## Infrared conformal gauge theory on the lattice

#### Kari Rummukainen

University of Helsinki and Helsinki Institute of Physics



DESY Theory Workshop 2013

## Introduction:

- The Higgs particle has been found!
  - the Standard Model is in excellent shape
  - Higgs field is centrally important: drives the EW symmetry breaking!
  - ► Scalar → theoretical problems:
  - ⇒ naturalness, vacuum stability, unitarity bound . . .
- There is still room (and need!) for BSM physics.
- Most BSM models aim to ameliorate the problems in the SM by e.g.
  - Pairing bosons with fermions (SUSY)
  - Cutoff (extra dimensions)
  - No scalars at all (Technicolor and related models)



# Introduction: Conformal Window

Consider 2-loop perturbative  $\beta$ -function

$$\beta(g) = \mu \frac{dg}{d\mu} = -\beta_0 \frac{g^3}{16\pi^2} - \beta_1 \frac{g^5}{(16\pi^2)^2}$$

Generically 3 different behaviours:

- Small N<sub>f</sub>: running coupling, confinement and χSB (QCD-like)
- Medium  $N_f$ : IR fixed point, no  $\chi$ SB [Banks,Zaks]
- Large N<sub>f</sub>: Asymptotic freedom lost

**Conformal window:** range of  $N_f$  where IRFP exists



# Walking coupling

- What happens when we approach the lower edge of the conformal window from below?
- $\bullet$  Competition between IR conformal behaviour and non-perturbative confinement/ $\chi {\rm SB}$
- The  $\beta$ -function may get close to zero at finite coupling
- $\Rightarrow$  The coupling evolves slowly, *walks*.



• Strong coupling: perturbation theory not applicable, lattice simulations needed

K. Rummukainen (Helsinki)

## Motivation

- Building block for Walking Technicolor models
- Theoretical curiosity: strongly coupled IR conformal/almost conformal phase, "unparticles", sQGP
- Lot of recent activity both on and off the lattice
- On LATTICE 2013 conference, 38 contributions on this topic!

## Technicolor

- Technigauge + massless techniquarks Q
- Techniquarks have both technicolor and EW charge (exactly like quarks in the SM)
- Chiral symmetry breaking in technicolor  $\longrightarrow$  Electroweak symmetry breaking
- Scale:  $\Lambda_{\rm TC} \sim {\it f}_{\rm TC} \sim \Lambda_{\rm EW}$
- After chiral symmetry breaking looks like SM:
  - $\begin{array}{rcccc} & \mbox{decay constant } f_{\rm TC} & \leftrightarrow & \mbox{Higgs expectation value } v \\ & \mbox{scalar } \bar{Q}Q \ \sigma\mbox{-meson} & \leftrightarrow & \mbox{Higgs particle} \\ & \mbox{Goldstone pseudoscalars, "pions"} & \leftrightarrow & \mbox{W,Z -longitudinal modes} \\ & \mbox{exotic technihadrons (observable!)} \end{array}$
- Describes well the *W*, *Z*+Higgs sector (depending on the model, may have too many Goldstone bosons)
- Does not explain fermion masses (Yukawa). For that, we need additional structure  $\rightarrow$  *Extended technicolor*

## Extended technicolor

 In addition to the "pure" technicolor, introduce a new higher-energy interaction coupling Standard Model fermions q (quarks, leptons) and techniquarks (Q): extended technicolor (ETC) Several options, e.g. massive gauge boson, M<sub>ETC</sub>:

q,Q

[Eichten,Lane,Holdom,Appelquist,Sannino,Luty...]

- $\frac{1}{M_{
  m ETC}^2} \bar{Q} Q \bar{q} q \longrightarrow$  SM fermion mass  $m_q \propto \frac{1}{M_{
  m ETC}^2} \langle \bar{Q} Q \rangle_{
  m ETC}$
- $\frac{1}{M_{\rm ETC}^2} \bar{q}q\bar{q}q \longrightarrow$  extra FCNC's (harmful!)
- $\frac{1}{M_{
  m ETC}^2} \bar{Q} Q \bar{Q} Q \longrightarrow$  explicit  $\chi$ SB in the techniquark sector

 $\langle \bar{Q}Q \rangle_{
m ETC}$ : condensate evaluated at the ETC scale  $\langle \bar{Q}Q \rangle_{
m EW}$ : condensate at TC~EW) scale

## Extended technicolor

- I) In order to avoid unwanted FCNC's need to push  $\Lambda_{\rm ETC} \approx M_{\rm ETC} \gtrsim 1000 \times \Lambda_{\rm EW} (\Lambda_{\rm TC} \approx \Lambda_{EW})$
- II) For EWSB we must have  $\langle \bar{Q}Q \rangle_{\rm EW} \propto \Lambda_{\rm EW}^3$
- III) On the other hand,  $\langle \bar{Q}Q 
  angle_{
  m ETC} \propto m_q M_{
  m ETC}^2$  (top quark!)
  - Using RG evolution

$$\langle \bar{Q}Q \rangle_{
m ETC} = \langle \bar{Q}Q \rangle_{
m EW} \exp\left[\int_{\Lambda_{
m EW}}^{M_{
m ETC}} rac{\gamma(g^2)}{\mu} d\mu
ight]$$

where  $\gamma(g^2)$  is the mass anomalous dimension.

- In weakly coupled theory  $\gamma$  is small, and  $\langle \bar{Q}Q\rangle$  is  $\sim$  constant.
- Thus, it is not possible to satisfy the constraints I), II), II) in a QCD-like theory, where the coupling is large only on a narrow energy range above  $\chi SB$ .

# Walking coupling

• If the coupling *walks*, i.e. if  $g^2 \approx g_*^2$  (constant) over the range from TC to ETC, then we can solve  $\langle \bar{Q}Q \rangle_{\rm ETC} \approx \left(\frac{\Lambda_{\rm ETC}}{\Lambda_{\rm TC}}\right)^{\gamma(g_*^2)} \langle \bar{Q}Q \rangle_{\rm TC}$  (condensate enhancement)

 $\gamma(g_{\star}^2) \approx 1-2$ 

• Inserting II) and III) we obtain

$$g^{2}$$
  
 $g_{*}^{2}$   
 $g_{*}^{2}$   
 $g_{*}^{2}$   
 $IR fixed point$   
 $IR fixed point$   
 $A_{EW}$   
 $A_{ETC}$   
 $\mu$   
 $G_{ETC}$   
 $\mu$   
 $B$   
 $IR fixed point$   
 $G_{CD-like}$   
 $G_{CD$ 

 $\bullet$  Walking  $\rightarrow$  Higgs naturally light, "dilatonic"

# Conformal window in SU(N) gauge



- Upper edge of band: asymptotic freedom lost
- Lower edge of band: ladder approximation
- Walking can be found near the lower edge of the conformal window: large coupling, non-perturbative lattice simulations needed!
- In higher reps it is easier to satisfy EW constraints <code>[Sannino,Tuominen,Dietrich]</code>  $\rightarrow$  recent interest

## Existence of the IRFP essentially non-perturbative

Example: Perturbative  $\beta$ -function of SU(2) gauge with  $N_f = 6$  fundamental rep fermions



[4-loop MS: Ritbergen, Vermaseren, Larin]

Results from lattice: existence of IRFP inconclusive

# "Walking" at $N_f \lesssim 6$

Interestingly, the fixed point vanishes from 4-loop MS beta function if  $N_f$  is slightly lowered from 6:



## Goals:

Take SU(N) gauge theory with  $N_f$  fermions in some representation.

- Locate the lower edge of the conformal window
- Measure  $\beta(g^2)$ -function
- Measure  $\gamma(g^2)$
- We want to find a theory which
  - is walking or
  - is just within conformal window (easy to deform into walking)
  - $\blacktriangleright$  has large anomalous exponent  $\gamma$  near FP
    - \* AdS-QFT: Indications that  $\gamma=1$  at the lower edge of the conformal window [Järvinen et al.]
  - Has "light" scalar (Higgs) walking helps!
  - Compatible with EW precision measurements (S,T,U -parameters) → small N<sub>f</sub> preferred
- Technicolor phenomenology: SU(2) or SU(3) gauge theory with  $N_f = 2$  adjoint or 2-index symmetric representation fermions are favoured.
- "Hadron" spectrum, chiral symmetry breaking pattern

## Models studied

#### Red: conformal Blue: $\chi$ SB Black: unclear

•  $SU(3) + N_f = 8-16$  fundamental rep:

- N<sub>f</sub> = 8: Appelquist et al; Deuzeman et al; Fodor et al; Jin et al; Aoki et al; Schaich et al; Gelzer et al
- ► N<sub>f</sub> = 9: Fodor et al
- N<sub>f</sub> = 10: Hayakawa et al; Appelquist et al
- N<sub>f</sub> = 12: Hasenfratz; Appelquist et al; Deuzeman et al; Xin and Mawhinney; Fodor et al; Okawa et al; Aoki et al; Cheng et al; Itou; Lin et al; Gelzer et al
- ▶ N<sub>f</sub> = 16: Damgaard et al; Heller; Hasenfratz; Fodor et al; Deuzemann et al

#### • SU(2) + fundamental rep fermions:

- N<sub>f</sub> = 4: Karavirta et al
- $N_f = 6$ : Del Debbio et al; Karavirta et al; Appelquist et al; Tomii et al; Voronov et al
- N<sub>f</sub> = 8: Iwasaki et al; Lin et al
- N<sub>f</sub> = 10: Karavirta et al

## Models studied

Red: conformal Blue:  $\chi$ SB Black: unclear

- $SU(2) + N_f = 1$  adjoint rep: Athenodorou et al
- SU(2) + N<sub>f</sub> = 2 adjoint rep: Catterall et al; Bursa et al; Hietanen et al; Rantaharju et al; De Grand et al; Del Debbio et al; August and Maas; Arthur et al
- $SU(3) + N_f = 2$  2-index symmetric rep: DeGrand et al; Sinclair and Kogut; Fodor et al
- $SU(3) + N_f = 2$  adjoint rep: DeGrand et al
- $SU(4) + N_f = 2$  2-index symmetric rep: DeGrand et al
- $SU(4) + N_f = 6$  2-index antisymmetric rep: DeGrand et al
- $SO(4) + N_f = 2$  vector rep: Hietanen et al

# Classifying conformal / $\chi$ SB ?

- Measure  $\beta$ -function directly
  - Schrödinger functional
  - MCRG
  - Gradient flow methods [Talk by Ramos]
- Measure technihadron and glueball masses and string tension as functions of the techniquark mass  $m_Q$ :
  - Non-zero  $m_Q$  takes us away from the (possible) IRFP
  - Conformal:  $M \propto m_Q^{1/(1+\gamma)}$ , incl. string tension
  - $\chi$ SB:  $M_{\pi} \propto m_Q^{1/2}$ , others remain massive
- $\bullet\,$  Dirac operator eigenvalue distribution: scales with  $\gamma$

# Example: mass spectrum of $SU(2)+N_f = 2$ adjoint fermions



# SU(3) $N_f = 12$ spectrum

 $F_{\pi}$ : non-zero intercept as  $m_Q 
ightarrow$  0? Looks QCD-like ( $\chi$ SB)



[Fodor, Holland, Kuti, Nogradi, Schroeder, 2011]

## Mass spectrum measurement

- If the massless  $m_Q=0$  theory has an IRFP, excitation masses  $M\propto m_Q^{1/(1+\gamma)}$
- Excitation size  $\propto M^{-1}$ , diverges as  $m_q 
  ightarrow 0$  [Del Debbio and Zwicky]
- All excited states in a given channel become massless  $\rightarrow$  excitation spectrum  $\sim$  continuous, "unparticles".
- ightarrow great care needed in mass spectrum measurment not yet fully under control.

## RG flow in the conformal case



- Only  $m_Q$  is relevant at the IRFP.
- Scaling near IRFP: masses of physical particles  $M \propto (m_Q)^{1/(1+\gamma)}$

## RG flow on the lattice



- Irrelevant operators (cutoff effects) die out as  $(a/L)^{\times}$ , (x: some scaling exponent, L: IR scale)
- Evolution of  $g^2$  along the physical axis very slow
- $\Rightarrow$  irrelevant lattice effects can (and do!) mask the physical evolution
  - Need either:
    - ▶ Very large lattices (large *L*/*a*) − impractical
    - Very high quality lattice action small cutoff effects
      - \* Clover improvement, stout/nHYP smeared action

## Dirac operator eigenvalues

Eigenvalue density of the lattice  $(D^{\dagger}D + m^2)$ : [DeGrand; Del Debbio and Zwicky; Patella]  $\langle \bar{Q}Q \rangle \propto m^{\eta} \Leftrightarrow \rho(\lambda) \propto \lambda^{\eta}$ 

 $\Rightarrow$  Mode number

 $\nu(\Omega) = C + (\Omega^2 - m^2)^{2/(1+\gamma)}$ 



[Patella] 3 22 / 37

# Measuring the coupling

Schrödinger functional: Generate a *background* chromoelectric field using non-trivial fixed boundary conditions, parametrised with a **twist angle**  $\eta$  At the classical level, we have

$$\frac{dS_{\rm class.}}{d\eta} = \frac{A}{g^2}$$

where  $A(\eta)$  is a known constant. At the quantum level, we define the coupling through

$$\frac{1}{g_{\rm SF}^2} = \left\langle \frac{1}{A} \frac{dS}{d\eta} \right\rangle$$

• Evaluates  $g_{
m SF}^2$  directly at scale  $\mu=1/L$ , the lattice size

- Can use  $m_Q = 0$
- Has been used very succesfully in QCD by the Alpha collaboration

## Step scaling function

• Step scaling: coupling when the lattice size is (e.g.) doubled

$$\Sigma(u, L/a) = g^2(g_0^2, 2L/a)_{u=g^2(g_0^2, L/a)}$$

• Continuum limit:

$$\sigma(u) = \lim_{a/L \to 0} \Sigma(u, L/a)$$

• Step scaling is related to  $\beta$ -function:

$$-2\ln 2 = \int_{u}^{\sigma(u)} \frac{dx}{\sqrt{x}\beta(\sqrt{x})}$$

• Close to the fixed point:

$$\beta(g) \approx rac{g}{2 \ln 2} \left( 1 - rac{\sigma(g^2)}{g^2} \right)$$

• 1-loop analysis indicates that finite lattice spacing effects large ( $\sim 50\%$  at L/a = 10)  $\Rightarrow$  improvement! [Alpha; Karavirta et al.]

## Fundamental rep SU(2) with $N_f = 4, 6$ and 10

- Measure coupling using SF
- Measure also  $\gamma$  using SF (different boundary condition)
- Choose:
  - $N_f = 4$ : QCD-like, chiral symmetry breaking
  - $N_f = 6$ : close to lower edge of conformal window?
  - $N_f = 10$ : upper edge of conformal window
- Wilson-clover action with 1-loop perturbative  $c_{\rm SW}$ , and with perturbative boundary improvement coefficients
- Data from [Karavirta et al, 2012]

## Fundamental rep: perturbation theory

Perturbative  $\beta$ -function w.  $N_f = 4, 6, 10$ 

[3,4-loop MS: Ritbergen, Vermaseren, Larin]



 $N_f = 4$  QCD-like, confining  $N_f = 6$  completely non-perturbative

 $N_f = 10$  perturbative Banks-Zaks FP, "test case".

## Step scaling function: $N_f = 4$



Step scaling > 1: coupling grows as length *L* grows: QCD-like behaviour

$$eta(g) pprox rac{g}{2 \ln 2} \left(1 - rac{\sigma(g^2)}{g^2}
ight)$$

K. Rummukainen (Helsinki)

Conformal gauge

## Step scaling function: $N_f = 10$



• Cannot resolve the slow evolution below  $g_{
m SF}^2 \sim 2.5$  – not accurate enough

- Above this step scaling diverges from perturbative curve.
- Strong coupling, lattice artefact?

## Step scaling function: $N_f = 6$



- Does this suggest IRFP at  $g_{\rm SF}^2 \gtrsim 12$  ( $lpha \gtrsim 1$ )?
- However, control is lost at  $g_{
  m SF}^2 \sim 12-14~(eta_L pprox 1.39)$
- ⇒ Result not reliable
- Need to have actions which work at strong coupling

K. Rummukainen (Helsinki)

## Estimate of the $\beta$ -function: $N_f = 6$



## Result: $N_f = 6$ mass anomalous exponent



- More robust measurement than coupling
- Smaller than perturbative at strong coupling generic feature?

# Schrödinger functional in $SU(2)+N_f = 2$ adjoint fermions

HEX-smeared Wilson-Clover [Rantaharju et al, LATTICE 2013; preliminary] Step scaling with volume pairs L/a = 6-12, 8-16, 10-20



Questionable continuum extrapolation? Lattice artifacts on small volumes? Largest volume: IRFP at  $g_{\rm SF}^2 = 2 - 2.5$ . Compatible with previous results [Hietanen et al; Del Debbio et al; DeGrand et al].

# Schrödinger functional in $SU(2)+N_f = 2$ adjoint fermions



- At IRFP  $g_{
  m SF}^{*2}pprox 2.25$ ,  $\gamma(g_{
  m SF}^{*2})pprox 0.2$
- Smaller than the one from the eigenvalue spectrum  $\gamma^* pprox$  0.37 [Patella]
- Caused by different estimates of the critical coupling

K. Rummukainen (Helsinki)

## What do the results imply?

• Lattice analysis is significantly more difficult than in QCD-like theories:

- Slow evolution  $\rightarrow$  small signal
- Slow evolution  $\rightarrow$  strong bare coupling
- $\Rightarrow$  Conflicting results, unknown systematics
- Improvement is needed: better actions, better methodology, understanding of limitations
- Schrödinger functional is running out of steam at  $(L/a)^4 \approx 24^4$ : Noisy signal, huge statistics required (several  $\times 10^5$  trajectories per point)
- Gradient flow is a promising new tool
  - Can reach larger volumes than with SF potentially less lattice artifacts
  - talk by Ramos
  - Preliminary studies in this context by Nogradi et al; Fritzsch and Ramos; Rantaharju; Cheng et al

- Status of the field: early days still. No full consensus yet of the "best practices" getting there
- $\bullet$  Mapping out the theory space: IRFP,  $\chi {\rm SB}$
- Walking has not been unambiguously observed (except in toy models)
- Not yet clear quantitative phenomenology: Higgs and exotica masses, branching ratios . . .
- Theories considered in isolation: coupling to EW?
  - Has an effect on the physics
  - Axial gauge coupling: we do not even know how to do it!

# Walking in 2d O(3)

2-d O(3) model with topological charge

[de Forcrand, Pepe, Wiese]

$$S = \frac{1}{2g^2} \int d^2 x \, \partial_i u_a \partial_i u_a + i\theta Q$$

with |u| = 1

$$Q=\int d^2x\epsilon_{ij}\epsilon_{abc}U_a\partial_iU_b\partial_jU_c$$

- asymptotically free
- mass gap
- has a IR fixed point at  $\theta = \pi!$  (integrable model)
- Adjusting  $\theta$  the degree of "walking" can be changed

# Walking in 2-d O(3)

