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EGMF - Observation Status
Extragalactic Magnetic Fields (EGMF) have not been measured
directly - only limits are possible. [Neronov and Semikoz, 2009]
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EGMF - Origin
The origin of EGMF is still uncertain - mainly two different
concepts:

I Astrophysical scenario: Seed magnetic fields are generated
during structure formation (e.g. by a Biermann Battery
[Biermann, 1950]) and are then amplified by the dynamo
effect [Zeldovich et al., 1980]

I Cosmological scenario: Strong seed magnetic fields are
generated in the Early Universe, e.g. at a phase transition
(QCD, electroweak) [Sigl et al., 1997] or during inflation
[Turner and Widrow, 1988], and some of the initial energy
content is transfered to larger scales.

The latter are the so-called primordial magnetic fields and will be
focused on in the following.

I Basics for the time evolution: Homogeneous and isotropic
magnetohydrodynamics in an expanding Universe.
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Primordial Magnetic fields - Basic MHD

Magnetohydrodynamics (MHD)

I Maxwell’s equations:
∇ · B = 0, ∇× E = −∂tB, ∇× B = 4πj

I Continuity equation for mass density ρ: ∂tρ+∇(ρv) = 0
I Navier-Stokes equations:
ρ (∂tv + (v · ∇) v) = −∇p + µ∆v + (λ+ µ)∇ (∇ · v) + f

For the magnetic field and the turbulent fluid it follows therefore

∂tB =
1

4πσ∆B +∇× (v× B)

∂tv = − (v · ∇) v +
(∇× B)× B

4πρ + fv .
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Primordial Magnetic fields - Basic MHD

The aspect of interest is the distribution of energies on different
scales k, i.e. the magnetic spectral energy density M of the
magnetic fields and the kinetic magnetic spectral energy density U

εB =
1

8πV

∫
d3x B2(x) =

∫ d3k
8π |B̂(k)|2 ≡ ρ

∫
dk Mk

εK =
ρ

2V

∫
d3x v2(x) =

ρ

2

∫
d3k |v̂(k)|2 ≡ ρ

∫
dk Uk

hB =
1
V

∫
d3x A(x) · B(x) = i

∫
d3k

( k
k2 × B̂(k)

)
· B̂(k)∗

≡ ρ
∫

dkHk
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Primordial Magnetic Fields - Correlation Function

Aim: Computation of the correlation function for B and v

I Homogeneity: The correlation function cannot depend on the
position in space

I Isotropy: The correlation function only depends on the
magnitude of the spatial separation

In Fourier space this means that the most general Ansatz is
[von Kármán and Howarth, 1938, Junklewitz and Enßlin, 2011]

〈B̂l (k)B̂m(k′)〉 ∼ δ(k− k′)[(δlm −
klkm
k2 )M(k)− i

8πεlmjkjH(k)]

〈v̂l (k)v̂m(k′)〉 ∼ δ(k− k′)[(δlm −
klkm
k2 )U(k) + iαεlmjkjHf (k)]
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Results on the Time Evolution of Primordial Magnetic
Fields with Back-Reaction

I Starting either with
an initial power-law ...

I ... or a concentration
of the spectral
energies on a single
scale the qualitative
result is similar: a
tendence to
equipartition and
both Mq ∼ q4

(i.e. B ∼ q 5
2 ) and

Uq ∼ q4 at large
scales.

[Saveliev et al., 2012]
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I A rough estimate for B ( for the
QCD phase transition) is given by
B(200pc) . 5× 10−12 G
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Results on the Time Evolution of Primordial Magnetic
Fields with Back-Reaction

I Including magnetic
helicity for the same
initial conditions
results in an inverse
cascade, a fast
transport of big
amounts of magnetic
energy to large scales.
This is due to helicity
conservation.

[Saveliev et al., 2013]

1 100 10
4

10
6

10
8

10
-35

10
-29

10
-23

10
-17

10
-11

10
-5

q�Mpc-1

q
M

q
q

U
q

q
2
H

q
�H

8
Π
L

I Two regimes are visible: When helicity is small, the
considerations of the non-helical case are valid; once helicity
reaches its maximal value, the behaviour changes dramatically
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Conclusions and Outlook

I One possible scenario is the time evolution of primordial
magnetic fields during which energy, among other things, can
be transported from smaller to larger scales

I Helicity enhances this effect by creating an inverse cascade
which results in much higher magnetic fields today compared
to th non-helical case

I The expicit computation of the back-reaction of the magnetic
field on the medium gives the result of a power-law behavior
with Mq ∼ q4 (i.e. B ∼ q 5

2 ) and Uq ∼ q4 and equipartition at
large scales.

I In the future comparison of the presented results from a
semi-analytical approach with numerical simulations →
Collaboration with Hamburg Observatory
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