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The star of the show:  QCD(Adj)
SU(N) QCD(Adj) = SU(N) YM theory + Nf massless adjoint Weyl fermions

Why should you care about it?
On R4 tied to large N QCD via orbifold/orientifold equivalence!

SU(N) QCD(Adj) SU(N) QCD(AS)

Armoni, Shifman, Veneziano

Common sector: bosonic C-
even single-trace observables

N=3 QCD

QCD(AS) is a phenomenologically viable large N limit of real QCD!

N=3

Armoni, Shifman, Veneziano;
AC, Cohen, Lebed



VI and Hagedorn are in tension.

There is evidence that QCD(Adj) has two important properties:

(1) Hagedorn spectrum of hadronic states
Believed to apply to any confining large N theory

(2) Spatial volume independence (VI) when on e.g.
Special to QCD(Adj)!

R3 ⇥ S1
L

VI implies there are no phase transitions as a function of L~N0

But Hagedorn seems to force transition at L~N0; deconfinement...

Kovtun, Unsal, Yaffe

T. Cohen; M. Shifman

For tension to be resolved while keeping (1) and (2), would need 
degeneracies between bosonic and fermionic states at large N

Appears to require an emergent fermionic symmetry at large N

Hagedorn; Fubini, 
Veneziano...

Preview of conclusion



Why is this not obviously silly?
Coleman-Mandula Theorem (+ Haag-Lopuzhansky-Sohnius 

extension) says:
SUSY is the ONLY non-trivial extension of Poincare algebra 

of symmetries of S-matrix of a relativistic QFT. 

When Nf>1, QCD(Adj) is not supersymmetric!

But there is no conflict: at N = ∞, S-matrix becomes trivial.

`Glueball’ decay amplitude ~1/N, scattering ~1/N2

CM does not forbid emergent fermionic symmetry at large N!

But there was no reason to expect any such symmetry, until 
noticing implication of VI and Hagedorn properties of QCD(Adj)...

But CM implies 1/N corrections would have to give explicit breaking



Hagedorn spectrum
Widely believed that number of hadronic states 
in confining large N gauge theories behaves as 

Why believe it?
Heuristic reason:  expect highly excited hadrons to behave like 

relativistic open or closed effective strings at large N.

Recently, also argued that Hagedorn directly 
follows from standard large N features of QCD

Relativistic strings famously have a Hagedorn density of states!
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eM/TH , TH ⇠ ⇤QCD

Experimental data consistent with Hagedorn...

T. Cohen...

Both heuristic and direct arguments apply to QCD(Adj)



Hagedorn instability
Put confining large N theory on R3 ⇥ S1

�

Now increase temperature from zero

Implies phase transition should take place at or below 
Hagedorn scale, to phase where the density scales differently.

This is the deconfinement transition 
to a quark-gluon plasma phase!

Z(�) = Tr e��H =

Z
dM ⇢(M) e��M

Once b>bH = 1/TH, partition function diverges!



Large N volume independence
Basic idea found in lattice gauge theory by Eguchi and Kawai 1982
Statement:  compactify pure SU(N) gauge theory on e.g. 

Then, so long as center symmetry is unbroken...

... there will be no volume (L) dependence in expectation 
values of connected correlators of topologically trivial 

single-trace observables, up to 1/N corrections 

R3 ⇥ S1
L

Sounds great, and surprising...  Can envision using it to reduce 4D 
YM theory to low-dim models, which may be easier to solve!

So why isn’t it in all the textbooks?

Pick up a topological global symmetry - ZN center symmetry

hTr ⌦i �! !hTr ⌦i, ! = e2⇡i/N⌦ = Pei
R
S1

AS1



Volume independence vs deconfinent
Problem:  small S1 ~ high T,  so at small S1 expect deconfinement!

To see it, compute perturbative effective potential 
for order parameter, the Wilson loop wrapping S1...

Vpure YM(⌦) = (�1)
2

⇡2L4

1X

n=1

1

n4
|Tr ⌦n|2 ,

Minimized at W=1, so Tr W >0.

Center-breaking leads to VI failure for general L in YM, and QCD(F)!
Bhanot, Heller, Neuberger 1982

  Center symmetry should break!

Perturbation theory reliable at L << 1/LQCD, 
so we can be sure center breaks for small L.



(A. Gonzalez-Arroyo’s plenary talk has all the 
history, and very recent working TEK proposal!)

Center-breaking leads to VI failure for general L in YM, and QCD(F)!
Bhanot, Heller, Neuberger 1982

Volume independence vs deconfinent

Several clever attempts in 80s to fix it - 
quenched EK (82), twisted EK (83), etc

Bhanot, Heller, Neuberger; Gonzalez-Arroyo, Okawa

Unfortunately, these tricks didn’t work.
Bringoltz-Sharpe;Teper-Vairinhos; Azeyanagi-Hanada-

Hirata-Ishikawa; others...



(A. Gonzalez-Arroyo’s plenary talk has all the 
history, and very recent working TEK proposal!)

Center-breaking leads to VI failure for general L in YM, and QCD(F)!
Bhanot, Heller, Neuberger 1982

Volume independence vs deconfinent

Several clever attempts in 80s to fix it - 
quenched EK (82), twisted EK (83), etc

Bhanot, Heller, Neuberger; Gonzalez-Arroyo, Okawa

Unfortunately, these tricks didn’t work.
Bringoltz-Sharpe;Teper-Vairinhos; Azeyanagi-Hanada-

Hirata-Ishikawa; others...

Roadblock for ~25 years...



Volume independence in QCD(Adj)
In 2007, Kovtun, Unsal, Yaffe noticed that VI changes 

radically in QCD(Adj) on spatial circle: 

When Nf>1, minimum at center-symmetric 

Unlike before, no center breaking seen at small L in QCD(Adj)

At Nf=1, theory is supersymmetric, Veff, all loops vanishes; 
but non-perturbative effects force center-symmetric W

Ve↵(⌦) = (Nf � 1)
2

⇡2L4

1X

n=1

1

n4
|Tr ⌦n|2

KUY proposed that QCD(Adj) gives first working VI realization!

⌦, with Tr ⌦n = 0!



Volume independence in QCD(Adj)
Subtlety:  KUY weak-coupling calculation justified 
only in a non-’t Hooft large N limit with L~1/N.  

Consistent with VI, which can only hold for L~N0, ‘t Hooft limit

Otherwise we’d be able to trivially solve QCD 
using by working at weak coupling L~1/N....

But this means that to understand center symmetry realization 
and fate of VI, must use a non-perturbative method!

Only available such method is numerical lattice simulations.



VI from the lattice
Many simulations, one consensus: QCD(Adj) has VI at large N 

Bringoltz, Sharpe 2009+; Azeyanagi et al 2010;
Narayanan-Hietanen 2009+;

Galvez et al 2011;
Gonzalez-Arroyo, Okawa 2011;

...

But isn’t this is in direct conflict with the Hagedorn 
scaling of the hadron density of states?



Volume independence versus Hagedorn

VI only expected for spatial compactification!

 Periodic boundary conditions for fermions: Euclidean 
path integral now calculates twisted partition function

Z̃(L) = Tr (�1)F e�LH

=

Z
dM [⇢B(M)�⇢F (M)]e�LM

For SUSY Nf=1 case, this is a supersymmetric index; L-
independent

For Nf>1, not an index, but still sharply different 
from thermal partition function for QCD(Adj)

Z(�) = Tr e��H =

Z
dM [⇢B(M)+⇢F (M)]e��M

Hagedorn forces a phase transition for thermal compactification.



Volume independence versus Hagedorn
The thermal and twisted partition functions 

are not always different on practical level

Take YM theory + complex rep. fermions.  Ex: QCD(F), QCD(AS).
 Then MB~N0, but MF ~ N1 or N2.

Fermionic Hilbert space not populated for L~N0

But QCD(Adj) is special!  MB~N0, MF~N0

Z̃(L) 6=Z(� = L)

L ⇠ N0 ) Z̃(L) = Z(� = L)

For QCD(Adj) expect some cancelation in    , but none for Z.Z̃

Thermal and twisted partition 
functions are different in QCD(Adj)



Volume independence versus Hagedorn
We take numerical experiments seriously:  

assume QCD(Adj) has VI for all L~N0 and Nf≥1
Expect QCD(Adj) to have Hagedorn scaling for both rB and rF 

Then to avoid Hagedorn instability...

All exponential parts of rB and rF must 
cancel in twisted partition function!

But that appears to require degeneracies between 
infinite number of bosonic and fermionic states at N=∞

Calls for an emergent fermionic symmetry! 

At Nf=1, this symmetry is already known - it’s SUSY! 

At Nf>1, emergent symmetry can not be supersymmetry
`Happens’ to work away from N=∞ as well



Games with a stringy toy model

Define a `stringy’ toy model - doesn’t have any sharp 
connection to QCD!

Point of considering it is to illustrate point of principle: 
Hagedorn growth can cancel even in the absence of SUSY

M2 ⌘ N/↵0

N ⌘
X

n2N
n a†nan| {z }

bosonic

+

NfX

i=1

X

n2N
n f†

i nfi n| {z }
fermionic

Are there any examples where a Hagedorn 
instability can be evaded without supersymmetry?

How plausible in it?

Don’t know yet how to show symmetry emerges in QCD(Adj)

Spectrum:



Hagedorn growth in usual density of states
This toy model has a thermal Hagedorn density of states.

To see it, define combinatorial generating 
function to count states, all with same sign

Tr qN =
1Y

n=1

(1 + qn)Nf

1� qn
=

1X

n=0

d(n) qn

d(n) ⇠ exp

✓q
2⇡2

(1 +Nf/2)n/3

◆
, n � 1

number of states
at level n

But then since M2 ~ n, we have M~n1/2,  so d(n) scaling 
implies                                   , as advertised.⇢ = ⇢B + ⇢F ⇠ eLHM



No Hagedorn growth in twisted density of states
Now examine twisted density of states

number of bosonic states minus number of fermionic states at level n

Tr
⇥
(�1)F qN

⇤
=

1Y

n=1

(1� qn)(Nf�1) =
1X

n=0

c(n)qn

⇢̃ = ⇢B � ⇢F

Nf = 1 case, SUSY

Tr
⇥
(�1)F qN

⇤
= 1

Nf = 2 case, SUSY

Tr
⇥
(�1)F qN

⇤
= 1� q � q2 + q5 + q7 � q12 � q15 + q22 + . . . .

Exact cancellation except at `generalized pentagonal numbers’ p±n =
3n2 ± n

2

No Hagedorn growth, but why?



Fermionic symmetry
Reason: there are Nf conserved fermionic charges

Possible because model is free; but so is QCD(Adj) at large N!

Qi =
X

n2N

p
na†nfi n

Conserved charges give spectral degeneracies, lead to huge 
amount of cancellation in twisted density of states

Can show that there is no Hagedorn scaling for any Nf

To see it in more detail, focus on set of oscillators with 
one fixed energy, one bosonic set, Nf fermionic ones

H ⇠ a†a+

NfX

i=1

f†
i fi



Nf=1 SUSY at work

All states contribute to thermal partition function

In twisted partition function, states in the box all cancel each other

Only states outside the box, which are in cohomology 
of Qi=Q, contribute to twisted partition function

Level 0

Level 1

Level 2

Level 3

Level ...

| {z }
HB

| {z }
HF

|0i|0i

|1i|0i

|2i|0i

|3i|0i

|0i|1i

|1i|1i

|2i|1i



Non-SUSY Nf=2 fermionic symmetry at work

|0i|00i

|1i|00i

|2i|00i

|3i|00i

|0i|10i |0i|01i

|0i|11i|1i|10i |1i|01i

|1i|11i|2i|10i |2i|01i

| {z }
F

| {z }
B

| {z }
B

All these states contribute to a thermal partition function

In twisted partition function, states in the box all cancel each other

Only states outside the box, which are in cohomology 
of Qi, contribute to twisted partition function

Level 0

Level 1

Level 2

Level 3

Level ...



Conclusions
If large N QCD(Adj) has both Hagedorn spectrum 
and volume independence, it should apparently have 

an emergent large N fermionic symmetry.

Lattice calculations are continuing to look at VI; 
should also look for spectral degeneracies!

This may be the first exciting theoretical consequence of VI!

Can a microscopic realization of this 
conjectured symmetry be found?

Fermionic symmetries are extremely useful.  If 
emergent non-SUSY fermionic symmetries do 

indeed exist, what can we do with them?

(applications of VI envisioned so far have been to save numerical costs)



Backup: weak coupling in QCD(Adj)

Subtlety:  Veff calculation valid once theory becomes weakly 
coupled.  Must happen for small enough L by asymptotic freedom.

Consistent with VI, which can only hold for L~N0, ‘t Hooft limit

But for QCD(Adj) on spatial circle, 
small enough means NLL << 1.  

Otherwise we’d be able to trivially solve QCD using VI....

But this means that to understand center symmetry realization 
and fate of VI for L~N0, must use a non-perturbative method!

Reason: perturbation theory defined with respect to choice of vacuum

Non-trivial weak-coupling holonomy = non-trivial background field

Changes regime of validity of perturbation theory!


