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Energy flow at colliders

✔ e+e− annihilation at PETRA (1978-1986) and LEP (1989-2010)

e+

e−

γ∗(q)

✔ A virtual photon decays into an arbitrary number of quarks and gluons which go through
hadronization process to become hadrons

✔ Final states can be described using the class of infrared finite observables (event shapes):
energy-energy correlations (EEC), thrust, heavy mass, . . .

EEC = EECpert(αs(q
2)) + EECnonpert(Λ

2
QCD/q2)

Can be computed in perturbative QCD, hadronisation corrections are ‘small’ at high energy
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Conventional approach

✔ Event shapes are given by (an infinite) sum over the final hadronic states

σw(q) =
∑

X

(2π)4δ(4)(q − kX)w(X)
∣
∣Mγ∗(q)→X

∣
∣2

Various event shapes correspond to different choices of the weight factor w(X)

✔ ‘Amplitude approach’ has the following disadvantages:

✗ presence of intrinsic infrared divergences inside transition amplitudes Mγ∗(q)→X

✗ integration over the phase space of the final states and subsequent intricate IR cancellations

✗ necessity for summation over all final states

✗ no analytical results beyond one loop

✔ New approach: event shapes (energy correlations) from Wightman correlation functions

σw(q) =

∫

d4x eiqx〈0|O(x)E[w]O(0)|0〉

✗ no IR divergences are present in the correlation functions

✗ no summation over all final states is needed

✗ no integration over the phase space is required

✗ strong coupling predictions (through AdS/CFT in N = 4 SYM)
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e
+
e
− annihilation in N = 4 SYM

✔ Define IR finite observables in N = 4 SYM and evaluate them both at weak/strong coupling

✔ Are closely related to the QCD weighted cross-sections for the final states in e+e−−annihilation

e+

e−

γ∗(q)

✔ From QCD to N = 4 SYM: introduce an analog of the electromagnetic current

(protected) half-BPS operator built from the six real scalars

OIJ
20′(x) = tr

[
ΦIΦJ − 1

6
δIJΦKΦK

]
, (I, J = 1, . . . , 6)

O(x) = Y IY JOIJ
20′(x) = Y IY J tr[ΦI(x)ΦJ (x)]

The null vector Y I defines the orientation of the projected operator in the isotopic SO(6) space

What are the properties of the final states created from the va cuum by the operator O20′ (x)?
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Final states in N = 4 SYM

✔ To lowest order in the coupling, O(x) produces a pair of scalars out of the vacuum

✔ For arbitrary coupling, the state O(x)|0〉 can be decomposed into an infinite sum over

on-shell states with an arbitrary number of scalars (s), gauginos (λ) and gauge fields (g)

∫

d4x eiqx O(x)|0〉 = |ss〉+ |ssg〉+ |sλλ〉+ . . .

✔ The amplitude of creation of a particular final state |X〉 out of the vacuum

〈X|

∫

d4x eiqx O(x)|0〉 = (2π)4δ(4)(q − pX)MO
20′→X

pX is the total momentum of the state |X〉

✔ The amplitude MO→X has the meaning of a (IR divergent) form-factor

qµ

s

s
g

λ

λ̄

MO
20′→X = 〈X|O(0)|0〉
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Total cross-section of O20′ → everything

✔ Analog of the QCD process e+ e− → everything

σtot(q) =
∑

X

(2π)4δ(4)(q − pX)|MO
20′→X |2

✔ To lowest order in the coupling, the production of a pair of scalars

σtot(q) =
1

2
(N2 − 1)

∫
d4k

(2π)4
(2π)2δ+(k2)δ+((q − k)2) + . . .

✔ To higher order in the coupling, each term in the sum
∑

X has IR / collinear divergences

✔ How to avoid divergences? Use the completeness condition
∑

X |X〉〈X| = 1

σtot(q) =

∫

d4x eiqx
∑

X

〈0|O(0)|X〉 e−ixpX 〈X|O(0)|0〉

=

∫

d4x eiqx 〈0|O(x)O(0)|0〉 The operators are not time ordered!

Wightman correlation function (protected for half-BPS operators)

✔ All-loop result in N = 4 SYM [van Neerven]

σtot(q) =
1

16π
(N2 − 1)θ(q0)θ(q2)

Perturbative corrections cancel order by order
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Weighted cross-section

✔ More refined information about the final states in O20′ → everything

✔ Assign a weight factor w(X) to the contribution of each state |X〉

σW (q) =
∑

X

(2π)4δ(4)(q − pX)w(X)|MO
20′→X |2

=

∫

d4x eiqx
∑

X

〈0|O(x)|X〉w(X)〈X|O(0)|0〉

✔ Less inclusive quantity as compared with the total cross section, no optical theorem

✔ Choose of the weight factors w(X) gives an access to the flow of various quantum numbers of
particles (energy, charge, etc) in the final state

✔ Popular choice – energy-energy correlations [Basham,Brown,Ellis,Love]

w(X) =
∑

i,j

EiEjδ(cos θij − cosχ)

(Ei,~pi)

(Ej ,~pj)

Are known in QCD up to 2 loops numerically
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Energy flow

✔ The total energy in the final state |X〉 = |k1, . . . , kℓ〉 that flows into the detector located at

spatial infinity in the direction of the vector ~n.

wE(k1, . . . , kℓ) =
ℓ∑

i=1

k0i δ(2)(Ω~ki
− Ω~n) ,

✔ Energy flow operator

E(~n)|X〉 = wE (X)|X〉 .

✔ Is expressed in terms of the energy-momentum tensor in N = 4 SYM
[Sveshnikov,Tkachov],[GK,Oderda,Sterman]

~niT0i(t,r~n)

E(~n) =

∫ ∞

0
dt lim

r→∞
r2 ~niT0i(t, r~n)

✔ Representation for E(~n) in terms of creation and annihilation

operators of on-shell states

E(~n) =

∫
d4k

(2π)4
2πδ+(k2) k0 δ(2)(Ω~n − Ω~k

)
∑

i=s,λ,λ̄,g

a†i (k)ai(k) ,
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Energy correlations

✔ Single correlator

∑

X

〈0|O(x)|X〉wE (X)〈X|O(0)|0〉 =
∑

X

〈0|O(x)E(~n)|X〉〈X|O(0)|0〉 = 〈0|O(x)E(~n)O(0)|0〉

Wightman correlation function (no time ordering!) due to real-time evolution

✔ Single energy flow

〈E(~n1)〉 = σ−1
tot

∫

d4x eiqx〈0|O(x) E(~n1)O(0)|0〉

✔ Multi-energy correlations [GK,Sterman],[Belitsky,GK,Sterman],[Hofman,Maldacena]

E(~n1) E(~n2)

E(~nℓ)

〈E(~n1) . . . E(~nℓ)〉

= σ−1
tot

∫

d4x eiqx〈0|O(x) E(~n1) . . . E(~nℓ)O(0)|0〉

Energy flow in the direction of ~n1, . . . , ~nℓ

Depends on the relative angles cos θij = (~ni · ~nj)

✔ The goal is to find 〈E(~n1) . . . E(~nℓ)〉 for arbitrary coupling in N = 4 SYM
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Energy correlations from amplitudes

✔ Transition amplitude at one loop

MO
20′→X = 01 0+ +

λ

λ

ss

s

s

s
g

+ . . .

✔ Energy correlations

σE(q) =

∫

dPS2 wE (1, 2) |MO
20′→ss|

2 +

∫

dPS3 wE(1, 2, 3)
(

|MO
20′→ssg |

2 + |MO
20′→sλλ|

2
)

+ . . .

✗ Single detector correlation (protected from loop corrections)

〈E(~n)〉 =
q0

4π

✗ Two detectors oriented along ~ni (unprotected quantity) [Zhiboedov],[Engelund,Roiban]

〈E(~n1)E(~n2)〉 = −
q20

(4π)4

[

− a
ln(1− z)

2z2(1− z)
+O(a2)

]

, (~n1~n2) = cos θ12

The scaling variable in the rest frame of the source z = (1− cos θ12)/2

✗ Two-loop corrections to 〈E(~n1)E(~n2)〉 are hard to compute (∼ 102 diagrams)
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Energy correlations from correlation functions I

✔ Energy flow operator

〈E(~n1)〉 ∼

∫

d4x eiqx〈0|O(x) E(~n1)O(0)|0〉

=

∫

d4x eiqx

︸ ︷︷ ︸

Fourier

∫ ∞

0
dt lim

r→∞
r2

︸ ︷︷ ︸

Detector limit

〈0|O(x)T0~n1
(x1)O(0)|0〉

︸ ︷︷ ︸

Wightman corr. function

∣
∣
∣
∣
x1 = (t, r~n1)

✔ Generalization for ℓ detectors

〈E(~n1) . . . E(~nℓ)〉 = Fourier × Limit
[

〈0|O(x)T0~n1
(x1) . . . T0~nℓ

(xℓ)O(0)|0〉

∣
∣
∣
∣
xi=(ti,ri~ni)

]

✔ How to compute energy flow correlators:

✗ Start with corr.function 〈O(x)T (x1) . . . T (xℓ)O(0)〉 in Euclid

✗ Continue to Minkowski with Wightman prescription

✗ Take detector limit + perform Fourier

✔ Correlation functions in N = 4 SYM have a lot of symmetry :

✗ 〈O(x)T (x1)O(0)〉 is fixed by conformal symmetry → exact result for 〈E(~n1)〉 [Hofman,Maldacena]

✗ 〈O(x)T (x1)T (x2)O(0)〉 is not fixed by conformal symmetry
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Energy correlations from correlation functions II

Hidden beauty of N = 4 SYM:

✔ Quantum corrections to various correlation functions are determined by the same scalar function

〈O(x1)O(x2)O(x3)O(x4)〉E =
1

x2
12x

2
23x

2
34x

2
41

Φ(u, v; a)

〈O(x1)T (x2)T (x3)O(x4)〉E =
1

(x2
12x

2
23x

2
34)

2
P (∂u, ∂v)Φ(u, v; a)

Conformal ratios

u = x2
12x

2
34/(x

2
13x

2
24) , v = x2

23x
2
41/(x

2
13x

2
24)

✔ Universal function in N = 4 SYM at weak coupling [Eden,Schubert,Sokatchev],[Bianchi et al]

Φ(u, v) =aΦ(1)(u, v) + a2
(
1

2
(1 + u+ v)

[

Φ(1)(u, v)
]2

+ 2

[

Φ(2)(u, v) +
1

u
Φ(2)(v/u, 1/u) +

1

v
Φ(2)(1/v, u/v)

])

+O(a3)

Φ(1)(u, v) ‘box’ integral, Φ(2)(u, v) ‘double’ box integral

✔ AdS/CFT prediction for Euclidean Φ(u, v) at strong coupling [Arutyunov, Frolov]
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From Euclid to Minkowski

✔ Brute force method: compute anew using Schwinger-Keldysh technique (too hard)

✔ Better method: analytically continue correlation functions from Euclid to Minkowski+Wightman

✔ Warm-up example: free scalar propagator DEuclid(x) = 〈φ(x)φ(0)〉 ∼ 1/x2

〈0|φ(x)φ(0)|0〉 =
∑

n

〈0|φ(x)|n〉〈n|φ(0)|0〉

=
∑

En>0

e−iEn(x0−i0)+i~p~x〈0|φ(0)|n〉〈n|φ(0)|0〉 ∼
1

(x0 − i0)2 − ~x2

✔ How to get Wightman correlation functions (‘magic’ recipe): [Mack]

✗ Go to Mellin space:

ΦEuclid =

∫ −δ+i∞

−δ−i∞

dj1dj2

(2πi)2
M(j1, j2; a) u

j1vj2 , u =
x2
12x

2
34

x2
13x

2
24

, v =
x2
23x

2
41

x2
13x

2
24

✗ Nontrivial Wick rotation

ΦWightman = ΦEuclid

(
x2
ij → x2

ij,+ = x2
ij − i0 · x0

ij

)

✔ M(j1, j2; a) is known both at weak and strong coupling in planar N = 4 SYM
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All-loop prediction for energy correlations

✔ Energy correlations for arbitrary coupling

〈E(~n1)E(~n2)〉 =
1

(4π2)2
q2

(n1n2)3
FE(z; a) , z = (1− cos θ12)/2

✔ All-loop prediction

FE (z; a) =

∫ −δ+i∞

−δ−i∞

dj1dj2

(2πi)2
M(j1, j2; a)
︸ ︷︷ ︸

corr.function

KE(j1, j2)
︸ ︷︷ ︸

detector

(
1− z

z

)j1+j2

Detector function is independent on the coupling

KE (j1, j2) ∼
Γ(1− j1 − j2)

Γ(j1 + j2)[Γ(1− j1)Γ(1− j2)]2

M(j1, j2; a) = aM (1)(j1, j2) + a2M (2)(j1, j2)
︸ ︷︷ ︸

are known

+ . . .

✗ Weak coupling: FE (z; a < 1) =
a

4

z ln (1/(1− z))

(1− z)
+ a2[Long expression] +O(a3)

✗ Strong coupling: FE (z; a → ∞) = 8 z3 +O(1/a) [Hofman,Maldacena]

✔ FE (z; a) is a regular, positive function of 0 ≤ z ≤ 1 for any coupling, away from the planar limit !
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Conclusions and open questions

✔ Energy correlations are good/nontrivial physical observables in N = 4 SYM

✔ Nontrivial constrains on the correlation functions in CFT coming from FE(z; a) > 0

✔ Relation to energy flow correlations in QCD (most complicated part)?

✔ All symmetries of N = 4 SYM are preserved, what is the manifestation of integrability?

✔ Interpolation between weak and strong coupling?

✔ Other proposals for ‘good’ observables?
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