Lattice $\mathcal{N} = 4$ super Yang-Mills

Simon Catterall, also Poul Damgaard, Tom Degrand, Joel Giedt, Anosh Joseph,..

September 21, 2013

 \leftarrow \cap \rightarrow \leftarrow \cap \rightarrow

ALCOHOL:

i al T≣ira

 $2Q$

[Lattice SUSY - the problems and how to dodge them](#page-2-0) Twisted $\mathcal{N} = 4$ [SYM: lattice formulation](#page-6-0) [Non-perturbative study: phase diagram](#page-14-0)

[Lattice SUSY - the problems and how to dodge them](#page-2-0)

Twisted $\mathcal{N} = 4$ SYM: lattice formulation

[Non-perturbative study: phase diagram](#page-14-0)

Simon Catterall, also Poul Damgaard, Tom Degrand, Joel Gied Lattice $\mathcal{N} = 4$ [super Yang-Mills](#page-0-0)

イロメ マ桐 メラミンマチャ

 $2Q$

Barriers to Lattice Supersymmetry

- $\blacktriangleright \{Q,\overline{Q}\} = \gamma_{\mu}p_{\mu}$. No p_{μ} on lattice. Equivalently: no Leibniz rule for difference ops: $\Delta(AB) \neq \Delta AB + A\Delta B$.
- \triangleright Classical SUSY breaking leads to (many) SUSY violating ops via quantum corrections. Couplings must be adjusted with cut-off $(1/a)$ to achieve SUSY in continuum limit -fine tuning.
- \triangleright Discretization of Dirac equation: Lattice theories contain additional fermions (doublers) which do not decouple in continuum limit. Consequence: no. fermions \neq no. bosons
- \triangleright Lattice gauge fields live on lattice links and take values in group. Fermions live on lattice sites and (for adjoint fields) live in algebra

メロメ メ御き メミメ メミメー

Putting SUSY on a lattice

Goals of any successful SUSY lattice formulation:

- \triangleright Reduce/eliminate fine tuning. In particular scalar masses.
- \triangleright Keep exact gauge invariance. Lesson of lattice QCD (Wilson)
- \blacktriangleright Avoid fermion doubling...
- \triangleright More symmetrical treatment of bosons and fermions particularly for gauge theories.

New formulations exist with all these features

 \leftarrow \cap \rightarrow \leftarrow \cap \rightarrow

New ideas - twisting

- \triangleright Rewrite continuum theory in twisted variables.
- Exposes a single scalar supersymmetry Q whose algebra is simple: $Q^2 = 0$. Furthermore $S \sim Q\Lambda(\Phi)$.
- \triangleright Key: this SUSY can be retained on discretization: easy to build invariant lattice action.
- \blacktriangleright Fine tuning reduced (eliminated ?):

Exact hypercubic symmetry $\stackrel{a\rightarrow 0}{\rightarrow}$ Full Poincare invariance Exact $\mathcal Q$ symmetry \rightarrow Full SUSY ?

メロメ メ御 メメ ミメ メミメ

つへへ

- See that all fields will live on links and take values in algebra.
- \triangleright Structure of fermionic action dictated by exact SUSY would doublers will be physical

Most interesting application: $\mathcal{N} = 4$ SYM

Many lattice SUSY theories in $D < 4$.

However in $D = 4$ they single out a unique theory: $\mathcal{N} = 4$ YM

- \triangleright Fascinating QFT finite but non-trivial. A lattice formulation gives a non-perturbative definition of theory (like lattice QCD for QCD)
- \blacktriangleright Heart of AdS/CFT correspondence.

String theory in AdS_5 and $\mathcal{N}=4$ SYM on boundary

 \triangleright Lattice formulation allows us to verify and extend holographic ideas: compute classical and quantum string corrections ... (expansion in $1/N$ and $1/\lambda$)

メロメ メタメ メモメ メモメ

∽≏ດ

Twisted fields of $\mathcal{N} = 4$ YM

Basic idea:

Decompose all fields on twisted (Eucl.) Lorentz group

$$
SO'(4)=\mathrm{diag}\left(SO_R(4)\times SO_{\mathrm{Lorentz}}(4)\right)
$$

 \blacktriangleright Spinors: $\psi^i_\alpha \to \Psi$: 4 \times 4 matrix: expand on products of γ matrices yields (integer spin) twisted fermions $(\eta, \psi_{\mu}, \chi_{\mu\nu}, \ldots)$

イロメ マ桐 メラミンマチャ

へのへ

▶ Bosons: Gauge fields unchanged. Scalars become vectors. Combine with A_{μ} to form complex fields A_{μ}

Twisted action

Can write $\mathcal{N} = 4$ continuum action in twisted form.

$$
\mathcal{S} = \frac{1}{g^2} \mathcal{Q} \int \text{Tr} \left(\chi_{ab} \mathcal{F}_{ab} + \eta [\overline{\mathcal{D}}_a, \mathcal{D}_a] - \frac{1}{2} \eta d \right) + \mathcal{S}_{\text{closed}}
$$

with

$$
\mathcal{D}_a = \partial_a + \mathcal{A}_a, \ \overline{\mathcal{D}}_a = \partial_a + \overline{\mathcal{A}}_a, \ a = 1 \dots 5
$$

and

$$
\mathcal{S}_{\rm closed}=-\frac{1}{4g^2}\int \epsilon_{abcde}\chi_{ab}\overline{\mathcal{D}}_c\chi_{de}
$$

Most compact form for 4D action - dim. reduction of 5D theory

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

 $2Q$

Scalar supersymmetry

$$
Q \mathcal{A}_a = \psi_a
$$

\n
$$
Q \psi_a = 0
$$

\n
$$
Q \overline{\mathcal{A}}_a = 0
$$

\n
$$
Q \chi_{ab} = -\overline{\mathcal{F}}_{ab}
$$

\n
$$
Q \eta = d
$$

\n
$$
Q d = 0
$$

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

 $2Q$

扂

Note: $Q^2 = 0$ as promised... $QS_{closed} = 0$ by Bianchi

Twisted Lattice theory

- \triangleright Assign all lattice fields to oriented links. Gauge transform like $\mathrm{eg.} \psi$ a \rightarrow $G(x) \psi$ a $(x) G^{\dagger}(x+a)$ $(\chi_{ab}(x))$ lives on link $x + a + b \rightarrow x$)
- ► Lattice is unique: 5 (complex) gauge fields \rightarrow lattice with (equal) 5 basis vectors with $\sum_{a=1}^5 \mathbf{e}^a = 0$. $\boxed{A_4^*}$ lattice
- \blacktriangleright All fields take values in $U(N)$ algebra.
- \triangleright Well defined prescription for gauge covariant lattice difference operators...

メロメ メ御 メメミメメミメ

Derivatives

Precise dictionary exists to translate \mathcal{D}_{μ} to gauge covariant difference ops. Eg

$$
a\mathcal{D}_a^+\psi_b(x) = \mathcal{U}_a(x)\psi_b(x+a) - \psi_b(x)\mathcal{U}_a(x+b)
$$

New field lives on link $(x \rightarrow x + a + b)$

 \triangleright Naive continuum limit : $U_a(x) = I + aA_a(x) + \dots$

$$
\mathcal{D}_{a}^{+}\psi_{b}(x) \rightarrow \frac{1}{a}(\psi_{b}(x+a)-\psi_{b}(x))+[\mathcal{A}_{a},\psi_{b}]+\mathcal{O}(a)
$$

 $2Q$

メロメ メ御 メメミメメミメ

Gauge invariance, doublers and all that

- \triangleright All terms in action local, correspond to closed loops and hence are lattice gauge invariant
- \blacktriangleright \mathcal{U}_a 's non compact! $\mathcal{U}_a = \sum_B \mathcal{T}^B \mathcal{U}_a^B$ flat measure $\int \prod D \mathcal{U}_\mathsf{a} D \overline{\mathcal{U}}_\mathsf{a}$. Nevertheless, still gauge invariant - Jacobians resulting from gauge transformation of U and \overline{U} cancel.
- \triangleright Bosonic action (trivially) has no doublers. Exact SUSY ensures no fermion doublers ... (fermion action has Kähler-Dirac form)

Bigger question: how to generate correct naive continuum limit ?

 $4.11 \times 1.00 \times 1.00 \times 10^{-2}$

∽≏ດ

Naive continuum limit - fixing the vev of the $U(1)$ scalar

- \triangleright Need $\mathcal{U}_a = I + a\mathcal{A}_a(x) + \dots$ Here, unlike lattice QCD, unit matrix necessary for generating kinetic terms arises from the vev of a dynamical field! $\boxed{{\rm Im} \mathcal{A}_a^0 = 1}$
- \triangleright Ensure by adding gauge invariant potential

$$
\delta S = \mu^2 \sum_{x,a} \left(\frac{1}{N} \text{Tr} \left(\mathcal{U}_a^{\dagger} \mathcal{U}_a \right) - 1 \right)^2
$$

Polar decomposition: $U_a = (I + h_a)u_a$. Generates potential for $h^0_a \sim {\rm Im} {\cal A}^0_a$. $U(1)$ scalar.

メロメ メタメ メモメ メモメ

∽≏ດ

 \triangleright Breaks Q SUSY softly. All breaking terms must vanish for $\mu \rightarrow 0$ (exact \mathcal{Q}).

Quantum corrections ...

Can show (JHEP 1104 (2011) 074, arXiv:1306.3891)

- \blacktriangleright Lattice theory renormalizable: only counterterms allowed by lattice symmetries correspond to terms in original action
- \triangleright Effective potential vanishes to all orders in p. theory. No scalar mass terms!
- \blacktriangleright At one loop:
	- \triangleright No fine tuning: common wavefunction renormalization
	- \triangleright Vanishing beta function: Divergence structure matches continuum
	- \triangleright Restoration of 15 additional twisted susys depends on restoration of Lorentz invariance.

Need to go beyond p. theory....

 $4.11 \times 4.60 \times 4.71 \times$

Simulations

- \blacktriangleright Integrate fermions \rightarrow ${\rm Pf}(M).$ Realize as $\det \left(M^\dagger M\right)^{-\frac{1}{4}}$
- \triangleright Standard lattice QCD algs may be used: RHMC with Omelyan, multi time step evolution. GPU acceleration for inverter (speedup: 5-10 over single core code for $L = 8^3 \times 16$)
- \triangleright Phase quenched approximation should be ok: analytical argument, numerical evidence ...
- First step: phase structure $U(2)$, L^4 , apbc, $L = 4, 6, 8$
	- \blacktriangleright Instabilities from flat directions ?
	- \blacktriangleright Supersymmetry realized ?
	- \triangleright (De)confinement, (absence of) chiral symmetry breaking, phase transitions ?

イロメ マ桐 メラミンマチャ

Scalar eigenvalue distribution - insensitive to boson mass μ

 $2Q$

重

Scalar eigenvalue distribution - localized for all λ

 $2Q$

重

Comments

Common statement: "Moduli space is not lifted in $\mathcal{N} = 4$ **by** quantum corrections ..." Why is scalar distribution not flat as $\mu \to 0$?

 \triangleright Pfaffian vanishes on flat directions. Formally this zero cancels against infinity from boson zero modes but latter are lifted at non-zero μ .

- \triangleright Thus configurations corresponding to flat directions make no contribution to lattice path integral.
- \triangleright Small fluctuations around flat directions cost increasing action as move away from origin in field space - large scalar eigenvalues suppressed.

メロメ メ御き メミメ メミメー

Test of exact supersymmetry

 $2Q$

Sign problem ?

Integrate fermions: complex Pfaffian. But observed Pfaffian phase α small in phase quenched simulations..

 4.17 ± 1.0 4 ଲ $2Q$

[Lattice SUSY - the problems and how to dodge them](#page-2-0) Twisted $\mathcal{N} = 4$ [SYM: lattice formulation](#page-6-0) [Non-perturbative study: phase diagram](#page-14-0)

Phase structure - String tension

 290

[Lattice SUSY - the problems and how to dodge them](#page-2-0) Twisted $\mathcal{N} = 4$ [SYM: lattice formulation](#page-6-0) [Non-perturbative study: phase diagram](#page-14-0)

Coulomb fits

 290

[Lattice SUSY - the problems and how to dodge them](#page-2-0) Twisted $\mathcal{N} = 4$ [SYM: lattice formulation](#page-6-0) [Non-perturbative study: phase diagram](#page-14-0)

Chiral symmetry breaking - or lack of it ..

 Ω

In progress ...

- \triangleright Push to larger lattices. Developed parallel code (MILC) $8^3 \times 16$ and $16^3 \times 32$ lattices.
- **Push to larger** λ **. Care needed lattice** $U(1)$ **sector can** undergo transition. Suppress with coupling to $\det(U_P)$. Expanded phase diagram.
- \triangleright Anomalous dimensions: Measure Konishi and SUGRA (BPS) protected) ops. Agreement with e.g. conformal bootstrap bounds ?
- \triangleright Restoration of additional SUSYs: general arguments show that restoration of Lorentz invariance should be enough...

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

つくい

 \triangleright Black hole physics via holography ...

Conclusions

- \triangleright Simulations of $\mathcal{N} = 4$ YM look promising: gauge invariance and (some) SUSY can be preserved. No instabilities from flat directions, no sign problem.
- \triangleright Prelim investigations show no sign of any phase transitions as vary λ . String tension small. Only Coulomb term needed. Evidence for single, deconfined phase. Consistent with pert theory: 1 loop calc shows $\beta_{\text{latt}}(\lambda) = 0$

Lots of work to do ! ... lots of interesting questions to address ..!

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

The end

ミメ メモメ

 $2Q$