

DESY THEORY WORKSHOP 24 - 27 September 2013

Nonperturbative QFT: Methods and Applications

DESY Hamburg, Germany

Time Evolution of the Large-Scale Tail of Primordial Magnetic Fields

Andrey Saveliev¹

Universität Hamburg

September 25th, 2013

¹with Karsten Jedamzik (Université Montpellier II) and Günter Sigl (Universität Hamburg)

[Extragalactic Magnetic Fields \(EGMF\)](#page-2-0)

[Primordial Magnetic Fields - Basic Properties](#page-11-0)

[Results on the Time Evolution of Primordial Magnetic Fields](#page-21-0)

The origin of EGMF is still uncertain - mainly two different concepts:

The origin of EGMF is still uncertain - mainly two different concepts:

 \triangleright Astrophysical scenario: Seed magnetic fields are generated during structure formation (e.g. by a Biermann Battery [\[Biermann, 1950\]](#page-31-1)) and are then amplified by the dynamo effect [\[Zeldovich et al., 1980\]](#page-32-0)

The origin of EGMF is still uncertain - mainly two different concepts:

- \triangleright Astrophysical scenario: Seed magnetic fields are generated during structure formation (e.g. by a Biermann Battery [\[Biermann, 1950\]](#page-31-1)) and are then amplified by the dynamo effect [\[Zeldovich et al., 1980\]](#page-32-0)
- **Cosmological scenario: Strong seed magnetic fields are** generated in the Early Universe, e.g. at a phase transition (QCD, electroweak) [\[Sigl et al., 1997\]](#page-32-1) or during inflation [\[Turner and Widrow, 1988\]](#page-32-2), and some of the initial energy content is transfered to larger scales.

The origin of EGMF is still uncertain - mainly two different concepts:

- \triangleright Astrophysical scenario: Seed magnetic fields are generated during structure formation (e.g. by a Biermann Battery [\[Biermann, 1950\]](#page-31-1)) and are then amplified by the dynamo effect [\[Zeldovich et al., 1980\]](#page-32-0)
- **Cosmological scenario: Strong seed magnetic fields are** generated in the Early Universe, e.g. at a phase transition (QCD, electroweak) [\[Sigl et al., 1997\]](#page-32-1) or during inflation [\[Turner and Widrow, 1988\]](#page-32-2), and some of the initial energy content is transfered to larger scales.

The latter are the so-called primordial magnetic fields and will be focused on in the following.

The origin of EGMF is still uncertain - mainly two different concepts:

- \triangleright Astrophysical scenario: Seed magnetic fields are generated during structure formation (e.g. by a Biermann Battery [\[Biermann, 1950\]](#page-31-1)) and are then amplified by the dynamo effect [\[Zeldovich et al., 1980\]](#page-32-0)
- \triangleright Cosmological scenario: Strong seed magnetic fields are generated in the Early Universe, e.g. at a phase transition (QCD, electroweak) [\[Sigl et al., 1997\]](#page-32-1) or during inflation [\[Turner and Widrow, 1988\]](#page-32-2), and some of the initial energy content is transfered to larger scales.

The latter are the so-called primordial magnetic fields and will be focused on in the following.

 \triangleright Basics for the time evolution: Homogeneous and isotropic magnetohydrodynamics in an expanding Universe.

Magnetohydrodynamics (MHD)

Magnetohydrodynamics (MHD)

 \blacktriangleright Maxwell's equations:

$$
\nabla\cdot\mathbf{B}=0,\ \nabla\times\mathbf{E}=-\partial_t\mathbf{B},\ \nabla\times\mathbf{B}=4\pi\mathbf{j}
$$

Magnetohydrodynamics (MHD)

 \blacktriangleright Maxwell's equations:

 $\nabla \cdot \mathbf{B} = 0$, $\nabla \times \mathbf{E} = -\partial_t \mathbf{B}$, $\nabla \times \mathbf{B} = 4\pi \mathbf{i}$

 \triangleright Continuity equation for mass density *ρ*: $\partial_t \rho + \nabla(\rho \mathbf{v}) = 0$

Magnetohydrodynamics (MHD)

 \blacktriangleright Maxwell's equations:

 $\nabla \cdot \mathbf{B} = 0$, $\nabla \times \mathbf{E} = -\partial_t \mathbf{B}$, $\nabla \times \mathbf{B} = 4\pi \mathbf{i}$

- \triangleright Continuity equation for mass density *ρ*: $\partial_t \rho + \nabla(\rho \mathbf{v}) = 0$
- \blacktriangleright Navier-Stokes equations:

$$
\rho\left(\partial_t \mathbf{v} + (\mathbf{v} \cdot \nabla)\,\mathbf{v}\right) = -\nabla p + \mu \Delta \mathbf{v} + (\lambda + \mu)\nabla\left(\nabla \cdot \mathbf{v}\right) + \mathbf{f}
$$

Magnetohydrodynamics (MHD)

 \blacktriangleright Maxwell's equations:

 $\nabla \cdot \mathbf{B} = 0$, $\nabla \times \mathbf{E} = -\partial_t \mathbf{B}$, $\nabla \times \mathbf{B} = 4\pi \mathbf{i}$

- \triangleright Continuity equation for mass density *ρ*: $\partial_t \rho + \nabla(\rho \mathbf{v}) = 0$
- \blacktriangleright Navier-Stokes equations: ρ (∂_t **v** + (**v** · ∇) **v**) = $-\nabla p + \mu \Delta \mathbf{v} + (\lambda + \mu) \nabla (\nabla \cdot \mathbf{v}) + \mathbf{f}$

For the magnetic field and the turbulent fluid it follows therefore

$$
\partial_t \mathbf{B} = \frac{1}{4\pi\sigma} \Delta \mathbf{B} + \nabla \times (\mathbf{v} \times \mathbf{B})
$$

$$
\partial_t \mathbf{v} = -(\mathbf{v} \cdot \nabla) \mathbf{v} + \frac{(\nabla \times \mathbf{B}) \times \mathbf{B}}{4\pi\rho} + \mathbf{f}_v.
$$

The aspect of interest is the distribution of energies on different scales k , i.e. the magnetic spectral energy density M of the magnetic fields and the kinetic magnetic spectral energy density U

$$
\epsilon_B = \frac{1}{8\pi V} \int d^3 x \, \mathbf{B}^2(\mathbf{x}) = \int \frac{d^3 k}{8\pi} |\hat{\mathbf{B}}(\mathbf{k})|^2 \equiv \rho \int d\mathbf{k} \, M_k
$$

\n
$$
\epsilon_K = \frac{\rho}{2V} \int d^3 x \, \mathbf{v}^2(\mathbf{x}) = \frac{\rho}{2} \int d^3 k |\hat{\mathbf{v}}(\mathbf{k})|^2 \equiv \rho \int d\mathbf{k} \, U_k
$$

\n
$$
h_B = \frac{1}{V} \int d^3 x \, \mathbf{A}(\mathbf{x}) \cdot \mathbf{B}(\mathbf{x}) = i \int d^3 k \, \left(\frac{\mathbf{k}}{k^2} \times \hat{\mathbf{B}}(\mathbf{k})\right) \cdot \hat{\mathbf{B}}(\mathbf{k})^*
$$

\n
$$
\equiv \rho \int d\mathbf{k} \, \mathcal{H}_k
$$

Aim: Computation of the correlation function for B and v

Aim: Computation of the correlation function for B and v

 \blacktriangleright Homogeneity: The correlation function cannot depend on the position in space

Aim: Computation of the correlation function for B and v

- \blacktriangleright Homogeneity: The correlation function cannot depend on the position in space
- \blacktriangleright Isotropy: The correlation function only depends on the magnitude of the spatial separation

Aim: Computation of the correlation function for B and v

- \blacktriangleright Homogeneity: The correlation function cannot depend on the position in space
- \triangleright Isotropy: The correlation function only depends on the magnitude of the spatial separation

In Fourier space this means that the most general Ansatz is [\[von Kármán and Howarth, 1938,](#page-32-3) [Junklewitz and Enßlin, 2011\]](#page-31-2)

$$
\langle \hat{B}_{I}(\mathbf{k})\hat{B}_{m}(\mathbf{k}')\rangle \sim \delta(\mathbf{k}-\mathbf{k}')[(\delta_{lm}-\frac{k_{l}k_{m}}{k^{2}})M(k)-\frac{i}{8\pi}\epsilon_{lmj}k_{j}\mathcal{H}(k)]
$$

$$
\langle \hat{v}_{I}(\mathbf{k})\hat{v}_{m}(\mathbf{k}')\rangle \sim \delta(\mathbf{k}-\mathbf{k}')[(\delta_{lm}-\frac{k_{l}k_{m}}{k^{2}})U(k)+i\alpha\epsilon_{lmj}k_{j}\mathcal{H}_{f}(k)]
$$

[\[Saveliev et al., 2012\]](#page-31-3)

 \blacktriangleright Starting either with an initial power-law ...

- \blacktriangleright Starting either with an initial power-law ...
- ... or a concentration of the spectral energies on a single scale the qualitative result is similar: a tendence to equipartition and both $M_q \sim q^4$ (i.e. $B \sim q^{\frac{5}{2}})$ and $U_q \sim q^4$ at large scales.

[\[Saveliev et al., 2012\]](#page-31-3)

- \blacktriangleright Starting either with an initial power-law ...
- \blacktriangleright ... or a concentration of the spectral energies on a single scale the qualitative result is similar: a tendence to equipartition and both $M_q \sim q^4$ (i.e. $B \sim q^{\frac{5}{2}})$ and $U_q \sim q^4$ at large scales.

[\[Saveliev et al., 2012\]](#page-31-3)

A rough estimate for B (for the QCD phase transition) is given by $B(200 \,\mathrm{pc}) \leq 5 \times 10^{-12} \,\mathrm{G}$

 \blacktriangleright Including magnetic helicity for the same initial conditions results in an inverse cascade, a fast transport of big amounts of magnetic energy to large scales. This is due to helicity conservation.

[\[Saveliev et al., 2013\]](#page-31-4)

 \blacktriangleright Including magnetic helicity for the same initial conditions results in an inverse cascade, a fast transport of big amounts of magnetic energy to large scales. This is due to helicity conservation.

[\[Saveliev et al., 2013\]](#page-31-4)

 \blacktriangleright Two regimes are visible: When helicity is small, the considerations of the non-helical case are valid; once helicity reaches its maximal value, the behaviour changes dramatically

 \triangleright One possible scenario is the time evolution of primordial magnetic fields during which energy, among other things, can be transported from smaller to larger scales

- \triangleright One possible scenario is the time evolution of primordial magnetic fields during which energy, among other things, can be transported from smaller to larger scales
- \blacktriangleright Helicity enhances this effect by creating an inverse cascade which results in much higher magnetic fields today compared to th non-helical case

- \triangleright One possible scenario is the time evolution of primordial magnetic fields during which energy, among other things, can be transported from smaller to larger scales
- \blacktriangleright Helicity enhances this effect by creating an inverse cascade which results in much higher magnetic fields today compared to th non-helical case
- \blacktriangleright The expicit computation of the back-reaction of the magnetic field on the medium gives the result of a power-law behavior with $M_q \sim q^4$ (i.e. $B \sim q^{\frac{5}{2}})$ and $U_q \sim q^4$ and equipartition at large scales.

- \triangleright One possible scenario is the time evolution of primordial magnetic fields during which energy, among other things, can be transported from smaller to larger scales
- \blacktriangleright Helicity enhances this effect by creating an inverse cascade which results in much higher magnetic fields today compared to th non-helical case
- \blacktriangleright The expicit computation of the back-reaction of the magnetic field on the medium gives the result of a power-law behavior with $M_q\sim q^4$ (i.e. $B\sim q^{\frac{5}{2}})$ and $U_q\sim q^4$ and equipartition at large scales.
- \blacktriangleright In the future comparison of the presented results from a semi-analytical approach with numerical simulations \rightarrow Collaboration with Hamburg Observatory

- \triangleright One possible scenario is the time evolution of primordial magnetic fields during which energy, among other things, can be transported from smaller to larger scales
- \blacktriangleright Helicity enhances this effect by creating an inverse cascade which results in much higher magnetic fields today compared to th non-helical case
- \blacktriangleright The expicit computation of the back-reaction of the magnetic field on the medium gives the result of a power-law behavior with $M_q\sim q^4$ (i.e. $B\sim q^{\frac{5}{2}})$ and $U_q\sim q^4$ and equipartition at large scales.
- \triangleright In the future comparison of the presented results from a semi-analytical approach with numerical simulations \rightarrow Collaboration with Hamburg Observatory

Biermann, L. (1950).

Über den Ursprung der Magnetfelder auf Sternen und im interstellaren Raum (mit einem Anhang von A. Schlüter). Zeitfschrift f. Naturforschung A, 5:65.

暈

ã

Junklewitz, H. and Enßlin, T. A. (2011). Imprints of Magnetic Power and Helicity Spectra on Radio Polarimetry Statistics.

Astron. Astrophys., 530:A88.

- Neronov, A. and Semikoz, D. V. (2009). 67 H Sensitivity of *γ*-ray Telescopes for Detection of Magnetic Fields in the Intergalactic Medium. Phys. Rev. D, 80:123012.
-

Saveliev, A., Jedamzik, K., and Sigl, G. (2012).

Time Evolution of the Large-Scale Tail of Non-Helical Primordial Magnetic Fields with Back-Reaction of the Turbulent Medium.

Phys. Rev. D, 86:103010.

Saveliev, A., Jedamzik, K., and Sigl, G. (2013). Evolution of Helical Cosmic Magnetic Fields as Predicted by Magnetohydrodynamic Closure Theory. Phys. Rev. D, 87:123001.

Sigl, G., Olinto, A. V., and Jedamzik, K. (1997). Primordial Magnetic Fields from Cosmological First Order Phase Transitions.

Phys. Rev. D, 55:4582–4590.

 \Box Turner, M. S. and Widrow, L. M. (1988). Inflation-Produced, Large-Scale Magnetic Fields. Phys. Rev. D, 37:2743–2754.

von Kármán, T. and Howarth, L. (1938). On the Statistical Theory of Isotropic Turbulence. Proc. R. Soc. London, Ser. A, 164(917):192–215.

Zeldovich, Y. B., Ruzmaikin, D. D., and Sokoloff, D. D. (1980).

Magnetic Fields in Astrophysics. McGraw-Hill.