coe�-
cients ck,l,p of the trans-series are inter-twined amongst themselves, and also with the coe�cients of the perturbative
expansion, in such a way that the total trans-series is real and unambiguous. For example, a Borel analysis of the
perturbative series requires an analytic continuation in g2, producing non-perturbative imaginary parts, but these
are precisely cancelled by the imaginary parts associated with the ln(�1/g2) factors in the non-perturbative portion
of the trans-series. Ambiguities only arise if you look at just one isolated portion of the trans-series expansion, for
example just the perturbative part, or just some particular multi-instanton sector. When viewed as a whole, the
analytic continuation of the trans-series expression is unique and exact. This will be explained and demonstrated
explicitly below.

We have three main goals in this paper:

1. Explain in a simple manner how such a trans-series expansion (2) arises, and also in what sense it is generic.

2. Explain the origin of the inter-relations within the trans-series, and their physical consequences.

3. In its strongest form, “resurgence” claims that complete knowledge of the perturbative series is su�cient to gen-
erate the remainder of the trans-series, including all orders of the non-perturbative expansion. We demonstrate
this very strong claim in simple and explicit detail for several QM spectral problems, including the double-well
and Sine-Gordon models.

II. UNIFORM WKB FOR POTENTIALS WITH DEGENERATE CLASSICAL VACUA

A. The Spectral Problem

Consider the spectral problem

� d2

dx2

 (x) + V (x) (x) = E  (x) (3)

state-of-the-art: entire trans-series encoded in these two series, and a
                            (conjectured) exact quantization condition

new results: (i) equivalent to uniform WKB boundary condition 
                      (ii) instanton fluctuation follows immediately from
                           perturbative expansion

GD, Ünsal: 1306.4405

E(N)

pert. theory(g
2) = 1 + a(N)

1

g2 + a(N)

2

g4 + . . .vacuum saddle:

Zinn-Justin/Jentschura, 2004

1-instanton saddle: �E(N)

1 instanton

(g2) =
1

N ! g2N
e�Sinst/g

2

p
⇡ g2

⇣
1 + b(N)

1

g2 + b(N)

2

g4 + . . .
⌘
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this very strong claim in simple and explicit detail for several QM spectral problems, including the double-well
and Sine-Gordon models.
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A. The Spectral Problem

Consider the spectral problem

� d2

dx2
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new results: (i) equivalent to uniform WKB boundary condition 
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Resurgence prototype: Gamma function and Stirling’s Formula

leading (Stirling)

functional relation:

reflection formula:
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unlike the ``perturbative’’ asymptotic series, a resurgent trans-series 
expansion is fully compatible with global analyticity properties

(divergent!) correction

non-perturbative terms generated from a resurgent analysis of the 
perturbative asymptotic expansion

`perturbative’ asymptotic expansion is incompatible with reflection formula



precisely this gamma function example appears in 
many QFT & string computations

• Euler-Heisenberg effective actions
• de Sitter/AdS effective actions
• exact S-matrices
• Chern-Simons partition functions
• matrix models
• Painlevé
• ...

Gopakumar/Vafa, 1998, 1999;
Das/Dunne, 2006; 
Mariño/Schiappa/Weiss, 2007, 2008; 
Mariño 2012; 
Aniceto/Schiappa/Vonk/Vaz, 2010, 2011;
Garoufalidis/Its/Kapaev/Mariño, 2012; ...



for QFT we should understand resurgence using path integrals



Resurgence in d=0 Path Integrals: Steepest Descents

resurgence in saddle-point integrals

Darboux’s theorem: large orders of expansion
 around one critical point governed by nhd. of 
nearest singularity = other critical point

n

m

I(n)(g2) =
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dz e�f(z)/g2
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g
e�fn/g
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g2r T (n)
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Berry/Howls, 1991 (``hyperasymptotics’’)
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Resurgence: large orders of fluctuations 
around an instanton governed by low 
orders about “nearby” instanton(s)
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resurgent trans-series structure is a basic property of all-orders 
saddle-point expansions of ordinary integrals

deeply embedded in perturbation theory and semi-classical 
analysis in QM and QFT, but its origin is (presumably) very basic

QFT: “functional Darboux theorem”
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“map” of all saddle points
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resurgence in zero dimensional QFT 
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resurgence in zero dimensional QFT 
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low orders in fluctuations around “    ” saddle determine large-
order behavior of fluctuations around the “vacuum”

cf. Darboux’s theorem
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resurgence in one dimensional QFT : QM

V (x) = x

2(1 + g x)2

E =
X

n

cng
2n

cn ⇠ 3nn!

✓
1� 53

6
· 1
3
· 1
n
� 1277

72
· 1

32
· 1

n(n� 1)
� . . .

◆

ImE ⇠ ⇡ e
�2 1

6g2

✓
1� 53

6
g2 � 1277

72
g4 � . . .

◆
pert. theory:

       sector:IĪ
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Resurgence in 2d asymptotically free QFT: ℂℙN-1

non-perturbative sector: bion-bion amplitudes

[KiK̄i]± =

✓
ln

✓
g2 N

8⇡

◆
� �
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16

g2N
e
� 8⇡

g2N ± i⇡
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Z

C±

dt BE(t) e�t/g2

= ReB E(g2)⌥ i⇡
16

g2N
e
� 8⇡

g2N

perturbative sector: Borel-Écalle summation

cancel

GD, Ünsal: 1210.2423, 1210.3646

http://arxiv.org/abs/arXiv:1210.2423
http://arxiv.org/abs/arXiv:1210.2423
http://arxiv.org/abs/arXiv:1210.3646
http://arxiv.org/abs/arXiv:1210.3646


Analytic Continuation of Path Integrals: Ghost instantons

Başar, GD, Ünsal: 1308.1108

• periodic potential with both real 
   and complex instantons

V (x) =
1

g

2
sd2(g x;m)

Z
Dx e

� 1
g2

S[x]
path integral : sum over real paths

SI =
2arcsin(

p
m)p

m(1�m)

SG =
2arcsin(

p
1�m)p

m(1�m)

an(m) ⇠ �16

⇡
n!

✓
1

(SIĪ(m))n+1
� (�1)n+1

(SGḠ(m))n+1

◆

both real and complex instantons contribute to physical properties

Since we actually have a closed-form expression (2.18) for the perturbative coe�cients
we can also confirm analytically that this agrees with the sub-leading behavior. Notice the
explicit correspondence of the coe�cients of the sub-leading terms in (2.25) and the low order
terms in (2.24):

a(A)

n

(m) =
X

j=0

(n� j � 1)!
⇡

 
a(B)

j

(m)

S n�j

B

+
a(C)

j

(m)

S n�j

C

!
(2.26)

This remarkable relation between high orders of fluctuations about one saddle and low or-
ders of fluctuations about the other adjacent saddles is captured to all orders by the exact
resurgence integral relation (2.19) and in particular (2.22), and is sketched schematically in
Figure 5. The above expression (2.26) is an approximation to the exact resurgence relation
(2.22) for large n.

PolePole

PolePole

A B

C

B

C

z

Figure 5. Schematic representation of the resurgent relation (2.25) between the large orders of
perturbative fluctuations about the vacuum saddle A given in (2.17, 2.18) (represented as the large
circle), and low orders of fluctuations about the instanton and ghost instanton saddles B and C given
in (2.24) (represented as the small circles), respectively.

There is an alternative way of seeing the origin of the three-term resurgent trans-series
structure. As a function of the variable ⇠ = 1

g

2 , the partition function Z satisfies the following
third order ODE:

2m(1�m)⇠Ẑ 000 � (2(1� 2m)⇠ � 3m(1�m)) Ẑ 00 � 2 (⇠ + (1� 2m)) Ẑ 0 � Ẑ = 0 (2.27)

where Ẑ = ⇠�1/2Z, and by a general result [15, 24], this means that Z has a three-term
resurgent trans-series in the large ⇠ [small g2] limit, given in (2.16). For m = 0 and m = 1,
it reduces to a second order equation,

m = 0 : ⇠Ẑ 00 + (⇠ + 1) Ẑ 0 +
1
2
Ẑ = 0 (2.28)

m = 1 : ⇠Ẑ 00 � (⇠ � 1) Ẑ 0 � 1
2
Ẑ = 0 (2.29)
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http://arxiv.org/abs/arXiv:1308.1108
http://arxiv.org/abs/arXiv:1308.1108


Beyond instantons

• YM and CPN have unstable non-self-dual classical solutions, 
with finite Euclidean action

• 2d O(N), PCM, ...,  have no instantons, but still have
     IR renormalon problems in the perturbative sector

• these theories also have unstable non-BPS classical solutions, 
with finite Euclidean action

Dabrowski, GD: 1306.0921;
Cherman, Dorigoni, GD & Ünsal: 1308.0127

small g2 : dominated by critical points; 
             i.e., finite action solutions of classical Euclidean equations

Z
DAe

� 1
g2

S[A]
=

X

all saddles

e
� 1

g2
S[Asaddle] ⇥ (fluctuations)⇥ (qzm)

Daniele Dorigoni:
Wed. 17:10

http://arxiv.org/abs/arXiv:1306.0921
http://arxiv.org/abs/arXiv:1306.0921
http://arxiv.org/abs/arXiv:1308.0127
http://arxiv.org/abs/arXiv:1308.0127
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• 2d O(N), PCM, ...,  have no instantons, but still have
     IR renormalon problems in the perturbative sector

• these theories also have unstable non-BPS classical solutions, 
with finite Euclidean action

• minima: BPS instantons (self-dual) ⇒ 
• saddle points: non-self-dual but finite action
         - ℂℙN-1    (Din & Zakrzewski);  YM (Sibner, Sibner & Uhlenbeck; Sadun, ...)

            - “unstable”: instantons & anti-instantons
         - physics: resurgent non-perturbative contributions     
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“instability” of non-self-dual solutions

# zero modes: 2 x 6 = 12, but far-separated count: 4 x 6 = 24 

“instability”: (some) zero modes 
become negative modes

chargeaction

contribution to semiclassical 
expansion is complex!

resurgence: must cancel something
from perturbation theory

Dabrowski, GD: 1306.0921

http://arxiv.org/abs/arXiv:1306.0921
http://arxiv.org/abs/arXiv:1306.0921


moral: perturbative series expansions are typically divergent, 
and incompatible with global analytic continuation 
properties.       Resurgence fixes this.

• non-Borel-summable perturbation theory is incomplete and
    inconsistent
• corresponding non-perturbative instanton gas picture is similarly 
    incomplete and inconsistent
• together, a resurgent trans-series expansion is complete & consistent

Conclusions

• non-perturbative physics without instantons 
• analytic continuation of ODEs and path integrals 
• effect of running couplings
• relation to OPE formalism 
• practical computational tool ?
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Uniform WKB, Resurgence and Trans-Series

e.g. double-well potential:

uniform WKB approximation:   

perturbation theory:

: usual perturbation theory for Nth oscillator level 

(non-Borel-summable)

3

We are interested in cases where the potential V (x) has degenerate vacua, which are locally harmonic: V (x) ⇡ x2+. . . .
The two paradigmatic cases we study in detail are the double-well (DW) and Sine-Gordon (SG) potentials:

V
DW

(x) = x2(1 + g x)2 = x2 + 2g x3 + g2x4 (4)

V
SG

(x) =
1

g2
sin2(g x) = x2 � 1

3
g2 x4 + . . . (5)

The Sine-Gordon case can be directly related to the Mathieu equation by simple changes of variables, given explicitly
in Appendix A. This permits detailed comparison with known results for Mathieu functions [6].

It is convenient to rescale the coordinate variable to y = g x:

� g4
d2

dy2
 (y) + V (y) (y) = g2 E  (y) (6)

where

V
DW

(y) = y2(1 + y)2 (7)

V
SG

(y) = sin2(y) (8)

It is well known that in both these cases the perturbative energy levels are split by non-perturbative instanton e↵ects.
This level splitting is (at leading order) a single-instanton e↵ect, and is textbook material [7]. From (6) we see that
g4 plays the role of ~2, and so we expect these non-perturbative e↵ects to be characterized by exponential factors of
the form

exp

✓
� c

g2

◆
(9)

for some constant c > 0.
More interestingly, the perturbative series for these spectral problems is non-Borel-summable, and therefore formally

it induces a non-perturbative imaginary part, even though both potentials are completely stable and the energy should
be purely real. The resolution of this puzzle is that the non-perturbative imaginary part is in fact a two-instanton
e↵ect, and is canceled by a corresponding non-perturbative imaginary contribution coming from the instanton/anti-
instanton interaction [8–11]. We refer to this leading cancelation as the Bogomolny-Zinn-Justin (BZJ) mechanism.
The resurgent trans-series expression (2) for the energy eigenvalue encodes the fact that there is in fact an infinite
tower of such cancelations, thereby relating properties of the perturbative sector and the non-perturbative sector.
The BZJ cancelation is the first of this tower. A new observation we make here is that we do not need to compute
separately the perturbative and non-perturbative sectors: the perturbative series contains all information about
the non-perturbative sector, to all non-perturbative orders. This provides a simple and explicit illustration of the
surprising power of resurgent analysis.

B. Strategy of the Uniform WKB Approach: Origin of the Trans-series Expansion

Before getting into details, we first state our strategy, and the basic result, which explains already why the expression
for the energy eigenvalues has the trans-series form in (2).

Since the potentials we consider have degenerate harmonic vacua, in the g2 ! 0 limit each classical vacuum has the
form of a harmonic oscillator well. Therefore it is natural to use a parabolic uniformWKB ansatz for the wave-function
[3, 4]:

 (y) =
D⌫

⇣
1

gu(y)
⌘

p
u0(y)

(10)

Here D⌫ is a parabolic cylinder function [6], and ⌫ is an ansatz parameter that is to be determined. Substituting
this uniform WKB ansatz form of the wave-function into the Schrödinger equation produces a nonlinear equation for
the argument function u(y) that can be solved perturbatively. Purely local analysis in the immediate vicinity of the
potential minimum, where the potential is harmonic, leads to a perturbative expansion of the energy (explained in
detail in Section ... below):

E = E(⌫, g2) =
1X

k=0

g2kEk(⌫) (11)

GD, Ünsal, 2013

V (x) = x

2(1� g x)2
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g = 0 ) ⌫ = N
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g>0:  Neumann or Dirichlet b.c. at barrier midpoint 

non-Borel-summability: analytically continue

need complex asymptotics of Dν
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in Appendix A. This permits detailed comparison with known results for Mathieu functions [6].

It is convenient to rescale the coordinate variable to y = g x:

� g4
d2

dy2
 (y) + V (y) (y) = g2 E  (y) (6)

where

V
DW

(y) = y2(1 + y)2 (7)

V
SG

(y) = sin2(y) (8)

It is well known that in both these cases the perturbative energy levels are split by non-perturbative instanton e↵ects.
This level splitting is (at leading order) a single-instanton e↵ect, and is textbook material [7]. From (6) we see that
g4 plays the role of ~2, and so we expect these non-perturbative e↵ects to be characterized by exponential factors of
the form

exp

✓
� c

g2
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(9)

for some constant c > 0.
More interestingly, the perturbative series for these spectral problems is non-Borel-summable, and therefore formally

it induces a non-perturbative imaginary part, even though both potentials are completely stable and the energy should
be purely real. The resolution of this puzzle is that the non-perturbative imaginary part is in fact a two-instanton
e↵ect, and is canceled by a corresponding non-perturbative imaginary contribution coming from the instanton/anti-
instanton interaction [8–11]. We refer to this leading cancelation as the Bogomolny-Zinn-Justin (BZJ) mechanism.
The resurgent trans-series expression (2) for the energy eigenvalue encodes the fact that there is in fact an infinite
tower of such cancelations, thereby relating properties of the perturbative sector and the non-perturbative sector.
The BZJ cancelation is the first of this tower. A new observation we make here is that we do not need to compute
separately the perturbative and non-perturbative sectors: the perturbative series contains all information about
the non-perturbative sector, to all non-perturbative orders. This provides a simple and explicit illustration of the
surprising power of resurgent analysis.

B. Strategy of the Uniform WKB Approach: Origin of the Trans-series Expansion

Before getting into details, we first state our strategy, and the basic result, which explains already why the expression
for the energy eigenvalues has the trans-series form in (2).

Since the potentials we consider have degenerate harmonic vacua, in the g2 ! 0 limit each classical vacuum has the
form of a harmonic oscillator well. Therefore it is natural to use a parabolic uniformWKB ansatz for the wave-function
[3, 4]:

 (y) =
D⌫

⇣
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gu(y)
⌘

p
u0(y)

(10)

Here D⌫ is a parabolic cylinder function [6], and ⌫ is an ansatz parameter that is to be determined. Substituting
this uniform WKB ansatz form of the wave-function into the Schrödinger equation produces a nonlinear equation for
the argument function u(y) that can be solved perturbatively. Purely local analysis in the immediate vicinity of the
potential minimum, where the potential is harmonic, leads to a perturbative expansion of the energy (explained in
detail in Section ... below):

E = E(⌫, g2) =
1X

k=0

g2kEk(⌫) (11)
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C. Global Boundary Condition for the Double-Well System

To derive the form of the global boundary condition, recall that the global boundary conditions (33, 34) are imposed
at the barrier midpoint y
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. When we analytically continue g2 o↵ the positive real axis, this renders Borel
summable the argument 1
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of the parabolic cylinder function D⌫ appearing in the uniform WKB ansatz (10).

But now this argument 1

gu
�
� 1

2

�
is a complex number, o↵ the real positive axis. Thus in the limit where the modulus

of g2 approaches zero, the appropriate asymptotic behavior of the parabolic cylinder function is not just given by
D⌫(z) ⇠ z⌫e�z2/4 , (z ! +1), as used in (24). We now need to use the (resurgent) asymptotic behavior of the
parabolic cylinder functions throughout the relevant region of the complex plane, given by [6]:
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Notice that there are two di↵erent exponential terms e±z2/4 in (37). Normally on the real axis one or other is dominant
or sub-dominant, but for certain rays of z2 in the complex plane they may be equally important. This is the Stokes
phenomenon.

Consider the global boundary condition with Dirichlet boundary condition at the midpoint, as in (34). Using the
full analytic expression (37), the global boundary condition (34) can be written as
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Note that ⇠ is the familiar non-perturbative instanton factor, while H
0

(⌫, g2) is perturbative in g2, and represents the
fluctuations around the instanton.

The expression (40) is an implicit relation for ⌫ as a function of the coupling g2. We solve by expanding ⌫ = N+�⌫,
where N is a non-negative integer, noting that
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where hN is the N th harmonic number [6]. This implies that (for the odd state)

⌫ = N +

✓
� 2

g2

◆N H
0

(N, g2)

N !
⇠ �


� + ln

✓
e±i⇡ 2

g2

◆
� hN

�✓
� 2

g2

◆
2N ✓H

0

(N, g2)

N !

◆
2

⇠2 +O(⇠3) (44)

If we repeat the computation using the Neumann boundary condition at the midpoint, then the only change is a
change in sign on the RHS of (40), which leads to a change of sign of the odd powers of ⇠ in (44). Thus, to leading
order in ⇠ the splitting of the levels is symmetric up and down, but this is not true at higher orders. This expansion
is the trans-series form of the parameter ⌫ mentioned already in (13)-(14) in Section ... . This discussion makes
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More interestingly, the perturbative series for these spectral problems is non-Borel-summable, and therefore formally
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e↵ect, and is canceled by a corresponding non-perturbative imaginary contribution coming from the instanton/anti-
instanton interaction [8–11]. We refer to this leading cancelation as the Bogomolny-Zinn-Justin (BZJ) mechanism.
The resurgent trans-series expression (2) for the energy eigenvalue encodes the fact that there is in fact an infinite
tower of such cancelations, thereby relating properties of the perturbative sector and the non-perturbative sector.
The BZJ cancelation is the first of this tower. A new observation we make here is that we do not need to compute
separately the perturbative and non-perturbative sectors: the perturbative series contains all information about
the non-perturbative sector, to all non-perturbative orders. This provides a simple and explicit illustration of the
surprising power of resurgent analysis.

B. Strategy of the Uniform WKB Approach: Origin of the Trans-series Expansion

Before getting into details, we first state our strategy, and the basic result, which explains already why the expression
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[3, 4]:

 (y) =
D⌫

⇣
1

gu(y)
⌘

p
u0(y)

(10)

Here D⌫ is a parabolic cylinder function [6], and ⌫ is an ansatz parameter that is to be determined. Substituting
this uniform WKB ansatz form of the wave-function into the Schrödinger equation produces a nonlinear equation for
the argument function u(y) that can be solved perturbatively. Purely local analysis in the immediate vicinity of the
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feed back into perturbative expansion ⇒ trans-series expression

2

presentation is in terms of two important quantum mechanical examples, the double-well and Sine-Gordon potentials,
since these contain already much of the physics relevant for the discussion of non-perturbative e↵ects due to degenerate
minima in gauge theories and CPN�1 models. But we stress that the basic idea of resurgent trans-series analysis is
much more general, applying to both linear and nonlinear problems, and to functional problems like QFT.

B. What are trans-series, and where do they come from?

In this paper we concentrate on trans-series expressions for energy eigenvalues in certain QM problems, with a
coupling constant g2. Our notation is chosen to match the coupling parameter g2 in certain QFTs such as Yang-Mills
or CPN�1 models. One could also discuss trans-series representations of the wave-function; this is implicit in our
analysis, but since we are motivated by attempts to compute QFT quantities such as a mass gap, to be very concrete
we focus on energy eigenvalues. For a complementary discussion of trans-series as solutions to di↵erential equations
see [Pham, ...].

The general perturbative expansion of an energy level has the form

E(N)

pert. theory(g
2) =

1X

k=0

g2kE(N)

k (1)

where N is an integer labeling the energy level, and the perturbative coe�cients E(N)

k can be computed by straight-
forward iterative procedures. For the cases we study here, this perturbative expansion is not Borel summable, which
means that on its own it is incomplete and indeed inconsistent.

This situation can be remedied by recognizing that the full expansion of the energy at small coupling is in fact of
the “trans-series” form:

E(N)(g2) = E(N)

pert. theory(g
2) +

1X

k=1

k�1X

l=1

1X

p=0

ck,l,p

✓
1

g2N+1

exp


� c

g2

�◆k ✓
ln


� 1

g2

�◆l

g2p (2)

The second part of the trans-series involves a sum over non-perturbative factors exp[�k c/g2], multiplied by prefactors
that are themselves series in g2 and in ln(1/g2). The basic building blocks of the trans-series, g2, exp[�c/g2] and
ln(1/g2), are called “trans-monomials”, and are all familiar from QM and QFT. Remarkably, the expansion coe�-
cients ck,l,p of the trans-series are inter-twined amongst themselves, and also with the coe�cients of the perturbative
expansion, in such a way that the total trans-series is real and unambiguous. For example, a Borel analysis of the
perturbative series requires an analytic continuation in g2, producing non-perturbative imaginary parts, but these
are precisely cancelled by the imaginary parts associated with the ln(�1/g2) factors in the non-perturbative portion
of the trans-series. Ambiguities only arise if you look at just one isolated portion of the trans-series expansion, for
example just the perturbative part, or just some particular multi-instanton sector. When viewed as a whole, the
analytic continuation of the trans-series expression is unique and exact. This will be explained and demonstrated
explicitly below.

We have three main goals in this paper:

1. Explain in a simple manner how such a trans-series expansion (2) arises, and also in what sense it is generic.

2. Explain the origin of the inter-relations within the trans-series, and their physical consequences.

3. In its strongest form, “resurgence” claims that complete knowledge of the perturbative series is su�cient to gen-
erate the remainder of the trans-series, including all orders of the non-perturbative expansion. We demonstrate
this very strong claim in simple and explicit detail for several QM spectral problems, including the double-well
and Sine-Gordon models.

II. UNIFORM WKB FOR POTENTIALS WITH DEGENERATE CLASSICAL VACUA

A. The Spectral Problem

Consider the spectral problem

� d2

dx2

 (x) + V (x) (x) = E  (x) (3)

determines ν as a function of g2: exponentially close to an integer N
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C. Global Boundary Condition for the Double-Well System

To derive the form of the global boundary condition, recall that the global boundary conditions (33, 34) are imposed
at the barrier midpoint y
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summable the argument 1
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But now this argument 1
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is a complex number, o↵ the real positive axis. Thus in the limit where the modulus

of g2 approaches zero, the appropriate asymptotic behavior of the parabolic cylinder function is not just given by
D⌫(z) ⇠ z⌫e�z2/4 , (z ! +1), as used in (24). We now need to use the (resurgent) asymptotic behavior of the
parabolic cylinder functions throughout the relevant region of the complex plane, given by [6]:

D⌫(z) ⇠ z⌫ e�z2/4F
1

✓
1

z2

◆
+ e±i⇡⌫

p
2⇡

�(�⌫)
z�1�⌫ ez

2/4F
2

✓
1

z2

◆
,

⇡

2
< ± arg(z) < ⇡ (37)

where

F
1

✓
1

z2

◆
=

1X

k=0

�
�
k � ⌫

2

�
�
�
k + 1

2

� ⌫
2

�

�
�
� ⌫

2

�
�
�
1

2

� ⌫
2

� 1

k!

✓
�2

z2

◆k

(38)

F
2

✓
1

z2

◆
=

1X

k=0

�
�
k + 1

2

+ ⌫
2

�
�
�
k + 1 + ⌫

2

�

�
�
1

2

+ ⌫
2

�
�
�
1 + ⌫

2

� 1

k!

✓
2

z2

◆k

(39)

Notice that there are two di↵erent exponential terms e±z2/4 in (37). Normally on the real axis one or other is dominant
or sub-dominant, but for certain rays of z2 in the complex plane they may be equally important. This is the Stokes
phenomenon.

Consider the global boundary condition with Dirichlet boundary condition at the midpoint, as in (34). Using the
full analytic expression (37), the global boundary condition (34) can be written as
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Note that ⇠ is the familiar non-perturbative instanton factor, while H
0

(⌫, g2) is perturbative in g2, and represents the
fluctuations around the instanton.

The expression (40) is an implicit relation for ⌫ as a function of the coupling g2. We solve by expanding ⌫ = N+�⌫,
where N is a non-negative integer, noting that
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where hN is the N th harmonic number [6]. This implies that (for the odd state)
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If we repeat the computation using the Neumann boundary condition at the midpoint, then the only change is a
change in sign on the RHS of (40), which leads to a change of sign of the odd powers of ⇠ in (44). Thus, to leading
order in ⇠ the splitting of the levels is symmetric up and down, but this is not true at higher orders. This expansion
is the trans-series form of the parameter ⌫ mentioned already in (13)-(14) in Section ... . This discussion makes
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The Sine-Gordon case can be directly related to the Mathieu equation by simple changes of variables, given explicitly
in Appendix A. This permits detailed comparison with known results for Mathieu functions [6].
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(y) = sin2(y) (8)

It is well known that in both these cases the perturbative energy levels are split by non-perturbative instanton e↵ects.
This level splitting is (at leading order) a single-instanton e↵ect, and is textbook material [7]. From (6) we see that
g4 plays the role of ~2, and so we expect these non-perturbative e↵ects to be characterized by exponential factors of
the form

exp

✓
� c

g2

◆
(9)

for some constant c > 0.
More interestingly, the perturbative series for these spectral problems is non-Borel-summable, and therefore formally

it induces a non-perturbative imaginary part, even though both potentials are completely stable and the energy should
be purely real. The resolution of this puzzle is that the non-perturbative imaginary part is in fact a two-instanton
e↵ect, and is canceled by a corresponding non-perturbative imaginary contribution coming from the instanton/anti-
instanton interaction [8–11]. We refer to this leading cancelation as the Bogomolny-Zinn-Justin (BZJ) mechanism.
The resurgent trans-series expression (2) for the energy eigenvalue encodes the fact that there is in fact an infinite
tower of such cancelations, thereby relating properties of the perturbative sector and the non-perturbative sector.
The BZJ cancelation is the first of this tower. A new observation we make here is that we do not need to compute
separately the perturbative and non-perturbative sectors: the perturbative series contains all information about
the non-perturbative sector, to all non-perturbative orders. This provides a simple and explicit illustration of the
surprising power of resurgent analysis.

B. Strategy of the Uniform WKB Approach: Origin of the Trans-series Expansion

Before getting into details, we first state our strategy, and the basic result, which explains already why the expression
for the energy eigenvalues has the trans-series form in (2).

Since the potentials we consider have degenerate harmonic vacua, in the g2 ! 0 limit each classical vacuum has the
form of a harmonic oscillator well. Therefore it is natural to use a parabolic uniformWKB ansatz for the wave-function
[3, 4]:

 (y) =
D⌫

⇣
1

gu(y)
⌘

p
u0(y)

(10)

Here D⌫ is a parabolic cylinder function [6], and ⌫ is an ansatz parameter that is to be determined. Substituting
this uniform WKB ansatz form of the wave-function into the Schrödinger equation produces a nonlinear equation for
the argument function u(y) that can be solved perturbatively. Purely local analysis in the immediate vicinity of the
potential minimum, where the potential is harmonic, leads to a perturbative expansion of the energy (explained in
detail in Section ... below):

E = E(⌫, g2) =
1X

k=0

g2kEk(⌫) (11)

D⌫(z) ⇠ z⌫ e�z2/4 [1 + . . . ] + e±i⇡⌫

p
2⇡

�(�⌫)
z�1�⌫ ez

2/4 [1 + . . . ]
⇡

2
< ± arg(z) < ⇡

pert. theory (non-Borel-summable):

1

�(�⌫)

✓
e±i⇡ 2

g2

◆�⌫

=
e�S

instanton

/g2

p
⇡g2

H0(⌫, g
2)

⇠
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feed back into perturbative expansion ⇒ trans-series expression

2

presentation is in terms of two important quantum mechanical examples, the double-well and Sine-Gordon potentials,
since these contain already much of the physics relevant for the discussion of non-perturbative e↵ects due to degenerate
minima in gauge theories and CPN�1 models. But we stress that the basic idea of resurgent trans-series analysis is
much more general, applying to both linear and nonlinear problems, and to functional problems like QFT.

B. What are trans-series, and where do they come from?

In this paper we concentrate on trans-series expressions for energy eigenvalues in certain QM problems, with a
coupling constant g2. Our notation is chosen to match the coupling parameter g2 in certain QFTs such as Yang-Mills
or CPN�1 models. One could also discuss trans-series representations of the wave-function; this is implicit in our
analysis, but since we are motivated by attempts to compute QFT quantities such as a mass gap, to be very concrete
we focus on energy eigenvalues. For a complementary discussion of trans-series as solutions to di↵erential equations
see [Pham, ...].

The general perturbative expansion of an energy level has the form

E(N)

pert. theory(g
2) =

1X

k=0

g2kE(N)

k (1)

where N is an integer labeling the energy level, and the perturbative coe�cients E(N)

k can be computed by straight-
forward iterative procedures. For the cases we study here, this perturbative expansion is not Borel summable, which
means that on its own it is incomplete and indeed inconsistent.

This situation can be remedied by recognizing that the full expansion of the energy at small coupling is in fact of
the “trans-series” form:

E(N)(g2) = E(N)

pert. theory(g
2) +

1X

k=1

k�1X

l=1

1X

p=0

ck,l,p

✓
1

g2N+1

exp


� c

g2

�◆k ✓
ln


� 1

g2

�◆l

g2p (2)

The second part of the trans-series involves a sum over non-perturbative factors exp[�k c/g2], multiplied by prefactors
that are themselves series in g2 and in ln(1/g2). The basic building blocks of the trans-series, g2, exp[�c/g2] and
ln(1/g2), are called “trans-monomials”, and are all familiar from QM and QFT. Remarkably, the expansion coe�-
cients ck,l,p of the trans-series are inter-twined amongst themselves, and also with the coe�cients of the perturbative
expansion, in such a way that the total trans-series is real and unambiguous. For example, a Borel analysis of the
perturbative series requires an analytic continuation in g2, producing non-perturbative imaginary parts, but these
are precisely cancelled by the imaginary parts associated with the ln(�1/g2) factors in the non-perturbative portion
of the trans-series. Ambiguities only arise if you look at just one isolated portion of the trans-series expansion, for
example just the perturbative part, or just some particular multi-instanton sector. When viewed as a whole, the
analytic continuation of the trans-series expression is unique and exact. This will be explained and demonstrated
explicitly below.

We have three main goals in this paper:

1. Explain in a simple manner how such a trans-series expansion (2) arises, and also in what sense it is generic.

2. Explain the origin of the inter-relations within the trans-series, and their physical consequences.

3. In its strongest form, “resurgence” claims that complete knowledge of the perturbative series is su�cient to gen-
erate the remainder of the trans-series, including all orders of the non-perturbative expansion. We demonstrate
this very strong claim in simple and explicit detail for several QM spectral problems, including the double-well
and Sine-Gordon models.

II. UNIFORM WKB FOR POTENTIALS WITH DEGENERATE CLASSICAL VACUA

A. The Spectral Problem

Consider the spectral problem

� d2

dx2

 (x) + V (x) (x) = E  (x) (3)

determines ν as a function of g2: exponentially close to an integer N
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C. Global Boundary Condition for the Double-Well System

To derive the form of the global boundary condition, recall that the global boundary conditions (33, 34) are imposed
at the barrier midpoint y

midpoint

= � 1

2

. When we analytically continue g2 o↵ the positive real axis, this renders Borel
summable the argument 1

gu
�
� 1

2

�
of the parabolic cylinder function D⌫ appearing in the uniform WKB ansatz (10).

But now this argument 1

gu
�
� 1

2

�
is a complex number, o↵ the real positive axis. Thus in the limit where the modulus

of g2 approaches zero, the appropriate asymptotic behavior of the parabolic cylinder function is not just given by
D⌫(z) ⇠ z⌫e�z2/4 , (z ! +1), as used in (24). We now need to use the (resurgent) asymptotic behavior of the
parabolic cylinder functions throughout the relevant region of the complex plane, given by [6]:

D⌫(z) ⇠ z⌫ e�z2/4F
1

✓
1

z2

◆
+ e±i⇡⌫

p
2⇡

�(�⌫)
z�1�⌫ ez

2/4F
2

✓
1

z2

◆
,

⇡

2
< ± arg(z) < ⇡ (37)

where

F
1

✓
1

z2

◆
=

1X

k=0

�
�
k � ⌫

2

�
�
�
k + 1

2

� ⌫
2

�

�
�
� ⌫

2

�
�
�
1

2

� ⌫
2

� 1

k!

✓
�2

z2

◆k

(38)

F
2

✓
1

z2

◆
=

1X

k=0

�
�
k + 1

2

+ ⌫
2

�
�
�
k + 1 + ⌫

2

�

�
�
1

2

+ ⌫
2

�
�
�
1 + ⌫

2

� 1

k!

✓
2

z2

◆k

(39)

Notice that there are two di↵erent exponential terms e±z2/4 in (37). Normally on the real axis one or other is dominant
or sub-dominant, but for certain rays of z2 in the complex plane they may be equally important. This is the Stokes
phenomenon.

Consider the global boundary condition with Dirichlet boundary condition at the midpoint, as in (34). Using the
full analytic expression (37), the global boundary condition (34) can be written as

1

�(�⌫)

✓
e±i⇡ 2

g2

◆�⌫

= �⇠H
0

(⌫, g2) (40)

where
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exp
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(41)
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!⌫+ 1
2 F

1

✓
u2(� 1

2 )
2g2

◆

F
2
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u2(� 1

2 )
2g2

◆ exp


� 1

2g2
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u2

✓
�1

2

◆
� u2

0
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�1

2

◆◆�
(42)

Note that ⇠ is the familiar non-perturbative instanton factor, while H
0

(⌫, g2) is perturbative in g2, and represents the
fluctuations around the instanton.

The expression (40) is an implicit relation for ⌫ as a function of the coupling g2. We solve by expanding ⌫ = N+�⌫,
where N is a non-negative integer, noting that

1

�(�⌫)

✓
e±i⇡ 2

g2

◆�⌫

= �N !

✓
e±i⇡ 2

g2

◆�N ⇢
�⌫ �


� + ln

✓
e±i⇡ 2

g2

◆
� hN

�
(�⌫)2 + . . .

�
(43)

where hN is the N th harmonic number [6]. This implies that (for the odd state)

⌫ = N +

✓
� 2

g2

◆N H
0

(N, g2)

N !
⇠ �


� + ln

✓
e±i⇡ 2

g2

◆
� hN

�✓
� 2

g2

◆
2N ✓H

0

(N, g2)

N !

◆
2

⇠2 +O(⇠3) (44)

If we repeat the computation using the Neumann boundary condition at the midpoint, then the only change is a
change in sign on the RHS of (40), which leads to a change of sign of the odd powers of ⇠ in (44). Thus, to leading
order in ⇠ the splitting of the levels is symmetric up and down, but this is not true at higher orders. This expansion
is the trans-series form of the parameter ⌫ mentioned already in (13)-(14) in Section ... . This discussion makes

3

We are interested in cases where the potential V (x) has degenerate vacua, which are locally harmonic: V (x) ⇡ x2+. . . .
The two paradigmatic cases we study in detail are the double-well (DW) and Sine-Gordon (SG) potentials:

V
DW

(x) = x2(1 + g x)2 = x2 + 2g x3 + g2x4 (4)

V
SG

(x) =
1

g2
sin2(g x) = x2 � 1

3
g2 x4 + . . . (5)

The Sine-Gordon case can be directly related to the Mathieu equation by simple changes of variables, given explicitly
in Appendix A. This permits detailed comparison with known results for Mathieu functions [6].

It is convenient to rescale the coordinate variable to y = g x:

� g4
d2

dy2
 (y) + V (y) (y) = g2 E  (y) (6)

where

V
DW

(y) = y2(1 + y)2 (7)

V
SG

(y) = sin2(y) (8)

It is well known that in both these cases the perturbative energy levels are split by non-perturbative instanton e↵ects.
This level splitting is (at leading order) a single-instanton e↵ect, and is textbook material [7]. From (6) we see that
g4 plays the role of ~2, and so we expect these non-perturbative e↵ects to be characterized by exponential factors of
the form

exp

✓
� c

g2

◆
(9)

for some constant c > 0.
More interestingly, the perturbative series for these spectral problems is non-Borel-summable, and therefore formally

it induces a non-perturbative imaginary part, even though both potentials are completely stable and the energy should
be purely real. The resolution of this puzzle is that the non-perturbative imaginary part is in fact a two-instanton
e↵ect, and is canceled by a corresponding non-perturbative imaginary contribution coming from the instanton/anti-
instanton interaction [8–11]. We refer to this leading cancelation as the Bogomolny-Zinn-Justin (BZJ) mechanism.
The resurgent trans-series expression (2) for the energy eigenvalue encodes the fact that there is in fact an infinite
tower of such cancelations, thereby relating properties of the perturbative sector and the non-perturbative sector.
The BZJ cancelation is the first of this tower. A new observation we make here is that we do not need to compute
separately the perturbative and non-perturbative sectors: the perturbative series contains all information about
the non-perturbative sector, to all non-perturbative orders. This provides a simple and explicit illustration of the
surprising power of resurgent analysis.

B. Strategy of the Uniform WKB Approach: Origin of the Trans-series Expansion

Before getting into details, we first state our strategy, and the basic result, which explains already why the expression
for the energy eigenvalues has the trans-series form in (2).

Since the potentials we consider have degenerate harmonic vacua, in the g2 ! 0 limit each classical vacuum has the
form of a harmonic oscillator well. Therefore it is natural to use a parabolic uniformWKB ansatz for the wave-function
[3, 4]:

 (y) =
D⌫

⇣
1

gu(y)
⌘

p
u0(y)

(10)

Here D⌫ is a parabolic cylinder function [6], and ⌫ is an ansatz parameter that is to be determined. Substituting
this uniform WKB ansatz form of the wave-function into the Schrödinger equation produces a nonlinear equation for
the argument function u(y) that can be solved perturbatively. Purely local analysis in the immediate vicinity of the
potential minimum, where the potential is harmonic, leads to a perturbative expansion of the energy (explained in
detail in Section ... below):

E = E(⌫, g2) =
1X

k=0

g2kEk(⌫) (11)
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generic: property of parabolic cylinder functions

pert. theory (non-Borel-summable):
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