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but all known  examples asymptote to  a CFT fixed point

conceivable RG flows

Is there a way to understand that?
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Two approaches 
to constrain

RG-flow structure

• Wess-Zumino consistency  conditions
   for Weyl anomaly off-criticality

• Dispersion relations for
  Optical theorem for scattering 
  amplitudes of background dilaton

�T . . . T �

Komargodski and Schwimmer 2011

Jack, Osborn 1990        Osborn 1991

Results
• aUV > aIR

• CFT is the only possible asymptotics 
   in weakly coupled 4D QFT

• the occurrence of SFTs is severely constrained
   (ruled out...) even beyond perturbation theory
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λ

Goal: study RG flow in a domain  around a fixed point

CFT, not necessarily free

L = LCFT +
�

I

λI
OI

                 not necessary λI � O(1)

βI � O(1)

βI � O(1)  provided 

  in whole domain 
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λI �= 0

• Ex:    free CFT  with scalars and fermions

OI , ∂µJA
µ , �Oacomplete ‘basis’ for Tµ

µ

current for flavor symm broken by

RG flow correlators of T ≡ Tµ
µ
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etc ...

relevant object    ≡  effective action for sources   

OI ↔ λI(x)

Tµν ↔ gµν(x)

JA
µ ↔ AA

µ (x)

Oa ↔ ma(x)

W ≡ W [gµν ,λ
I , AA

µ ,ma, . . . ]

OI(x) =
1
√
g

δ

δλI(x)
WTµν =

2
√
g
gµν

δ

δgµν
W
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At fixed point
λ

W [gµν ,λ = 0, Aµ = 0,ma = 0]

CFT

Weyl invariant up to anomaly

2gµν
√
g

δ

δgµν
W = aE4 − bR2 − cW 2 − d�R

= aE4 − cW 2 − δ(Flocal)

Capper, Duff ’73

Thursday, September 26, 2013



At fixed point
λ

W [gµν ,λ = 0, Aµ = 0,ma = 0]

CFT

Weyl invariant up to anomaly

2gµν
√
g

δ

δgµν
W = aE4 − bR2 − cW 2 − d�R

= aE4 − cW 2 − δ(Flocal)

WZ consistency

Capper, Duff ’73

Thursday, September 26, 2013



At fixed point
λ

W [gµν ,λ = 0, Aµ = 0,ma = 0]

CFT

Weyl invariant up to anomaly

2gµν
√
g

δ

δgµν
W = aE4 − bR2 − cW 2 − d�R

= aE4 − cW 2 − δ(Flocal)

WZ consistency

Capper, Duff ’73

Thursday, September 26, 2013



At fixed point
λ

W [gµν ,λ = 0, Aµ = 0,ma = 0]

CFT

Weyl invariant up to anomaly

2gµν
√
g

δ

δgµν
W = aE4 − bR2 − cW 2 − d�R

= aE4 − cW 2 − δ(Flocal)

WZ consistency

+ eΛ2R+ fΛ4

Capper, Duff ’73
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Weyl anomaly equation can be extended off criticality 
by assigning transformation properties to sources

local Callan-Symanzik equation       Osborn 1991

2m̃a = 2mb(δab + γa
b ) +

1

3
ηaR+ daI�λI +

1

2
�aIJ∇µλ

I∇µλJ

+∇µσ(x)

�
θaI∇µλI δ

δma(x)
− SA δ

δAA
µ (x)

�
−�σ(x)ta

δ

δma(x)

�

�
d4x

�
σ(x)

�
2gµν

δ

δgµν(x)
− βI δ

δλI(x)
− ρAI ∇µλ

I δ

δAA
µ (x)

+ m̃a δ

δma(x)

�
+

=

�
d4xσ(x)A(x)

W =

A(x) = all possible dim 4 covariant terms
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Easy to derive local CS eq. in ordinary (near free) QFT using dim reg

S0 = S1[fields, sources] + SCT [sources]

S1 obviously Weyl invariant

λI
0 → e�σ(x)λI

0 δσ(λ
I) = σβI

SCT not Weyl invariant (unless new sources added)

δσSCT = σA
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Redundancies in source parametrization

σ(x)

�
2gµν

δ

δgµν(x)
− βI δ

δλI(x)
− ρAI ∇µλ

I δ

δAA
µ (x)

+ m̃a δ

δma(x)

�
+

+∇µσ(x)

�
θaI∇µλI δ

δma(x)
− SA δ

δAA
µ (x)

�
−�σ(x)ta

δ

δma(x)

ta = 0

θaI = 0
scheme choice

ma → ma +
1

6
faR(g) + fa

I �λI

ta → ta + fa

θaI → θaI + fa
I

OI → OI + θIa�Oa

Tµν → Tµν + fa(∂µ∂ν − ηµν�)Oa

δσ ≡
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“Flavor freedom” in defining Weyl transformation 

δ�σ = δσ + δflavorσαA

local flavor rotation 
with Lie parameter σαA 

αA(λ) = Flavor adjoint constructed with couplings 

βI → βI − (αATAλ)
I

m̃a → m̃a − (αATAm̃)a

ρAI → ρAI + ∂Iα
A

SA → SA − αA

αA = SA

BI = βI − (SATAλ)
I

M̃a = m̃a − (SATAm̃)a

PA
I = ρAI + ∂IS

A
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�
σ(x)

�
2gµν

δ

δgµν(x)
−BI δ

δλI(x)
− PA

I ∇µλ
I δ

δAA
µ (x)

+ M̃a δ

δma(x)

�
W =

�
σA

The Weyl transformation operator can be finally simplified as

Tµ
µ =

�

I

BI
OIup to contact terms:

�
gµν = ηµν , ∇µλ

I = AA
µ = ma = 0

�

CFT   

BI = NA(TAλ)
I ≡

BI = 0

SFT   pure flavor rotation   
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Two types of consistency conditions

[δσ1 , δσ2 ] = 0
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I. On coefficients of             δσ

 similar story

BIPA
I = 0

T (x)T (y) = · · ·+ δ4(x− y)BIPA
I ∂µJAµ

δ

δAA
µ

δ

δma
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II.  genuine WZ condition:  
� �

σ1(y)δσ2(x)A(y)− σ2(x)δσ1(y)A(x)
�
= 0
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II.  genuine WZ condition:  

10 differential constraints involving 25 tensorial coefficients

� �
σ1(y)δσ2(x)A(y)− σ2(x)δσ1(y)A(x)

�
= 0
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 all but a few constraints can be “solved” 

A = AR2 + AW 2 + AE4 + AF 2 + δWeylFlocal

⎨ ⎧⎧manifestly consistent trivial
(scheme dep)
⎨ ⎧⎧

⎨ ⎧⎧non-trivial
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ΛJ ∝
�
�λJ +

1

6
BJR(g)

�ΠIJ = ∇µλ
I∇µλJ −B(IΛJ)

Πa = ma − 1

6
taR(g)− θaIΛ

I

1
√
g
σAR2 = σ

�
1

2
babΠ

aΠb +
1

2
baIJΠ

aΠIJ +
1

4
bIJKLΠ

IJΠKL

�

δσΠ
IJ = σ ( . . . ) +∇µσ ( . . . ) +∇2σ ( . . . )

absence of derivative terms: consistency is  manifest 
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1
√
g
AE4 = σ aE4 + σ

1

2
χIJGµν∇µλI∇νλJ + ∇µσwIGµν∇νλI + . . .

1
√
g
AF 2 = σ

1

4
κABF

A
µνF

Bµν +σ
1

2
ζAIJF

A
µν∇µλI∇νλJ +∇µσ ηAIF

A
µν∇νλI +

. . .

L[wI ] = −8∂Ia+ χIJB
J

L[ηAI ] = κABP
B
I + ζAIJB

J − χg
IJ(TAλ)

J

0 = ηAIB
I + wI(TAλ)

I

Non-trivial anomalies
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Gradient flow equation

ã ≡ a+
1

8
wIB

I

8∂I ã =
�
χIJ + ∂IwJ − ∂JwI + PA

I ηAJ

�
BJ

• non-trivial constraint on perturbative expansion of

• at fixed points            is stationary

• along line of fixed points

BI

ã(λ)

ã = a = const

8µ
dã

dµ
≡ 8BI∂I ã = χIJB

IBJ
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�OI(x)OJ(0)� =
χIJ

x8
+O(∂B,B) by unitarity χIJ > 0

8µ
dã

dµ
= χIJB

IBJ ≥ 0

ã(λ(µ1))− ã(λ(µ2)) =
1

8

� µ2

µ1

χIJB
IBJ d lnµ

since        is finite the only possible asymptotics must satisfy ã BI = 0

CFT, free or interacting, is the only possible asymptotics 
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The story with dilatons and dispersion relations
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�T . . . T �
K.S. scattering amplitudes

of background dilaton
gµν ≡ Ω(x)2ηµν

analize
counterterms at W [Ω2ηµν ]�Ω = 0

forward
amplitude

is finite up to CC term

A(s) = −α(λ(
√
s)) s2 + Λ

CFT limit A(s) = −8a s2

Luty,  Polchinski, RR 2012
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s2

s1

finite

≥ 0 by unitarity

ᾱ(s) ≡ 1

π

� π

0
dθ α(seiθ)

ᾱ(s2) − ᾱ(s1) =
2

π

� s2

s1

ds

s
Imα(s)

lim
s→±∞

Imα(s) = 0ᾱ(s)
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Local Callan-Symanzik elucidates both sides of dispersion relation

ᾱ(s) = 8 ã(s) + O(B2)

this ensure a scheme choice exists where ᾱ(s) = 8 ã(s)

= BIBJ GIJ

GIJ =
1

s2

�

Ψ

�0|OI + ∂IB
L
OL +BL

OIOL|Ψ��Ψ|OJ + ∂JB
K
OK +BK

OJOK |0� ≥ 0

Imα(s) =
1

s2

�

Ψ

���Ψ|BI(δJI + ∂IB
J)OJ(p1 + p2) +BIBJ

OI(p1)OJ(p2)|0�
��2

s
dᾱ(s)

ds
=

2

π
GIJB

IBJ
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There thus exists a scheme where 

∆IJB
IBJ = 0

ᾱ = ã χIJ =
4

π
GIJ +∆IJ

GIJ ≥ 0

is the 4D analogue of Zamolodchikov metric in 2D

GIJ =
1

p2

�

Ψ

�0|OI(p)|Ψ��Ψ|OJ(p)|0�but 2D case simpler 
(just  2-point funtions)

without dilaton as guideline harder to figure things out in 4D

GIJ
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Near CFT fixed point, irreversibility of RG flow concretely expressed by

8µ
dã

dµ
≡ 8BI∂I ã = χIJB

IBJ χIJ > 0
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Near CFT fixed point, irreversibility of RG flow concretely expressed by

8µ
dã

dµ
≡ 8BI∂I ã = χIJB

IBJ χIJ > 0

CFTUV

CFTIR

Only option
Luty, Polchinski, RR 2012

Fortin, Grinstein, Stergiou 2012
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• Any lessons hidden in the remaining consistency condition?

• What about the special case of supersymmetry?

• What about flows around CFT that break parity? 

More on the local Callan-Symanzik equation:
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