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�� Motivation: 3d FMotivation: 3d F--theoremtheorem

�� Free 3d Maxwell is not a CFTFree 3d Maxwell is not a CFT

�� Calculation using replica trickCalculation using replica trick

�� Hilbert space interpretation Hilbert space interpretation 



FF--theoremtheorem

� Finite term in the disk entanglement entropy:
- works away from conformality

- proof of monotonicity

- hard to calculate and even define

� Log of the S3 partition function:
- inequality of values at UV and IR conformal fixed points

- much easier to calculate

[Myers Sinha]

[DLJ Klebanov Pufu Safdi]



cc--theorems in various dimensionstheorems in various dimensions

� A measure of the number of degrees of freedom 
in interacting field theories. It should decrease 
along rg flow.

� Most obvious conjecture is the thermal free 
energy. Not constant along conformal 
manifolds. Also, in 3d, the critical O(N) model is 
a counter-example. 



cc--theorems in various dimensionstheorems in various dimensions

� In 2d, the coefficient of the trace anomaly has 
this property. RG flow is the gradient flow for 
this quantity.

� In 4d,                                                 , and it is a
that plays this role. 

� In odd dimensions, there are no anomalies, so 
this has long been an open problem. 

16π2〈Tµµ〉 = c(Weyl)2 − 2a(Euler)

Zamolodchikov

Komargodski Schwimmer



Sphere partition functionSphere partition function

� Any conformal field theory can be put on the 
sphere – it is conformal to flat space. 

� IR finite observable in odd dim, but non-local. 

� Weyl invariance is maintained, hence 1-point 
functions vanish, and Z is constant along 
conformal manifolds.



SS33 partition function wellpartition function well--defineddefined

� In general, a calculation in an effective theory with a 

lower cutoff  Λ’ < Λ differs by a local effective action 

for the background fields. 

� In odd dimensions, no such counter term can integrate 

to a number, so the finite term is well-defined.

� Would be interesting to develop the analogous theory 

to deal with divergences in entanglement entropy.

∫ √
g,

∫ √
g R



Entanglement entropyEntanglement entropy

� Shown that                    is smaller for the IR 
fixed point than in the UV, when the Hilbert 
factorizes on the lattice.

� Equal to the sphere partition function for 
conformal field theories 

ρ

−S + r∂rS

[Casini Huerta Myers]

[Casini Huerta]

Sent = −Tr(ρ log ρ)



Counts topological  Counts topological  d.o.fd.o.f

� The original motivation for studying entanglement 
entropy in QFT was in condensed matter physics as a 
way to characterize topological order in gapped 
systems. 

� For example, WZW edge states contribute in pure 
Chern-Simons.

� Therefore, F cannot be determined only from local 
correlation functions (likewise for S3 free energy). 



Replica trickReplica trick

� There is a path integral description of the Renyi
entropies,                            

� ρ is given in the semi-classical wavefunctional of 
fields basis as the path integral on R3 with 
boundary conditions on across the disk. 

� One obtains an n-sheeted branched cover.

Sn(r) = − log(trρn)
n−1

trρn = Zn/Z
n
1



From entanglement to spheresFrom entanglement to spheres

� The ball in flat space is conformal to the 
hemisphere in Sd-1 × R. Its casual diamond can 
be mapped by a time dependent Weyl rescaling 
to the static patch in de Sitter. The CFT vacuum 
maps to the euclidean vacuum.

� The reduced density matrix of any QFT in the 
static patch is thermal at the dS temperature.

� Analytic continuation of the static patch is Sd. 

ρ = e−βH

tr(e−βH )

[Casini Huerta Myers]

−S = tr(ρ log ρ) = tr(ρ(−βH − logZ)) = − logZ



Sketch of the proof of the Sketch of the proof of the monotonitymonotonity

of of entenglemententenglement entropyentropy

� Strong sub-additivity

S(A) + S(B) ≥ S(A ∪B) + S(A ∩B)

√
rR

√
rRR

r

rS(r) + S(r) ≤ 0
[Casini Huerta]

2S(
√
rR) ≥ S(R) + S(r)



Known valuesKnown values

� For massless fields, can compute via the sphere 
partition function. Massive fields known in an 
expansion in 1/(r m). 

� For abelian Chern-Simons theory at level k.

Ffermion =
log 2
8 + 3ζ(3)

16π2Fscalar =
log 2
8 − 3ζ(3)

16π2

FCS =
1
2 log k

[Klebanov Pufu Safdi]



Exotic Exotic rgrg flows?flows?

� Consider a weakly coupled abelian Chern-
Simons-matter CFT. 

� The F-theorem permits flows to IR theories 
with                 .

� No examples are known. Maybe there a stronger 
constraint? Or we should find such flows.

F ≈ 1
2 log k +N

(UV )
f

N
(IR)
f > N

(UV )
f



NonNon--conformalityconformality of Maxwellof Maxwell

� The stress tensor is

� This is not traceless

� Nor is the virial current                          gauge 
invariant.  

� But charge associated to                          exists.

Tµν = FνρF
ρ
ν − 1

4ηµνF
2

Tµµ =
4−d
4 F 2

Vµ =
d−4
2 AνFµν

∆µ = xνTµν + Vµ

[El-Showk Nakayama Rychkov]



Dual photon descriptionDual photon description

� It’s useful to dualize to a free compact scalar 
with radius 2πg. 

� This is gauging the shift symmetry of the scalar 
with a Z-gauge field. 

� The monopole operator is             .

∂µφ = ǫµνρ∂
νAρ

eiφ/g

∫
(∂µφ+ 2πgAµ)(∂

µφ+ 2πgAµ) + 4πi ǫµνρAµ∂νBρ



Spontaneous symmetry breakingSpontaneous symmetry breaking

� In d > 2 dimensions, the shift symmetry of the 
compact scalar theory is spontaneously broken. 
The field takes a definite value, say 0, at infinity 
in the superselection sector of the vacuum.

� Otherwise cluster decomposition would be 
violated for correlation functions of 

� Corresponds to monopole condensation.

eiφ/g



SS33 partition functionpartition function

� The theory cannot be conformally coupled because the 
scalar is compact (no improvement term, it’s not a 
CFT, nor does virial current exist).

� There is a zero mode integral, proportional to the circle 
size, g. Together with the one loop determinant, one 
finds a logarithmic dependence

� Can’t see the symmetry breaking on the sphere. 

F = −1
2 log(g

2r) + ζ(3)
4π2

[Klebanov Pufu Sachdev Safdi]



MaxwellMaxwell--ChernChern--Simons Simons rgrg flowflow

� Consider Maxwell-Chern-Simons at level k. This 
represents an rg flow from free Maxwell to the 
gapped Chern-Simons theory.

� The crossover scale is g2 k, so  

� This is valid for any large k (weak coupling), so 
for large r, one expects FMaxwell(r) ∼ − 1

2 log(rg
2)

FMaxwell(r =
1
g2k ) ∼

1
2 log k



InstantonInstanton sumsum

� In the n-fold branched cover of R3, there are n 
asymptotic regions. The field must go to 0 mod 
2πg there.

� This results in a sum over winding sectors 

. The fluctuation determinants are 
all equal.

(0, w1, , wn−1)

Zn = Z1-loop
scalar

∑
w e

−S(w) S(w) = (2πg)2r
∑

jk

(Mn)jkw
jwk



UV limitUV limit

� At short distances, the sum becomes an integral

� The Renyi entropies become

� Thus,

∆Sn(r) =
1
2 log(g

2r) + 1
2(n−1) log detMn

F ≈ log 2
8 − 3ζ(3)

16π2 +
1
2 +

γ
2 −

1
2 log(rg

2)

Zinst
n (r) =

∑

w

e−4π
2g2r(Mn)jkw

jwk ∼
(
det(

4π2g2rMn

π
)

)−1/2



Finding the Finding the instantoninstanton solutionssolutions

� It’s convenient to regard the field on the n-
sheeted cover as an n-vector with monodromy. 

� One can then go to a diagonal complex basis. 

where                                          is the action
for a solution with multiplicative cut 

(Mn)jk =
1

n

n−1∑

m=1

e2πi(j−k)m/nJ(k/n)

J(β) = 1
2

∫
d3x∂µφ

∗

β∂
µφβ

e2πiβ



OnOn--shell actionshell action

� The on-shell action is equivalent to a boundary 
integral, which equals the flux since the field 
approaches 1 at infinity.

� Actually found the solutions in a convenient 
basis of harmonic functions numerically. 

J(β) = 2π(1 − 2β) tanπβ



Numerical extensionNumerical extension

� Unknown how to continue Θ function in n. 

� Fitting with rational functions works much 
better than polynomials.

� Check that convergence is good by 
approximating the known S2(r) from higher 
Sn(r), and checking at small r limit. 



F(rF(r))



Hilbert space structureHilbert space structure

� The Hilbert space of the compact scalar is the 
same as the ordinary scalar in flat space, due to 
spontaneous symmetry breaking by the vacuum.

� However, the Hilbert spaces in the disk (really a 
sum of selection sectors with different boundary 
conditions) differ between the two theories.



Disk Hilbert spaceDisk Hilbert space

� In continuum QFT, one has continuity across the disk, 
moreover the field value there defines boundary 
conditions,

� Suggests that the reduced density matrix is block 
diagonal in the boundary field basis (superselection). 

� Can check this using the fact that               for 
conformal field theories. K leaves scalar primaries at 
the boundary invariant.

Hphysical = ⊕f Hin
f ⊗Hout

f

ρ = e−K

[ρ,Φ|S1 ] = 0



Averaging versus interferingAveraging versus interfering

� In the compact scalar, the wavefunctionals must 
be invariant under the shift, in other words one 
first sums the states and then forms the density 
matrix. 

� This gives a purer density matrix than summing 
afterward, hence the EE deficit, F, is larger. 

〈φ+|ρc|φ−〉 =
∑

n

〈φ+ + 2πgn|ρnc|φ− + 2πgn〉



Why does F depend on such Why does F depend on such 

subtleties?subtleties?

� It might seem strange that to obtain an rg
monotonic quantity one needs something that 
depends on more data than the Hilbert space 
and Hamiltonian in flat space. 

� However, in principle more rg flows (in the 
space of local QFTs) are allowed if fewer 
operators in the UV are considered to be local.



PunchlinesPunchlines
� The 3d compact Maxwell theory flows from the 

noncompact R gauge theory to the free 
noncompact scalar. 

� Found the interpolating F(r). It diverges in the 
UV.

� F depends on more data than H and the Hilbert 
space in Minkowski space. 


