Lattice $\mathcal{N} = 4$ super Yang-Mills

Simon Catterall, also Poul Damgaard, Tom Degrand, Joel Giedt, Anosh Joseph,..

September 21, 2013

イロト イヨト イヨト イヨト

Lattice SUSY - the problems and how to dodge them Twisted $\mathcal{N} = 4$ SYM: lattice formulation Non-perturbative study: phase diagram

Lattice SUSY - the problems and how to dodge them

Twisted $\mathcal{N} = 4$ SYM: lattice formulation

Non-perturbative study: phase diagram

Simon Catterall, also Poul Damgaard, Tom Degrand, Joel Gie Lattice $\mathcal{N} = 4$ super Yang-Mills

イロン イヨン イヨン イヨン

 $\begin{array}{l} \label{eq:subscription} & \text{Outline} \\ \text{Lattice SUSY - the problems and how to dodge them} \\ & \text{Twisted $\mathcal{N}=4$ SYM: lattice formulation} \\ & \text{Non-perturbative study: phase diagram} \end{array}$

Barriers to Lattice Supersymmetry

- ► $\{Q, \overline{Q}\} = \gamma_{\mu} p_{\mu}$. No p_{μ} on lattice. Equivalently: no Leibniz rule for difference ops: $\Delta(AB) \neq \Delta AB + A\Delta B$.
- Classical SUSY breaking leads to (many) SUSY violating ops via quantum corrections. Couplings must be adjusted with cut-off (1/a) to achieve SUSY in continuum limit -fine tuning.
- ► Discretization of Dirac equation: Lattice theories contain additional fermions (doublers) which do not decouple in continuum limit. Consequence: no. fermions ≠ no. bosons
- Lattice gauge fields live on lattice links and take values in group. Fermions live on lattice sites and (for adjoint fields) live in algebra

イロン イヨン イヨン イヨン

Putting SUSY on a lattice

Goals of any successful SUSY lattice formulation:

- ► Reduce/eliminate fine tuning. In particular scalar masses.
- Keep exact gauge invariance. Lesson of lattice QCD (Wilson)
- Avoid fermion doubling...
- More symmetrical treatment of bosons and fermions particularly for gauge theories.

New formulations exist with all these features

New ideas - twisting

- Rewrite continuum theory in twisted variables.
- Exposes a single scalar supersymmetry Q whose algebra is simple: Q² = 0. Furthermore S ~ QΛ(Φ).
- Key: this SUSY can be retained on discretization: easy to build invariant lattice action.
- Fine tuning reduced (eliminated ?):

Exact hypercubic symmetry $\stackrel{a \to 0}{\rightarrow}$ Full Poincare invarianceExact Q symmetry \rightarrow Full SUSY ?

・ロン ・聞と ・ほと ・ほと

- See that all fields will live on links and take values in algebra.
- Structure of fermionic action dictated by exact SUSY would doublers will be physical

Most interesting application: $\mathcal{N} = 4$ SYM

Many lattice SUSY theories in D < 4.

However in D = 4 they single out a unique theory: $\mathcal{N} = 4$ YM

- Fascinating QFT finite but non-trivial. A lattice formulation gives a non-perturbative definition of theory (like lattice QCD for QCD)
- ► Heart of AdS/CFT correspondence.

String theory in AdS_5 and $\mathcal{N} = 4$ SYM on boundary

• Lattice formulation allows us to verify and extend holographic ideas: compute classical and quantum string corrections ... (expansion in 1/N and $1/\lambda$)

イロト イヨト イヨト イヨト

Twisted fields of $\mathcal{N}=4$ YM

Basic idea:

Decompose all fields on twisted (Eucl.) Lorentz group

$$SO'(4) = \operatorname{diag} (SO_R(4) \times SO_{\operatorname{Lorentz}}(4))$$

Spinors: ψⁱ_α → Ψ: 4 × 4 matrix: expand on products of γ matrices yields (integer spin) twisted fermions (η, ψ_μ, χ_{μν},...)

・ロン ・回 と ・ ヨ と ・ ヨ と

Bosons: Gauge fields unchanged. Scalars become vectors.
 Combine with A_μ to form complex fields A_μ

Twisted action

Can write $\mathcal{N} = 4$ continuum action in twisted form.

$$S = \frac{1}{g^2} \mathcal{Q} \int \operatorname{Tr} \left(\chi_{ab} \mathcal{F}_{ab} + \eta [\overline{\mathcal{D}}_a, \mathcal{D}_a] - \frac{1}{2} \eta d \right) + S_{\text{closed}}$$

with

$$\mathcal{D}_{a} = \partial_{a} + \mathcal{A}_{a}, \ \overline{\mathcal{D}}_{a} = \partial_{a} + \overline{\mathcal{A}}_{a}, \ a = 1 \dots 5$$

and

$$S_{
m closed} = -rac{1}{4g^2}\int \epsilon_{abcde}\chi_{ab}\overline{\mathcal{D}}_{c}\chi_{de}$$

Most compact form for 4D action - dim. reduction of 5D theory

イロン 不同と 不同と 不同と

Scalar supersymmetry

$$\begin{array}{rcl} \mathcal{Q} \ \mathcal{A}_{a} &=& \psi_{a} \\ \mathcal{Q} \ \psi_{a} &=& 0 \\ \mathcal{Q} \ \overline{\mathcal{A}}_{a} &=& 0 \\ \mathcal{Q} \ \chi_{ab} &=& -\overline{\mathcal{F}}_{ab} \\ \mathcal{Q} \ \eta &=& d \\ \mathcal{Q} \ d &=& 0 \end{array}$$

・ロン ・回 と ・ ヨ と ・ ヨ と

Note: $Q^2 = 0$ as promised... $QS_{closed} = 0$ by Bianchi

Twisted Lattice theory

- Assign all lattice fields to oriented links. Gauge transform like eg.ψ_a → G(x)ψ_a(x)G[†](x + a) (χ_{ab}(x) lives on link x + a + b → x)
- ▶ Lattice is unique: 5 (complex) gauge fields \rightarrow lattice with (equal) 5 basis vectors with $\sum_{a=1}^{5} \mathbf{e}^{a} = 0$. A_{4}^{*} lattice
- All fields take values in U(N) algebra.
- Well defined prescription for gauge covariant lattice difference operators...

イロト イヨト イヨト イヨト

 $\begin{array}{l} & \text{Outline} \\ \text{Lattice SUSY - the problems and how to dodge them} \\ & \textbf{Twisted } \mathcal{N} = 4 \ \textbf{SYM: lattice formulation} \\ & \text{Non-perturbative study: phase diagram} \end{array}$

Derivatives

Precise dictionary exists to translate D_µ to gauge covariant difference ops. Eg

$$a\mathcal{D}_{a}^{+}\psi_{b}(x) = \mathcal{U}_{a}(x)\psi_{b}(x+a) - \psi_{b}(x)\mathcal{U}_{a}(x+b)$$

New field lives on link $(x \rightarrow x + a + b)$

▶ Naive continuum limit : $U_a(x) = I + aA_a(x) + ...$:

$$\mathcal{D}_a^+\psi_b(x)
ightarrow rac{1}{a} \left(\psi_b(x+a) - \psi_b(x)\right) + [\mathcal{A}_a, \psi_b] + \mathcal{O}(a)$$

イロト イヨト イヨト イヨト

Gauge invariance, doublers and all that

- All terms in action local, correspond to closed loops and hence are lattice gauge invariant
- ► U_a 's non compact! $U_a = \sum_B T^B U_a^B$ flat measure $\int \prod D U_a D \overline{U}_a$. Nevertheless, still gauge invariant - Jacobians resulting from gauge transformation of U and \overline{U} cancel.
- Bosonic action (trivially) has no doublers. Exact SUSY ensures no fermion doublers ... (fermion action has Kähler-Dirac form)

Bigger question: how to generate correct naive continuum limit ?

・ロト ・日本 ・モート ・モート

Naive continuum limit - fixing the vev of the U(1) scalar

- ► Need U_a = I + aA_a(x) + Here, unlike lattice QCD, unit matrix necessary for generating kinetic terms arises from the vev of a dynamical field! ImA_a⁰ = 1
- Ensure by adding gauge invariant potential

$$\delta S = \mu^2 \sum_{x,a} \left(\frac{1}{N} \operatorname{Tr} \left(\mathcal{U}_a^{\dagger} \mathcal{U}_a \right) - 1 \right)^2$$

Polar decomposition: $U_a = (I + h_a)u_a$. Generates potential for $h_a^0 \sim \text{Im} \mathcal{A}_a^0$. U(1) scalar.

・ロン ・回と ・ヨン・

▶ Breaks Q SUSY softly. All breaking terms must vanish for $\mu \rightarrow 0$ (exact Q).

Quantum corrections ...

Can show (JHEP 1104 (2011) 074, arXiv:1306.3891)

- Lattice theory renormalizable: only counterterms allowed by lattice symmetries correspond to terms in original action
- Effective potential vanishes to all orders in p. theory. No scalar mass terms!
- At one loop:
 - No fine tuning: common wavefunction renormalization
 - Vanishing beta function: Divergence structure matches continuum
 - Restoration of 15 additional twisted susys depends on restoration of Lorentz invariance.

Need to go beyond p. theory....

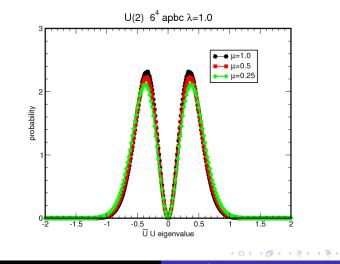
イロト イポト イヨト イヨト

Simulations

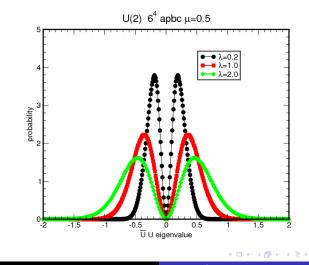
- Integrate fermions $\rightarrow \operatorname{Pf}(M)$. Realize as $\det (M^{\dagger}M)^{-\frac{1}{4}}$
- Standard lattice QCD algs may be used: RHMC with Omelyan, multi time step evolution. GPU acceleration for inverter (speedup: 5-10 over single core code for L = 8³ × 16)
- Phase quenched approximation should be ok: analytical argument, numerical evidence ...
- First step: phase structure $U(2), L^4, apbc, L = 4, 6, 8$
 - Instabilities from flat directions ?
 - Supersymmetry realized ?
 - (De)confinement, (absence of) chiral symmetry breaking, phase transitions ?

イロン イヨン イヨン イヨン

Scalar eigenvalue distribution - insensitive to boson mass μ



Scalar eigenvalue distribution - localized for all λ



< ≣ >

 $\label{eq:subscription} \begin{array}{l} \text{Outline} \\ \text{Lattice SUSY - the problems and how to dodge them} \\ \text{Twisted $\mathcal{N}=4$ SYM: lattice formulation} \\ \text{Non-perturbative study: phase diagram} \end{array}$

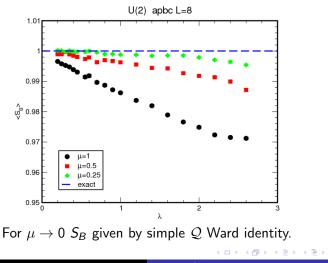
Comments

- Common statement: "Moduli space is not lifted in N = 4 by quantum corrections …" Why is scalar distribution not flat as µ → 0?
- Pfaffian vanishes on flat directions. Formally this zero cancels against infinity from boson zero modes but latter are lifted at non-zero µ.
- Thus configurations corresponding to flat directions make no contribution to lattice path integral.
- Small fluctuations around flat directions cost increasing action as move away from origin in field space - large scalar eigenvalues suppressed.

・ロン ・回 と ・ 回 と ・ 回 と

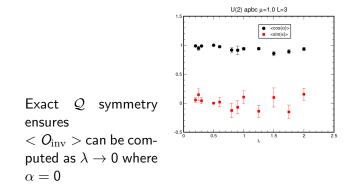
Lattice SUSY - the problems and how to dodge them Twisted $\mathcal{N}=4$ SYM: lattice formulation Non-perturbative study: phase diagram

Test of exact supersymmetry



Sign problem ?

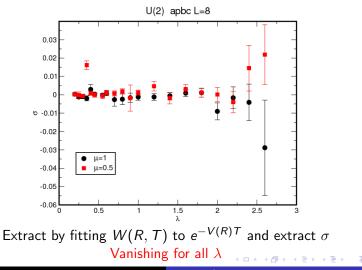
Integrate fermions: complex Pfaffian. But observed Pfaffian phase α small in phase quenched simulations..



A ■

Lattice SUSY - the problems and how to dodge them Twisted $\mathcal{N}=4$ SYM: lattice formulation Non-perturbative study: phase diagram

Phase structure - String tension



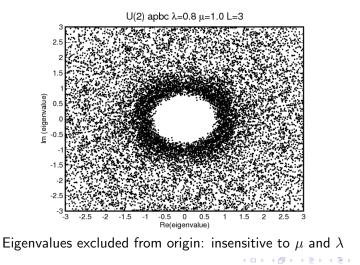
Lattice SUSY - the problems and how to dodge them Twisted $\mathcal{N}=4$ SYM: lattice formulation Non-perturbative study: phase diagram

Coulomb fits



Lattice SUSY - the problems and how to dodge them Twisted $\mathcal{N}=4$ SYM: lattice formulation Non-perturbative study: phase diagram

Chiral symmetry breaking - or lack of it ...



 $\label{eq:subscription} \begin{array}{l} \text{Outline} \\ \text{Lattice SUSY - the problems and how to dodge them} \\ \text{Twisted $\mathcal{N}=4$ SYM: lattice formulation} \\ \text{Non-perturbative study: phase diagram} \end{array}$

In progress ...

- ▶ Push to larger lattices. Developed parallel code (MILC) 8³ × 16 and 16³ × 32 lattices.
- Push to larger λ. Care needed lattice U(1) sector can undergo transition. Suppress with coupling to det (U_P). Expanded phase diagram.
- Anomalous dimensions: Measure Konishi and SUGRA (BPS protected) ops. Agreement with e.g. conformal bootstrap bounds ?
- Restoration of additional SUSYs: general arguments show that restoration of Lorentz invariance should be enough...

< 日 > < 回 > < 回 > < 回 > < 回 > <

Black hole physics via holography ...

 $\label{eq:subscription} \begin{array}{l} \text{Outline} \\ \text{Lattice SUSY - the problems and how to dodge them} \\ \text{Twisted $\mathcal{N}=4$ SYM: lattice formulation} \\ \text{Non-perturbative study: phase diagram} \end{array}$

Conclusions

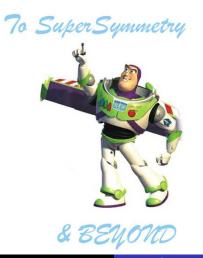
- Simulations of N = 4 YM look promising: gauge invariance and (some) SUSY can be preserved. No instabilities from flat directions, no sign problem.
- Prelim investigations show no sign of any phase transitions as vary λ. String tension small. Only Coulomb term needed.
 Evidence for single, deconfined phase. Consistent with pert theory: 1 loop calc shows β_{latt}(λ) = 0

Lots of work to do ! ... lots of interesting questions to address ..!

・ロン ・回と ・ヨン ・ヨン

Outline Lattice SUSY - the problems and how to dodge them Twisted $\mathcal{N} = 4$ SYM: lattice formulation Non-perturbative study: phase diagram

The end



E ▶ < E ▶