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family: the genuine vacuum plus metastable ones entangled with the genuine vacuum

in the θ evolution.

As soon as string tensions in our model are classically determined by their U(1)

charges the tension of k-string is given by

Tk = 2π k ξ + O(Λ2), (45)

where corrections of order of Λ2 are induced by the quantum effects in the effective

world sheet theory.

If we add up N strings, the resulting conglomerate is connected to the ANO

string.

6 Kinks are confined monopoles

The CP (N − 1) models are asymptotically free theories and flow to strong coupling

in the infrared. Therefore, the non-Abelian strings discussed in the previous sec-

tions are in a highly quantum regime. To make contact with the classical Abelian

strings we can introduce parameters which explicitly break the diagonal color-flavor

SU(N)diag symmetry lifting the orientational string moduli. This allows us to obtain

a quasiclassical interpretation of the confined monopoles as string junctions, and fol-

low their evolution from (almost) ’t Hooft–Polyakov monopoles to highly quantum

sigma-model kinks. In the supersymmetric case this was done in Refs. [12, 11, 13].

6.1 Breaking SU(N)diag

In order to trace the monopole evolution we modify our basic model (3) introducing,

in addition to the already existing fields, a complex adjoint scalar field aa,
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, (46)

where Dµ is a covariant derivative acting in the adjoint representation of SU(N) and

M is a mass matrix for scalar quarks Φ. We assume that it has a diagonal form

M =

















m1 ... 0

... ... ...

0 ... mN

















, (47)

with the vanishing sum of the diagonal entries,

N
∑

A=1

mA = 0 . (48)

Later on it will be convenient to make a specific choice of the parameters mA, namely,

M = m × diag
{

e2πi/N , e4πi/N , ..., e2(N−1)πi/N , 1
}

, (49)

where m is a single common parameter, and the constraint (48) is automatically

satisfied. We can (and will) assume m to be real and positive.

In fact, the model (46) presents a less reduced bosonic part of the N = 2 super-

symmetric theory than the model (3) on which we dwelled above. In the N =

2 supersymmetric theory the adjoint field is a part of N = 2 vector multiplet. For

the purpose of the string solution the field aa is sterile as long as mA = 0. Therefore,

it could be and was ignored in the previous sections. However, if one’s intention is to

connect oneself to the quasiclassical regime, mA %= 0, and the adjoint field must be

reintroduced.

For the reason which will become clear shortly, let us assume that, although

mA %= 0, they are all small compared to
√

ξ,

m &
√

ξ ,

26

Prototype model: Nf=N=2;    N =2
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U(2) gauge group, 2 flavors of (scalar) quarks
SU(2) Gluons Aaμ + U(1) photon + gluinos+ photino
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Basic idea:
• Color-flavor locking in the bulk → Global symmetry G;        

• G is broken down to H on the given string;

• G/H coset; G/H sigma model on the world sheet.
Φ=√ξ × I

Wednesday, September 18, 13



π1(SU(2)×U(1)) = Z2: rotate by π around 3-d axis in SU(2) 
   → -1;  another -1 rotate by π in U(1) 

✭ ANO strings are there because of U(1)!
✭  New strings:

st
ri
ng

x
y
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SU(2)/U(1) = CP(1)∼O(3) sigma model

classically gapless excitation

“Non-Abelian” string is formed if all non-
Abelian degrees of freedom participate in 
dynamics at the scale of string formation
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                    ✵ ✵
Versions of CP(N-1) models in 2D: nonsupersymmetric 
and supersummetric - with twisted mass and ZN 
symmetry
  

    N = (2.2) and (0,2) (2.2)

 

★ Gauged formulation ★ (Witten, 1979)

M. Shifman  7
Wednesday, September 18, 13



M. Shifman 8

.

.

.

m

!
2

2" #

Tension

m*

Figure 7: Schematic dependence of string tensions on the mass parameter m. At

small m in the non-Abelian confinement phase the tensions are split while in the

Abelian confinement phase at large m they are degenerative.

show schematically the dependence of the string tensions on m in these two phases

in Fig. 7.

It is well known [37] that two-dimensional CP (N − 1) model can be obtained as

a low-energy limit of a U(1) gauge theory with N flavors of complex scalars n! and

the potential

e2β2
(

|n!|2 − 1
)2

, (57)

where e2 is U(1) gauge coupling. Classically the CP (N − 1) model corresponds to

the Higgs phase of this gauge theory. The potential (57) forces n! to develop VEV’s

breaking the U(1) gauge symmetry. Then the U(1) photon becomes heavy and can

be integrated out. Namely, in the low-energy limit the gauge kinetic term can be

ignored which leads us to the model (34).

To include the masses mA in this theory we add, following [37], a neutral complex

scalar field σ and consider the U(1) gauge theory with the potential

S(1+1) =
∫

dt dz
{

2β |∇α n|2 +
1

4e2
F 2

αγ +
1

e2
|∂ασ|2 ,
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, (58)

where ∇α = ∂α − iAα (Aα is the two-dimensional U(1) gauge potential).

At large mA this theory is in the Higgs phase. Moreover, quantum effects do not

destroy the Higgs phase because the coupling constant is small. Namely, σ develops

a VEV,

〈σ〉 = m!0 ,

while VEV’s of n! are given by (55). In this phase both the U(1) gauge field and

the scalar field σ become heavy and can be integrated out leading to the massive

CP (N − 1) model with the potential (52).

At small mA this theory is in the Coulomb phase. The VEV’s of n! vanish,

and the photon becomes massless. Since the Coulomb potential in two dimensions

is linear, the photon masslessness results in confinement of kinks [24]. Thus, the

phase transition which we identified above, separates the Higgs and Coulomb phases

of the two-dimensional U(1) gauge theory (58). The Higgs phase is characterized by

a broken ZN symmetry and degenerate vacua, while in the Coulomb phase the ZN

symmetry gets restored, and the vacua split. In four dimensions the former phase

is an Abelian confinement phase with degenerate Abelian strings and 2D deconfine-

ment of monopoles. The latter phase is a non-Abelian confinement phase with N split

non-Abelian strings and non-Abelian 2D-confined monopoles forming meson-like con-

figurations on these strings. Note that the description of the CP (N−1) theory on the

string world sheet as a U(1) gauge theory (58) was used in [13] in a supersymmetric

setting.

In particular, we expect that in the N = 2 case the massive CP (1) model is in the

same universality class as the two-dimensional Ising model. Therefore, we conjecture

that the phase transition from the Abelian confinement phase to the non-Abelian one

is of the second order, and is described (at N = 2) by conformal field theory with the

central charge c = 1/2, which corresponds to a free Majorana fermion.
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where Dµ is a covariant derivative acting in the adjoint representation of SU(N) and

M is a mass matrix for scalar quarks Φ. We assume that it has a diagonal form
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with the vanishing sum of the diagonal entries,

N
∑

A=1

mA = 0 . (48)

Later on it will be convenient to make a specific choice of the parameters mA, namely,

M = m × diag
{

e2πi/N , e4πi/N , ..., e2(N−1)πi/N , 1
}

, (49)

where m is a single common parameter, and the constraint (48) is automatically

satisfied. We can (and will) assume m to be real and positive.

In fact, the model (46) presents a less reduced bosonic part of the N = 2 super-

symmetric theory than the model (3) on which we dwelled above. In the N =

2 supersymmetric theory the adjoint field is a part of N = 2 vector multiplet. For

the purpose of the string solution the field aa is sterile as long as mA = 0. Therefore,

it could be and was ignored in the previous sections. However, if one’s intention is to

connect oneself to the quasiclassical regime, mA %= 0, and the adjoint field must be

reintroduced.

For the reason which will become clear shortly, let us assume that, although
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ZN symmetry

m/Λ

1. Non-SUSY bulk → no SUSY  in 2D

GSY   hep-th/0512153
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GSY hep-th/0601131

2. Introduction of 2D axion restores ZN and
    eliminates Coulomb/confinement phase

and also becomes “dynamical.” We use quotation marks here because in two dimen-
sions the kinetic term (6) does not propagate any physical degrees of freedom; its
effect reduces to an instantaneous Coulomb interaction. This is best seen in the
A1 = 0 gauge. In this gauge the above kinetic term takes the form

(∂zA0)
2 (7)

while the interaction is

AαJα = A0J
0 , Jα = n∗

"

↔

∂α n" . (8)

Since A0 enters in the Lagrangian without time derivative, it can be eliminated by
virtue of the equation of motion leading to the instantaneous Coulomb interaction

J0 ∂
−2
z J0 . (9)

In two dimensions the Coulomb interaction is proportional to

Λ2

N
|z| . (10)

We get linear confinement acting between the n, n̄ “quarks.”
The axion part of the Lagrangian can be written as follows:

La = f 2
a (∂µa)2 +

a

2π
εαγ∂

αAγ , (11)

where Aγ is defined in Eq. (3), and fa is the axion constant. In two dimensions it
is dimensionless. As usual, the axion mass will be proportional to Λ/fa. We will
consistently assume that fa ! 1.

Upon field rescaling bringing kinetic terms to canonical normalization one obtains

−1

4
F 2

µν +
e

2πfa
a εαγ∂

αAγ + (∂µa)2 + e AαJα . (12)

The axion field represents a single degree of freedom. The role of the “photon” is
that upon diagonalization we get a massive spin-zero particle, with mass of order
f−1

a ΛN−1/2.
Since the exchanged quanta are massive the long distance force responsible for

confinement disappears, giving place to deconfinement at distances ! m−1
a . Taking

account of the photon-axion mixing amounts to summing the infinite series of graphs
depicted in Fig. 2. Using Eqs. (9) and (12) it is not difficult to get for this sum

e2J0J0

{

1

p2
+

1

p2

(

e

2πfa

)2 1

p2
µ

+ ...

}

=
e2J0J0

p2

p2
µ

p2
µ −

(

e
2πfa

)2 . (13)

5

Photon is (2D) Higgsed
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  3.  N = 2 SUSY bulk

N = (2,2) CP(N-1) model  

subject to the constraint
n̄i ξ

i = 0 , ξ̄i n
i = 0 . (3.5)

Needless to say, the auxiliary field Aµ has a complex scalar superpartner σ and a

two-component complex spinor superpartner λ; both enter without derivatives. The
full N = (2, 2) -symmetric Lagrangian is 2

L =
1
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0

(
1

4
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µν + |∂µσ|2 +
1

2
D2 + λ̄ iσ̄µ∂µ λ

)
+ i D
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)
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∣∣∇µn

i
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∑

i
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2

∣∣∣∣
2

|ni|2
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√
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i
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2

)
ξ̄Ri ξ
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L − i

√
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λRξi
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R

)

+ i
√
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∑

i

(
σ̄ − m̄i√

2

)
ξ̄Li ξ

i
R − i

√
2ni

(
λ̄Lξ̄Ri − λ̄Rξ̄Li

)
, (3.6)

where mi are twisted mass parameters, and the limit e2
0 → ∞ is implied. Moreover,

σ̄µ = {1, iσ3} , (3.7)

see Appendix A.

It is clearly seen that the auxiliary field σ enters in (3.6) only through the com-
bination

σ − mi√
2

. (3.8)

By an appropriate shift of σ one can always redefine the twisted mass parameters in
such a way that the constraint (2.1) is satisfied. The U(1) gauge symmetry is built
in. This symmetry eliminates one bosonic degree of freedom, leaving us with 2N − 2

dynamical bosonic degrees of freedom inherent to CP(N − 1) model.

3.2 Switching on the heterotic deformation

The general formulation of N = (0, 2) gauge theories in two dimensions was addressed

by Witten in [7], see also [29]. In order to deform the CP(N − 1) model breaking

2This is, obviously, the Euclidean version.
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Λ

Figure 1: Plots of n and σ VEVs (thick lines) vs. m in the N = (2, 2)CP(N − 1)model

with twisted masses as in (2.2).

where we assumed for simplicity that m ≡ m0 is real and positive. (This is by no

means necessary; we will relax this assumption at the end of this section.) Note that
the phase factor of σ in (4.22) does not follow from (4.19). Rather, its emergence

is explained by explicit breaking of the axial U(1)R symmetry down to Z2N through
the anomaly and non-zero masses (2.2), see Appendix D, with the subsequent spon-

taneous breaking of Z2N down to Z2. Once we have one solution to (4.19) with the
nonvanishing σ we can generate all N solutions (4.22) by the Z2N transformation [6].

Although we derived Eq. (4.19) in the large-N approximation, the complexified

version of this equation,
N−1∏

i=0

(√
2σ − mi

)
= ΛN , (4.23)

is in fact, exact, since this equation as well as the solution (4.22) follow from the
Veneziano–Yankielowicz-type effective Lagrangian exactly derived in the N = (2, 2)
CP(N − 1) model in [35, 36, 7, 37, 28]. The Veneziano–Yankielowicz Lagrangian

implies (4.23) even at finite N .

17

Evac=0 always, SUSY unbroken, 
ZN always broken, (N degenerate vacua)
Crossover instead of phase transition
Strong-coupling ↔ weak coupling Higgs regime

Bifermion order 
parameter ξξ No confinement

1/N
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✭ An interesting not yet fully resolved question 
 ( SY + S. Gukov, in progress)

Direct (exact) large-N one-loop calculation:

Calculation of the determinants in Eq. (3.1) is straightforward. We easily get
the following contribution to the effective action:

N

4π

{

(

iD + 2|σ|2
)

[

ln
M2

uv

iD + 2|σ|2 + 1

]

− 2|σ|2
[

ln
M2

uv

2|σ|2 + 1

]}

, (3.2)

where quadratically divergent contributions from bosons and fermions do not depend
on D and σ and cancel each other. Here Muv is an ultraviolet (UV) cutoff. Remem-

bering that the action in (2.13) presents an effective low-energy theory on the string
worldsheet one can readily identify the UV cutoff in terms of bulk parameters,

Muv = mW . (3.3)

Invoking Eq. (2.4) we conclude that the bare coupling constant r0 in (2.13) can be
parameterized as

r0 =
N

4π
ln

M2
uv

Λ2
. (3.4)

Substituting this expression in (2.13) and adding the one-loop correction (3.2) we see
that the term proportional to iD ln M2

uv is canceled out, and the effective action is

expressed in terms of the renormalized coupling constant,

rren =
N

4π
ln

iD + 2|σ|2
Λ2

. (3.5)

Assembling all contributions together we get the effective potential as a function
of the D and σ fields in the form

Veff =
∫

d2x
N

4π

{

−
(

iD + 2|σ|2
)

ln
iD + 2|σ|2

Λ2
+ iD

+ 2|σ|2 ln
2|σ|2

Λ2
+ 2|σ|2 u

}

, (3.6)

where instead of the deformation parameter ω we introduced a more convenient (di-
mensionless) parameter u which does not scale with N ,

u =
8π

N
|ω|2, (3.7)

see Eq. (2.19).

Minimizing this potential with respect to D and σ we arrive at the following
relations:

rren =
N

4π
ln

iD + 2|σ|2

Λ2
= 0 ,

ln
iD + 2|σ|2

2|σ|2 = u . (3.8)

9

vesrus exact Veneziano-Yankielowicz superpotential 
of σ log σ type
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4. BPS Spectrum of SUSY CP(N-1) with ZN 
twisted masses (curves of marginal stability)
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Figure 10: The decay curves of CP2 in m3
0 plane. The primary curve is shown in red. The

two vertical whiskers are the initial coils of the two spirals

6 Conclusion

We have re-examined the problem of the BPS spectrum in CPN−1 theory with twisted

masses. Our previous analysis [1] revealed the existence of extra states which were
not discussed before. It was not fully clear, however, how the states seen at strong

coupling were related to those detected in the weak coupling domain. Now we trace
their relationship in a detailed way.

First we confirmed that at weak coupling, out of N possible towers, only two
(odd N) or one (even N) are realized dynamically. More exactly this statement can
be formulated as follows. A quasiclassical analysis of the kink bound states shows

that in our set-up with the ZN symmetric masses there is only one extra tower of
states which was not known to exist in the case of odd N , and no towers for even N .

For N = 3 we identified two towers at weak coupling and clarified their dynamical
origin. Three states existing at strong coupling evolve (as we move towards the weak

coupling) as follows. Two states form the foundation of the tower A. The third,
“extra” state encounters a CMS and decays before reaching the weak coupling region.

40
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N = (0,2) CP(N-1) model  

Supersymmetry is broken, generally speaking !!!
Phase transitions possible and do occur ✸ ✸ ✸

All phase transitions are of the second kind!

  5.  N = 1 SUSY bulk
Edalati-Tong 
SY arXiv:0803/0158
SY arXiv:0803/0698
BSY arXiv:0901/4603
BSY arXiv:0907/2715
SY arXiv:1005/5264
BSY arXiv:1001/1757
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Break N = 2 down to  N = 1 in the bulk 

Deformation of the bulk:  ADD W= μ(Aa)2 + μ′A2

Lheterotic = z†
R i∂L zR +

⇥
gzR R

�
i∂Lf†�yR +H.c.

⇤
�g2

0|g|2
⇣

z†
R zR

⌘⇣
Ry†

LyL

⌘

at small γ
ζR is Goldstino

Evac = |g|2
���hRy†

R yLi
���
2

(0,2) supersymmetry is 
spontaneously broken!

(2,2) supersymmetry is broken down to (0,2)

 Heterotic deformation the of the World-sheet theory:

M. Shifman 16
Wednesday, September 18, 13



At large N heterotic CP(N-1) 
is also solvable (a là Witten) 
and presents a wealth of 

various phases
We have two parameters, γ and m, and a nontrivial phase 

diagram

With this choice of mass 
parameters we have ZN 
symmetry, and phases with 
broken/unbroken ZN.
SUSY is spontaneously 
broken
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 SUSY restored here

Large deformation
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 Witten’s point

 ZN unbroken
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Phase Diagram
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  6.  N = 1 or 2 SUSY bulk,

✭ Hanani-Tong model →Obtained from string/D 
brane consideration

✭ ✭ From field theory we get zn model: DIFFERNENT

✭ ✭ ✭ Large-N limit the same!!!

 @  Semilocal Strings 
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2.2 N = (0, 2) weighted sigma-model: heterotic deformation

As is well-known from early studies of two-dimensional supersymmetric sigma-models [29],
there is no smooth N = (0, 2) deformation of the N = (2, 2) CPN�1 sigma-model3. On the
other hand, it is possible to have deformation of the C⇥CPN�1 model, which is the relevant
e�ective theory emerging in when studying the non-Abelian vortices (the C factor describes
the translation modes of the vortex). From the additional C piece, one can keep only a
right-handed fermion, while the scalar and left-handed fermionic super-partners is free. A
similar situation occurs for the weighted sigma-model4. As a result we consider the following
Lagrangian

Lhet
WCPNF�1 = LWCPNF�1 + i

2 �̄R�L�R � 2|⌥|2|⌃|2 � [i⌥⇤L�R + H.c.] . (2.6)

The heterotic coupling ⌥ is introduced by means of an additional right-handed fermion �R.
Obviously the modification dramatically changes the physics of the sigma-model at hand.
For example, the Witten index is modified from N � Ñ to zero as in the CPN�1 case. This
observation is indeed consistent with supersymmetry breaking [13,31] occurring in the model.

Adding the twisted masses. Twisted masses can be easily introduced into the model
by first gauging the U(1)NF�1 independent flavor symmetries and then setting to zero all the
fields in the additional twisted multiplets but not the lowest components [24]. The resulting
Lagrangian takes the following form

Lhet
WCPNF�1 = |⇤µni|2 + |⇤µ⇧j|2 + i⌅̄L, i⇤R⌅i

L + i⌅̄R, i⇤L⌅i
R + i⇥̄L, j⇤R⇥j

L + i⇥̄R, j⇤L⇥j
R

�
N�1 

i=0

|⌃ �mi|2 |ni|2 �
Ñ�1 

j=0

|⌃ � µj|2 |⇧j|2 �D
�
|ni|2 � |⇧j|2 � r0

⇥

+

⇤
in̄i

�
⇤L⌅i

R � ⇤R⌅i
L

⇥
� i

N�1 

i=0

(⌃ �mi) ⌅̄R, i⌅
i
L + H.c.

⌅

+

⇧

⌥�i⇧̄j

�
⇤L⇥j

R � ⇤R⇥j
L

⇥
+ i

Ñ�1 

j=0

(⌃ � µj) ⇥̄R, j⇥
j
L + H.c.

⌃

�

+ i
2 �̄R�L�R � [i⌥⇤L�R + H.c.]� 2|⌥|2|⌃|2 . (2.7)

For zero values of the twisted masses there is a U(1) R-symmetry under which the fermions
⌅i
R, ⇥j

R, ⇤R (⌅i
L, ⇥j

L, ⇤L) have charge +1(�1), whereas ⌃ has charge +2. A generic choice of the
masses mi and µj breaks this symmetry completely. Instead, we make the following choice
for the masses

mk = m e2�i k
N , k = 0, . . . , N � 1 ,

µl = µ e2�i l
Ñ , l = 0, . . . , Ñ � 1 . (2.8)

3See Refs. [9, 30] for a discussion of this issue in a context related to non-Abelian vortices
4In fact, it is possible to introduce N = (0, 2) deformations of the weighted sigma-model without in-

troducing any new degrees of freedom, or C factors. However, all the possible deformations di�erent from
the one considered in the text do not arise in the context of non-Abelian vortices. Nevertheless, it may be
interesting to study the e�ects of such deformations. For more details on this aspect, see Ref. [9].
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representation [27]. The model can be built out of N positively charged fields ni, Ñ negatively
charged fields ⌃j and a non-dynamical auxiliary field. The full Lagrangian, including the
fermionic superpartners can be written in a superfield formalism which make supersymmetry
manifest (see Sec. A). The Lagrangian (A.1) has the following component expansion

LWCPNF�1 = |⌅µni|2 + |⌅µ⌃j|2 � |⌥|2|ni|2 � |⌥|2|⌃j|2 �D
�
|ni|2 � |⌃j|2 � r0

⇥

+ i⌅̄L, i⌅R⌅i
L + i⌅̄R, i⌅L⌅i

R + i⇥̄L, j⌅R⇥j
L + i⇥̄R, j⌅L⇥j

R +

+
⇤
in̄i

�
⇤L⌅i

R � ⇤R⌅i
L

⇥
� i⌥⌅̄R, i⌅

i
L � i⌃̄j

�
⇤L⇥j

R � ⇤R⇥j
L

⇥
+ i⌥⇥̄j

R⇥j
L + H.c.

⌅
,

(2.1)

where the covariant derivatives are given by

⌅µni = (�µ � iAµ)ni, ⌅µ⌃j = (�µ + iAµ)⌃j . (2.2)

The fields Aµ, ⌥, ⇤L,R and D all belong to the same N = 2 supermultiplet, they are non-
dynamical, and can be integrated out using their equations of motion. However, as we shall
see later, in strongly coupled phases these auxiliary fields do become dynamical and describe
particles in the low energy e⇥ective theory.

The model has a unique parameter which determines the strength of the interactions, the
two-dimensional Fayet-Iliopoulos term r0 [28]. Classically, the model has a continuous set of
vacua determined by the vacuum equation

N�1 

i=0

|ni|2 �
Ñ�1 

j=0

|⌃j|2 = r0 . (2.3)

The first and the most important quantum e⇥ect is the generation of a dynamical scale �
through dimensional transmutation. In fact, the Fayet-Iliopoulos term gets renormalized,
flowing with respect to the energy scale � through the following one loop expressions

r(�) = r0 �
N � Ñ

4⇧
log

⌥
M2

UV

�2

�
⇤ �N � Ñ

4⇧
log

⌥
�2

�2

�
. (2.4)

The theory is thus asymptotically free for N > Ñ . From the expression above we can also
guess that for N = Ñ we have super-conformal theory, and this is indeed the case [26].

Actually, thanks to supersymmetry, (2.4) is exact in perturbation theory because of the
vanishing of higher order contributions. Furthermore, integrating out the matter fields in
the functional integral we can find an exact superpotential for the field ⌥ [26, 21,22,24]

W (⌥) =
N � Ñ

4⇧
⌥
⇧
log
⇧⌥

�

⌃
� 1
⌃

. (2.5)

This superpotential includes all the non-perturbative instantonic contributions to the func-
tional integral. At the classical level the theory has two U(1) R-symmetries, U(1)R⇥U(1)V .
The first one is an axial symmetry, under which ⌥ has charge +2. This symmetry is anoma-
lous and is broken down to Z2N�2Ñ by the one-loop corrections. By minimization of the

superpotential (2.5) we find N � Ñ massive vacua. We will discuss in more details the
vacuum structure of the theory in Sec. 3.
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∼
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2.2 N = (0, 2) weighted sigma-model: heterotic deformation

As is well-known from early studies of two-dimensional supersymmetric sigma-models [29],
there is no smooth N = (0, 2) deformation of the N = (2, 2) CPN�1 sigma-model3. On the
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The heterotic coupling ⌥ is introduced by means of an additional right-handed fermion �R.
Obviously the modification dramatically changes the physics of the sigma-model at hand.
For example, the Witten index is modified from N � Ñ to zero as in the CPN�1 case. This
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For zero values of the twisted masses there is a U(1) R-symmetry under which the fermions
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R, ⇥j

R, ⇤R (⌅i
L, ⇥j

L, ⇤L) have charge +1(�1), whereas ⌃ has charge +2. A generic choice of the
masses mi and µj breaks this symmetry completely. Instead, we make the following choice
for the masses

mk = m e2�i k
N , k = 0, . . . , N � 1 ,

µl = µ e2�i l
Ñ , l = 0, . . . , Ñ � 1 . (2.8)

3See Refs. [9, 30] for a discussion of this issue in a context related to non-Abelian vortices
4In fact, it is possible to introduce N = (0, 2) deformations of the weighted sigma-model without in-

troducing any new degrees of freedom, or C factors. However, all the possible deformations di�erent from
the one considered in the text do not arise in the context of non-Abelian vortices. Nevertheless, it may be
interesting to study the e�ects of such deformations. For more details on this aspect, see Ref. [9].

5

NF =N+N ∼

Hanani-Tong model
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of semi-local vortex strings in SQCD: the ZN model [
Shifman:2011xc
?] and the Hanany-Tong [

Hanany:2003hp,Hanany:2004ea
?,?] model. In

Sec.
Sec:LargeNSec:LargeN
4 we study the large-N solution, which we use in Sec.

Sec:SpectrumZNSec:SpectrumZN
4.1 to determine the full spectrum

of the theory. With the knowledge acquired so far, we are ready to write down an exact
twisted superpotential which encodes the full spectrum in Sec.

Sec:twistedSec:twisted
3.1. Finally, in Sec.

Sec:GeometricFormulationsSec:GeometricFormulations
5 we

study vacuum manifolds and perturbation theory of these models in the geometric language.
Finally we summarize and conclude in Sec.

Sec:ConsclusionsSec:Consclusions
6.

2 Exact World-Sheet Theory on Non-Abelian Semi-
Local Vortices: the ZN Model

Sec:HananyTongModel
Non-Abelian semi-local vortices are present in the Higgs phase of U(N) SQCD with Nf =
N +Ñ flavors when one introduces a non-vanishing Fayet-Iliopoulos term � [

Hanany:2003hp,Hanany:2004ea
?,?]. The moduli

space of a single semi-local vortex is a non-compact space of complex dimension N +Ñ . One
can interpret N � 1 zero modes as parameterizing orientational degrees of freedom2, while
further Ñ modes parameterize the size of the semi-local vortex. Finally, one last parameter
is related to the position of the vortex on the plane.

A crucial property of the moduli space of semi-local vortices is the logarithmical diver-
gence of its metric:

Ldiv ⇤ 2⇥� ln L , (2.1)

where L is an infrared cut-o�3. This account for basically all the di⇥culties in treating
this kind of solutions. These divergent terms were calculated in Refs. [

Shifman:2006kd,Eto:2007yv
?, ?]. More recently,

some of the authors showed in Ref. [
Shifman:2011xc
?] how to take advantage of the presence of the large

logarithms instead. After an appropriate redefinition of the fields one can actually derive an
exact world-sheet theory for semi-local strings in the limit lnL⇥⌅. The resulting model,
the ZN model, is the following N = (2, 2) supersymmetric4 theory

Sexact =

⌥
d2x

⌅
|⌅k(zjni)|2 + |⌃kni|2 +

1

4e2
F 2

kl +
1

e2
|⌅k⇤|2

+ |mi � m̃j|2 |zj|2|ni|2 +
⇤⇤⇤
⇧

2⇤ + mi

⇤⇤⇤
2
|ni|2 +

e2

2

�
|ni|2 � r

⇥2
⇧

,

i = 1, ..., N , j = 1, ..., Ñ , ⌃k = ⌅k � iAk . (2.2)

It is assumed that at the very end we take limit e2 ⇥ ⌅, where gauge fields and their
superpartners become auxiliary [

Witten:1978bc,Hanany:1997vm
?,?] and can be integrated out:

Ak = �i n�
i ⌅kni,

⇧
2⇤ = �

⌃

i

mi |ni|2. (2.3) eq:int1

2The moduli space of a non-Abelian semi-local vortex contains indeed a subspace which corresponds to
CPN�1, the orientational moduli space of a traditional non-Abelian vortex.

3L can either represents a finite length of the vortex, or a finite volume of the transverse space. Intro-
duction of masses is also a way to cut-o⇥ the diverging integrals L�1 = �m

4We write down only the bosonic part of the action, but we will include fermions in Sec.
Sec:LargeNSec:LargeN
4.

3

 
zn Model (MS+Vinci+Yung)

zj of the opposite charge compared to ni and unconstrained

Derived from the bulk theory in the limit ln(ξL2)>>1
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☞ At N→∞ HT = zn

☞ BPS sectors the same at  any N

☞ New type of renormalizability
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Figure 4: Phase Diagram of the weighted (2, 2) CPN�1 model in the large-N approach. There
are four domains with di⇥erent VEVs for ⇥: two Higgs branches H� and Hn, and two Coulomb
branches C. In the Coulomb phase C r = 0. The curve µ/� = (m/�)1/� together with horizontal
and vertical lines starting from µ = � and m = � respectively separates the C phases from the
Higgs phases. In Hn r > 0 and in H� r < 0. On the super-conformal line µ/� =( m/�)1/� a new
branch described by a super-conformal theory opens up.
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From Koroteev-Monin-Vinci, 2010

Superconformality line

Phase Diagram in the 
large-N solution of 
weighted CP(N-1) or, 
which is the same, zn 
model
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Abstract

We consider two-dimensional N = (0, 2) sigma models with the CP(1) target
space. A minimal model of this type has one left-handed fermion. Nonminimal
extensions contain, in addition, Nf right-handed fermions. Our task is to derive
expressions for the β functions valid to all orders. To this end we use a variety of
methods: (i) perturbative analysis; (ii) instanton calculus; (iii) analysis of the super-
current supermultiplet (the so-called hypercurrent) and its anomalies, and some other
arguments. All these arguments, combined, indicate a direct parallel between the
heterotic N = (0, 2) CP(1) models and four-dimensional super-Yang–Mills theories.
In particular, the minimal N = (0, 2) CP(1) model is similar to N = 1 supersym-
metric gluodynamics. Its exact β function can be found; it has the structure of the
Novikov–Shifman–Vainshtein–Zakharov (NSVZ) β function of supersymmetric glu-
odynamics. The passage to nonminimal N = (0, 2) sigma models is equivalent to
adding matter. In this case an NSVZ-type exact relation between the β function
and the anomalous dimensions γ of the “matter” fields is established. We derive an
analog of the Konishi anomaly. At large Nf our β function develops an infrared fixed
point at small values of the coupling constant (analogous to the Banks–Zaks fixed
point). Thus, we reliably predict the existence of a conformal window. At Nf = 1
the model under consideration reduces to the well-known N = (2, 2) CP(1) model.

loop exact β function is presented in Sec. 4.1. In Sec. 5 we calculate explicitly the
supercurrent supermultiplet for this model. In Sec. 6 we extend the minimal model
by adding “matter”, i.e. the right-handed fermion fields. Following the same road
as in the minimal model, we calculate the two-loop β function perturbatively in the
nonminimal model. Then we exploit the instanton analysis to obtain an exact relation
between the β function and the anomalous dimension γ of the “matter” fields. In
Sec. 7 we calculate the supercurrent supermultiplets for the extended (nonminimal)
models. Section 8 is devoted to a 2D analog of the Konishi anomaly in the extended
models. Finally, Sec. 9 demonstrates the appearance of a conformal window. Main
conclusions and prospects for future explorations are summarized in Sec. 10.

2 Formulation of the minimal heterotic CP(1)
model

In this section we will formulate the minimal N = (0, 2) CP(1) sigma model (previ-
ously it was studied e.g. in [12, 14]). We will use N = (0, 2) superfield formalism.
Note that due to anomaly [21] it is impossible to generalize this model to CP(N−1).

The Lagrangian of the model under consideration is

LA =
1

g2

∫

d2θR
A†i

↔

∂RRA

1 + A†A
, (1)

where A is a bosonic chiral superfield:

A(x, θ†R, θR) = φ(x) +
√
2θRψL(x) + iθ†RθR∂LLφ , (2)

φ is a complex scalar, and ψL is a left-handed Weyl fermion. The superfield A can
be understood as taking values on the CP(1) manifold, and, thus, can be endowed
with the following nonlinear transformations:

A → A + ε+ ε̄A2 , A† → A† + ε̄+ ε(A†)2 , (3)

plus a U(1) rotation.
In components, we can write the Lagrangian as

G

{

∂µφ∂µφ
† + iψ†

L

↔

∂RRψL − 2i
1

χ
ψ†
LψL φ

†
↔

∂RRφ

}

. (4)

4
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√
2θRψL(x) + iθ†RθR∂LLφ , (2)

φ is a complex scalar, and ψL is a left-handed Weyl fermion. The superfield A can
be understood as taking values on the CP(1) manifold, and, thus, can be endowed
with the following nonlinear transformations:

A → A + ε+ ε̄A2 , A† → A† + ε̄+ ε(A†)2 , (3)

plus a U(1) rotation.
In components, we can write the Lagrangian as

G

{

∂µφ∂µφ
† + iψ†

L

↔

∂RRψL − 2i
1

χ
ψ†
LψL φ

†
↔

∂RRφ

}

. (4)

4

=
The derivatives ∂RR and ∂LL are defined in Appendix A, see Eq. (A.3). Here we
denote by G the Kähler metric on the target space (S2 in the case at hand), in the
Fubini–Study form,

G =
2

g2 χ2
, (5)

where
χ ≡ 1 + φ φ† . (6)

Moreover, R is the Ricci tensor,

R =
2

χ2
, (7)

while g2 is the coupling constant.
The coupling constant g can be complexified. In what follows we will deal with

the holomorphic coupling gh defined as

2

g2h
=

2

g2
+ i

ω

2π
. (8)

In terms of the holomorphic coupling the Lagrangian of the minimal model has the
form

LA =

∫

d2θR
i

2g2h

A†∂RRA

1 + A†A
+H.c.

= − i

2g2h

∫

dθR
D̄LA†∂RRA

(1 + A†A)2
+

i

2ḡ2h

∫

dθ†R
DLA∂RRA†

(1 + A†A)2
. (9)

The target space invariance of the integrand is maintained in the second line. In
perturbative loop calculations and in instanton analysis we will use the canonical
coupling g. To differentiate between the bare and renormalized couplings we will use
subscripts 0 and r where appropriate.

In Sect. 6 we will extend this minimal model by adding Nf “matter” fields.

3 Perturbative superfield calculation
of the β function

Fermions do not contribute to the β function at one loop (see e.g. [24]). Therefore,
the first coefficient of the β function in the minimal heterotic model is the same as

5

NR theorems
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Figure 4: An illustration of how the cancelation at higher loop level happens. The dashed lines
are the φ propagators, the solid lines are those of ψz̄ , and the solid lines with the wavy lines
superimposed denote the propagators of ψz,i.

general argument telling us that in the instanton background, all one-particle irre-
ducible diagrams with two loops or more do not contribute is essentially the same
as in Sect. 4.1. We can illustrate how it happens in the component language for
three-loop graphs shown in Fig. 4. The diagram displayed on the left and on the
right cancel each other.

Recall that the Z factors of the Bi fields get renormalized. These are one-particle
reducible graphs in the instanton background not seen in the above consideration (in
the instanton background the ψz,i kinetic terms vanish due to equations of motion).
They have to be included in the measure additionally, as was done in (77).

Asserting that the overall dependence of the instanton measure dµ on the ultra-
violet cut-off M should cancel, we arrive at the exact relation between the β function
and the anomalous dimension γ(Bi),

β(g2) = − g4

2π

1 + Nf

2
γ(Bi)

1− 1
4π
g2

, (78)

exactly as in (70).
In the multiflavor model neither β(g2) nor γ(Bi) are all-loop exact. But the

relation between them is exact. This is similar to the situation in N = 1 super-
Yang–Mills theory with matter in four dimensions. As in the NSVZ β function, the
knowledge of Z’s at one-loop order gives β(g2) at two-loop order, and so on.

7 Hypercurrent for Nf flavors

Now we can generalize the hypercurrent, passing from the minimal model (Sect. 5)
to the multiflavor model. At the classical level the operator JLL is defined exactly
in the same way as in the minimal N = (0, 2) model.

22

Full analog of NSVZ β function in 4D SYM

M. Shifman  26☞ Anomaly: J. Chen, AV + MS, in progress
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Applications in Condensed Matter 3He-B example

⇠⇠⇠⇠

In the ground state 
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Spin 1/2

P-wave paring

3He atoms

 L=1, S=1  ➟  Cooper pair order parameter eμi        3×3 matrix

Spin-orbit small, symmetry of H is 

1 Introduction

In this paper we report a new phenomenon which occurs in superfluids with a tensorial order
parameter.

Superfluid 3Helium is definitely one of the most interesting states of matter which can be
realized and studied experimentally [1]. It is also one of the most well-studied systems from a
theoretical point of view [2–5]. Unlike conventional superfluids, 3He atoms are fermions, and
can thus condense only after forming Cooper-like bosonic pairs [2]. The attractive interaction
between 3He atoms, which can be modeled by Van der Walls potentials, has a very strong
short-range repulsive core. This fact entails the dominance of the P -wave pairing. Moreover,
each 3He atom is a spin 1/2 particle. The (anti)-symmetry of the wave function for a pair
of identical fermions then implies that the 3He atoms form bound states with unit angular
momentum and unit spin. The consequence of this fact is that the order parameter describing
the condensate has a tensorial structure, and has to be described by a 3 by 3 matrix eµi,
where µ denotes spin and i orbital indices [3, 6, 7].

Low-energy physics of superfluids can be described by gapless exciatations of the Nambu-
Goldstone modes associated with spontaneously broken global symmetries. Two most im-
portant physical consequences of this are: (i) phonons associated with spontaneously broken
phase U(1)p symmetry and (ii) magnons associated with spontaneously broken SO(3) spin
symmetry [8], as well as topologically stable (global) vortices winding around the broken
symmetry. In the conventional superfluid, the breaking of an Abelian phase symmetry

Up(1)⇥ 1

leads to the existence of phonon excitations in the bulk. Moreover, the same breaking
implies the existence of topologically stable superfluid vortices [9]. A lattice of vortices can
be generated in a superfluid by rotating the sample [10–12].

In this paper we point out that, in addition to the Nambu-Goldstone modes in the bulk,
there exist novel Nambu-Goldstone modes – to be referred to as non-Abelian – localized on
the vortices.

As predicted long ago by Lord Kelvin, vortices support vibrating modes, called Kelvons,
which correspond to helical fluctuations of the vortex line [13, 11, 14]. These modes can be
interpreted as the Nambu-Goldstone modes arising because of the breaking of translational
and rotational symmetries by the vortex. Both, the bulk and the Kelvin excitations have
been recently observed [15].

In an unconventional superfluid, such as 3He, however, the gapless mode situation is
more complicated and interesting. Since the order parameter is a tensor, spatial rotations
are usually broken by the condensate. Moreover, several phases are possible, with di�erent
symmetry breaking patterns.

If we neglect spin-orbit interaction, rotations of spinorial and orbital indices can be
performed independently; the full symmetry of 3He is

G = U(1)p � SOS(3)� SOL(3) ,

where SOS(3) and SOL(3) are spin and angular momentum of condensates. Two possible
phases in thee dimensions are theoretically predicted and experimentally observed in the ab-
sence of external magnetic fields. In the A-phase in three dimensions the symmetry breaking

2

in the bulk is as follows1 (in the absence of external magnetic fields):

G = Up(1)� SOS(3)� SOL(3)⇥ HA = U(1)� � U(1)S,

while in the more symmetric B phase, the ground state preserves a locked SO(3) symmetry:

G = Up(1)� SOS(3)� SOL(3)⇥ HB = SO(3)S+L.

In field-theoretical language, we identify the locked SO(3)S+L symmetry as a usual spatial ro-
tation. The expressions above imply that both phases admit a non-trivial set of non-Abelian
Goldstone bosons in the bulk, generated by the breaking of non-Abelian global symmetries.
The number of the Nambu-Goldstone excitations in the bulk is dim G - dim HA,B. This more
complicated than usual spectrum of the gapless bulk excitations is one of the peculiarities
of 3He, which distinguishes 3He from conventional superfluids.

Both phases described above, A and B, support a stable lattice of superfluid vortices
appearing once the sample is rotated. The breaking of translational invariance by the vortices
leads to the presence of gapless Kelvin modes on the vortices. Both the non-Abelian bulk
modes and the Kelvin modes were studied and observed in experiments with superfluid 3He
refs[?].

We will argue that a new type of gapless modes localized on the vortices in the B-phase
of superfluid 3He exists. While Kelvons can be interpreted as the Nambu-Goldstone modes
arising from the breaking of translations, excitations we propose arise independently, from
the breaking of the spatial rotation symmetry HB = SO(3)S+L by the vortex solution.

It is known that the B phase is divided into two sub-phases according to the core structure
of the mass vortices: either axially symmetric core under rotations around the vortex or
axially asymmetric core [16, 17]. Note that the breaking of the axial symmetry in the core
of the mass vortices has already been observed []. Such a breaking of the axial symmetry
gives rise to a U(1) Nambu-Goldstone mode localized on the given mass vortex. Therefore,
the conventional U(1) Nambu-Goldstone mode on the mass vortex exists or does not exist
depending on whether the core is asymmetric or symmetric, respectively.

Now, our assertion is as follows. There exist two more gapless modes, in addition to
the above mode, due to breaking of the bulk symmetry HB = SO(3)S+L on the vortex. In
other words, in total there exist two or three gapless modes having linear dispersions, in
accordance with the fact that

SO(3)S+L/U(1)z ⇤ S2

relevant for the axially symmetric core while SO(3)S+L for the asymmetric core.
As far as we know, this new type of excitations was not discussed in the literature, neither

observed in experiments. This is the first example of spatially localized non-Abelian Nambu-
Goldstone modes in condensed matter physics. The arguments that lead us to this conclusion
are explained in detail in Section 3. They can be applied in general to unconventional
superfluids with tensorial order parameters. We are motivated by analogous developments
in high-energy physics, in certain gauge field theories.

1The unbroken U(1)0 symmetry in the A phase appears as a combination of the Up(1) and one of the
SO(3) generators.

3

Vectorial order parameter broken on the vortex
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 Sworld sheet =(μ2/2β)∫ d2x (∂μSi) (∂μSi)

                      SiSi = 1

Clasically two “rotational” zero modes.

                     QMechanically may be lifted

◊      Assume χi is spin field! 
◊◊      Add  ΔL = ε (∂iχi)( ∂kχk )
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If ε≠0 but small ⇒

ΔCP(1)Sworld sheet = ε∫d2x {(∂zS3)2 - M2[1-(S3)2]}
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string world sheet is

S =
∫

dt dz
(

LO(3) + Lx⊥

)

,

LO(3) =

{

1

2g2

[

(

∂aS
i
)2

+ ε
(

∂zS
3
)2

]

}

−M2
(

1− (S3)2
)

, (5)

Lx⊥
=

T

2
(∂a#x⊥)

2 − M̃2
(

S3
)2

(∂z#x⊥)
2 , (6)

where #x⊥ = {x(t, z), y(t, z)} are the translational moduli fields, three orien-
tational (quasi)moduli fields Si(t, z) are constrained (i = 1, 2, 3),

Si Si = 1 , (7)

a = t, z, are the string world-sheet coordinates, and T is the string tension.
The constants g2, M2, and M̃2 are

g2 ∼ βγ , M2 ∼ M̃2 ∼ εµ2/β , (8)

assuming µ2 ∼ v2. If ε → 0 (i.e. M2 = M̃2 = 0) we recover the standard
O(3) sigma model, with the target space O(3)/O(2) and two moduli fields
(gapless excitations). With nonvanishing but small ε the gapless rotational
excitations become quasigapless 4 (note that M2 ∼ ε). The two-dimensional
Lorentz boost is no longer a symmetry, since (as was mentioned above), the
Lorentz boosts are explicitly broken by the ε(∂iχi)2 term in four dimensions,
see (4).

In high-energy physics M2 is referred to as the twisted mass [11]. In
condensed matter the ε = 0 limit of LO(3) is known as the Heisenberg an-
tiferromagnet model. Then the last term in (5) can be interpreted as an
external magnetic field of a special form giving rise to an isotropy term (e.g.
[12] and discussion therein).

The impact of the mass term in (5) depends on the sign of M2 (inherited
from ε). If M2 is positive the ground state of the theory – the vacuum –
is achieved at S3 = ±1, i.e. the spin vector in the flux tube core is aligned
with the tube axis (the so-called easy axis). If M2 is negative, the ground
state is achieved at S3 = 0, i.e. the spin vector is perpendicular to the
axis [12] (the so-called easy plane). Then the vacuum manifold is developed

4We assume that M2 $ T . At weak coupling in the bulk γ $ 1 and, hence, g2 $ 1.

4

★    EXTRA (quasi)gapless modes ★
★ ★  Translational (Kelvon) and 

orientational (spin) modes mix with 
each other ★ ★
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Instead of conclusions
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✸ A treasure trove of novel 2D 
models with intriguing dynamics!

4D ↔ 2D Correspondence

☛     World-sheet theory ↔ strongly coupled bulk 

theory inside   

Dewar flask

✸
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