The Weyl Consistency Conditions & Standard Model Vacuum Stability

Marc Gillioz

Cosmology & Particle Physics

based on arXiv:1306.3234, in collaboration with O. Antipin, J. Krog, E. Mølgaard, F. Sannino

DESY Theory Workshop, 25th September 2013

Outline

Veyl consistency conditions: definition

♦ Relations among the ß functions

Example: vacuum stability in the Standard Model
 Addel
 Addel

Consider a theory on a curved background $\gamma_{\mu\nu}(x)$, with classical conformal invariance

$$\mathcal{L} = \mathcal{L}_{CFT} + g_i \, \mathcal{O}^i$$

Consider a theory on a curved background $\gamma_{\mu\nu}(x)$, with classical conformal invariance

Consider a theory on a curved background $\gamma_{\mu\nu}(x)$, with classical conformal invariance

$$\mathcal{L} = \mathcal{L}_{CFT} + g_i \mathcal{O}^i$$

The Weyl (=conformal) symmetry

$$\gamma_{\mu\nu} \to e^{2\sigma(x)} \gamma_{\mu\nu} \qquad g_i(\mu) \to g_i(e^{-\sigma(x)}\mu)$$

is broken by the scale dependence of the renormalized couplings

Consider a theory on a curved background $\gamma_{\mu\nu}(x)$, with classical conformal invariance

$$\mathcal{L} = \mathcal{L}_{CFT} + g_i(x)\mathcal{O}^i$$

The Weyl (=conformal) symmetry

$$\gamma_{\mu\nu} \to e^{2\sigma(x)}\gamma_{\mu\nu} \qquad g_i(\mu) \to g_i(e^{-\sigma(x)}\mu)$$

is broken by the scale dependence of the renormalized couplings

Trick: promote the coupling constants to space-dependent, non-propagating fields

Conformal symmetry and renormalisation

In the presence of external sources (gravity and space-dependent) couplings), additional counterterms are needed in the theory:

$$W \equiv \log \left[\int \mathcal{D}\Phi \, e^{i \int \mathrm{d}^d x \sqrt{-g} \mathcal{L}} \right] \longleftarrow \begin{array}{l} \text{regularized generating} \\ \text{functional} \end{array}$$

$$\tilde{W} = W + \int d^d x \sqrt{-g} \,\mu^{-\epsilon} \left[\underline{Z_a E(\gamma_{\mu\nu}) + Z_{\chi}^{ij} \partial_{\mu} g_i \partial_{\nu} g_j R^{\mu\nu} + \dots } \right]$$

renormalized generating functional

all possible dimension-four diffeomorphism-invariant operators, including: ◊ curvature tensors, e.g. Weyl tensor

Only valid around d = 4space-time dimensions

$$\diamond$$
 1, 2 and 4 derivatives of the couplings

 $E(\gamma) = R^{\mu\nu\rho\sigma}R = -\Lambda R^{\mu\nu}R + R^2$

(no diff.-invariant terms with three derivatives)

The conformal symmetry is broken at the quantum level

Variation under Weyl transformation:

$$\Delta_{\sigma} \equiv \int d^{4}x \,\sigma(x) \left(2\gamma_{\mu\nu} \frac{\delta}{\delta\gamma_{\mu\nu}} - \beta_{i} \frac{\delta}{\delta g_{i}} \right)$$
$$\Delta_{\sigma} \tilde{W} = \int d^{d}x \sqrt{-g} \Big[\sigma \left(a \, E(\gamma_{\mu\nu}) + \chi^{ij} \,\partial_{\mu}g_{i} \partial_{\nu}g_{j} \, G^{\mu\nu} \right) \\ + \partial_{\mu}\sigma \,\omega^{i} \partial_{\nu}g_{j} \, G^{\mu\nu} + \dots \Big]$$

The conformal symmetry is broken at the quantum level

Variation under Weyl transformation:

$$\begin{split} \Delta_{\sigma} &\equiv \int \mathrm{d}^{4}x \, \sigma(x) \left(2\gamma_{\mu\nu} \frac{\delta}{\delta\gamma_{\mu\nu}} - \beta_{i} \frac{\delta}{\delta g_{i}} \right) \\ \Delta_{\sigma} \tilde{W} &= \int \mathrm{d}^{d}x \sqrt{-g} \Big[\sigma \, \left(a \, E(\gamma_{\mu\nu}) + \chi^{ij} \, \partial_{\mu}g_{i} \partial_{\nu}g_{j} \overline{G^{\mu\nu}} + \frac{1}{2} \gamma^{\mu\nu} R \right) \\ &+ \partial_{\mu} \sigma \, \omega^{i} \partial_{\nu}g_{j} \overline{G^{\mu\nu}} + \frac{1}{2} \gamma^{\mu\nu} R \end{split}$$

The conformal symmetry is broken at the quantum level

Variation under Weyl transformation:

$$\begin{split} \Delta_{\sigma} &\equiv \int \mathrm{d}^{4}x \, \sigma(x) \left(2\gamma_{\mu\nu} \frac{\delta}{\delta\gamma_{\mu\nu}} - \beta_{i} \frac{\delta}{\delta g_{i}} \right) & \text{Functions of the couplings } g_{i} \\ \Delta_{\sigma} \tilde{W} &= \int \mathrm{d}^{d}x \sqrt{-g} \Big[\sigma \left(a E(\gamma_{\mu\nu}) + \chi^{ij} \partial_{\mu}g_{i} \partial_{\nu}g_{j} G^{\mu\nu} + \partial_{\mu}\sigma \omega^{i} \partial_{\nu}g_{j} G^{\mu\nu} + \dots \right] \\ &+ \partial_{\mu}\sigma \omega^{i} \partial_{\nu}g_{j} G^{\mu\nu} + \dots \Big] \\ &\text{Einstein tensor } G^{\mu\nu} = R^{\mu\nu} - \frac{1}{2}\gamma^{\mu\nu}R \end{split}$$

The conformal symmetry is broken at the quantum level

Variation under Weyl transformation:

$$\Delta_{\sigma} \equiv \int d^{4}x \,\sigma(x) \left(2\gamma_{\mu\nu} \frac{\delta}{\delta\gamma_{\mu\nu}} - \beta_{i} \frac{\delta}{\delta g_{i}} \right) \quad \text{Functions of the couplings } g_{i}$$

$$\Delta_{\sigma} \tilde{W} = \int d^{d}x \sqrt{-g} \left[\sigma \left(a E(\gamma_{\mu\nu}) + \chi^{ij} \partial_{\mu}g_{i} \partial_{\nu}g_{j} G^{\mu\nu} \right) \right] + \left(\partial_{\mu}\sigma \omega^{i} \partial_{\nu}g_{j} G^{\mu\nu} + \cdots \right]$$
We neglect here anomalous flavor currents that can lead to limit cycles Fortin, Grinstein, Stergiou (2012) Luty, Polchinski, Rattazzi (2012) Fortin Comparison of the couplings of

The Weyl consistency conditions

Jack, Osborn (1990), Osborn (1991)

The Weyl anomaly is abelian:

$$\Delta_{\sigma} \Delta_{\tau} \tilde{W} = \Delta_{\tau} \Delta_{\sigma} \tilde{W}$$

Gives a number of consistency relations among the functions $a, \chi^{ij}, \omega^i, \ldots$

$$\frac{\partial \tilde{a}}{\partial g_i} = \chi^{ij}\beta_j + \left(\frac{\partial \omega^i}{\partial g_j} - \frac{\partial \omega^j}{\partial g_i}\right)\beta_j \qquad \tilde{a} = a - \omega^i\beta_i$$

The Weyl consistency conditions

Jack, Osborn (1990), Osborn (1991)

The Weyl anomaly is abelian:

$$\Delta_{\sigma} \Delta_{\tau} \tilde{W} = \Delta_{\tau} \Delta_{\sigma} \tilde{W}$$

Gives a number of consistency relations among the functions $a, \chi^{ij}, \omega^i, \ldots$ Note that $\frac{d\tilde{a}}{dt} > 0$ if $\chi^{ij} > 0$

$$\frac{\partial \tilde{a}}{\partial g_i} = \chi^{ij}\beta_j + \left(\frac{\partial \omega^i}{\partial g_j} - \frac{\partial \omega^j}{\partial g_i}\right)\beta_j \qquad \underbrace{\tilde{a} = a - \omega^i \beta_i}_{\Rightarrow \tilde{a} \text{ theorem}}$$

The Weyl consistency conditions

Jack, Osborn (1990), Osborn (1991)

The Weyl anomaly is abelian:

ລະ

$$\Delta_{\sigma} \Delta_{\tau} \tilde{W} = \Delta_{\tau} \Delta_{\sigma} \tilde{W}$$

Gives a number of consistency relations among the functions $a, \chi^{ij}, \omega^i, \ldots$

Note that
$$\frac{\mathrm{d}a}{\mathrm{d}\mu} > 0$$
 if $\chi^{ij} > 0$
 $\frac{\partial \tilde{a}}{\partial g_i} = \chi^{ij}\beta_j + \left(\frac{\partial \omega^i}{\partial g_j} - \frac{\partial \omega^j}{\partial g_i}\right)\beta_j$ $\tilde{a} = a - \omega^i\beta_i$
 $\Rightarrow \tilde{a}$ theorem

ລະ

In general, ω^i is an exact one-form at the leading orders in perturbation theory

$$\frac{\partial u}{\partial g_i} \approx \chi^{ij}\beta_j \quad \Leftrightarrow \quad \beta_i \approx \chi_{ij}\frac{\partial u}{\partial g_j}$$

The RG flow is a gradient flow in a space with metric χ^{ij}

In terms of Feynman diagrams

a is equal to the trace of the energy-momentum tensor on a 4-sphere:

In terms of Feynman diagrams

a is equal to the trace of the energy-momentum tensor on a 4-sphere:

In terms of Feynman diagrams

a is equal to the trace of the energy-momentum tensor on a 4-sphere:

Partial derivatives are equivalent to removing one interaction vertex

Counting loops

 $\diamond~$ One-loop β function of a scalar quartic interaction

4-loops diagram

Counting loops

 $\diamond~$ One-loop β function of a scalar quartic interaction

4-loops diagram

 $\diamond~$ One-loop β function of a Yukawa interaction

Counting loops

 $\diamond~$ One-loop β function of a scalar quartic interaction

4-loops diagram

 $\diamond~$ One-loop β function of a Yukawa interaction

3-loops diagram

 $\diamond~$ One-loop β function of a gauge interaction

2-loops diagram

What about diagrams involving multiple couplings?

4-loops diagram with quartic and Yukawa couplings

What about diagrams involving multiple couplings?

What about diagrams involving multiple couplings?

What about diagrams involving multiple couplings?

An example: the Standard Model

Neglecting all Yukawa coupling apart from the top one, the theory has five couplings:

$$\left\{\alpha_1, \alpha_2, \alpha_3, \alpha_t, \alpha_\lambda\right\} \equiv \left\{\frac{g_1^2}{(4\pi)^2}, \frac{g_2^2}{(4\pi)^2}, \frac{g_3^2}{(4\pi)^2}, \frac{y_t^2}{(4\pi)^2}, \frac{\lambda}{(4\pi)^2}\right\}$$

An example: the Standard Model

Neglecting all Yukawa coupling apart from the top one, the theory has five couplings:

$$\left\{\alpha_1, \alpha_2, \alpha_3, \alpha_t, \alpha_\lambda\right\} \equiv \left\{\frac{g_1^2}{(4\pi)^2}, \frac{g_2^2}{(4\pi)^2}, \frac{g_3^2}{(4\pi)^2}, \frac{y_t^2}{(4\pi)^2}, \frac{\lambda}{(4\pi)^2}\right\}$$

An example: the Standard Model

Neglecting all Yukawa coupling apart from the top one, the theory has five couplings:

$$\left\{\alpha_1, \alpha_2, \alpha_3, \alpha_t, \alpha_\lambda\right\} \equiv \left\{\frac{g_1^2}{(4\pi)^2}, \frac{g_2^2}{(4\pi)^2}, \frac{g_3^2}{(4\pi)^2}, \frac{y_t^2}{(4\pi)^2}, \frac{\lambda}{(4\pi)^2}\right\}$$

The metric is diagonal at lowest order Jack, Osborn (1990)

$$\chi^{ij} = \operatorname{diag}\left(\frac{1}{\alpha_1^2}, \frac{3}{\alpha_2^2}, \frac{8}{\alpha_3^2}, \frac{2}{\alpha_t}, 4\right) \longleftarrow$$
 matches the powers of α_i

Gives a set of relations among the β functions,

e.g.
1-loop
$$2\frac{\partial}{\partial \alpha_{t}}\beta_{\lambda} = \frac{\partial}{\partial \alpha_{\lambda}}\left(\frac{\beta_{t}}{\alpha_{t}}\right) + \mathcal{O}\left(\alpha_{i}^{2}\right),$$

$$\frac{3}{8}\frac{\partial}{\partial \alpha_{3}}\left(\frac{\beta_{2}}{\alpha_{2}^{2}}\right) = \frac{\partial}{\partial \alpha_{2}}\left(\frac{\beta_{3}}{\alpha_{3}^{2}}\right) + \mathcal{O}\left(\alpha_{i}^{2}\right),$$
2-loop

The Standard Model β functions

$$\begin{split} \beta_1 &= 2\alpha_1^2 \Biggl\{ \frac{1}{12} + \frac{10n_G}{9} + \left(\frac{1}{4} + \frac{95n_G}{54}\right) \alpha_1 + \left(\frac{3}{4} + \frac{n_G}{2}\right) \alpha_2 + \frac{22n_G}{9} \alpha_3 + \left(\frac{163}{1152} - \frac{145n_G}{81} - \frac{5225n_G^2}{1458}\right) \alpha_1^2 \\ &+ \left(\frac{87}{64} - \frac{7n_G}{72}\right) \alpha_1 \alpha_2 - \frac{137n_G}{162} \alpha_1 \alpha_3 + \left(\frac{3401}{384} + \frac{83n_G}{36} - \frac{11n_G^2}{18}\right) \alpha_2^2 + \left(\frac{1375n_G}{54} - \frac{242n_G^2}{81}\right) \alpha_3^2 - \frac{n_G}{6} \alpha_2 \alpha_3 \\ &+ \alpha_t \Biggl[-\frac{17}{12} - \frac{2827}{576} \alpha_1 - \frac{785}{64} \alpha_2 - \frac{29}{6} \alpha_3 + \left(\frac{113}{32} + \frac{101n_t}{16}\right) \alpha_t \Biggr] + \alpha_\lambda \Biggl(\frac{3}{4} \alpha_1 + \frac{3}{4} \alpha_2 - \frac{3}{2} \alpha_\lambda \Biggr) \Biggr\} \end{split}$$

$$\begin{split} \beta_2 &= 2\alpha_2^2 \Biggl\{ -\frac{43}{12} + \frac{2n_G}{3} + \left(\frac{1}{4} + \frac{n_G}{6}\right)\alpha_1 + \left(-\frac{259}{12} + \frac{49n_G}{6}\right)\alpha_2 + 2n_G\alpha_3 + \left(\frac{163}{1152} - \frac{35n_G}{54} - \frac{55n_G^2}{162}\right)\alpha_1^2 \\ &+ \left(\frac{187}{64} + \frac{13n_G}{24}\right)\alpha_1\alpha_2 - \frac{n_G}{18}\alpha_1\alpha_3 + \left(-\frac{667111}{3456} + \frac{3206n_G}{27} - \frac{415n_G^2}{54}\right)\alpha_2^2 \\ &+ \frac{13n_G}{2}\alpha_2\alpha_3 + \left(\frac{125n_G}{6} - \frac{22n_G^2}{9}\right)\alpha_3^2 \\ &+ \alpha_t \Biggl[-\frac{3}{4} - \frac{593}{192}\alpha_1 - \frac{729}{64}\alpha_2 - \frac{7}{2}\alpha_3 + \left(\frac{57}{32} + \frac{45n_t}{16}\right)\alpha_t \Biggr] + \alpha_\lambda \Biggl(\frac{1}{4}\alpha_1 + \frac{3}{4}\alpha_2 - \frac{3}{2}\alpha_\lambda\Biggr) \Biggr\} \end{split}$$

$$\beta_{\lambda} = \frac{9}{16}\alpha_2^2 - \frac{9}{2}\alpha_{\lambda}\alpha_2 + \frac{3}{16}\alpha_1^2 - \frac{3}{2}\alpha_{\lambda}\alpha_1 + \frac{3}{8}\alpha_1\alpha_2 + 12\alpha_{\lambda}^2 + 6\alpha_{\lambda}\alpha_t - 3\alpha_t^2 + \dots$$

11/15

÷

The Standard Model β functions

$$\begin{split} \beta_1 &= 2\alpha_1^2 \left\{ \frac{1}{12} + \frac{10n_G}{9} + \left(\frac{1}{4} + \frac{95n_G}{54}\right) \alpha_1 + \left(\frac{3}{4} + \frac{n_G}{2}\right) \alpha_2 \right\} \frac{22n_G}{9} \alpha_3 + \left(\frac{163}{1152} - \frac{145n_G}{81} - \frac{5225n_G^2}{1458}\right) \alpha_1^2 \\ &+ \left(\frac{87}{64} - \frac{7n_G}{72}\right) \alpha_1 \alpha_2 - \frac{137n_G}{162} \alpha_1 \alpha_3 + \left(\frac{401}{384} + \frac{83n_G}{36} - \frac{11n_G^2}{18}\right) \alpha_2^2 + \left(\frac{1375n_G}{54} - \frac{242n_G^2}{81}\right) \alpha_3^2 - \frac{n_G}{6} \alpha_2 \alpha_3 \\ &+ \alpha_t \left[-\frac{17}{12} - \frac{2827}{576} \alpha_1 - \frac{785}{64} \alpha_2 - \frac{29}{9} \alpha_3 + \left(\frac{113}{32} + \frac{101n_t}{16}\right) \alpha_t \right] + \alpha_\lambda \left(\frac{3}{4} \alpha_1 + \frac{3}{4} \alpha_2 - \frac{3}{2} \alpha_\lambda\right) \right\} \\ &+ \text{relations between the 2-loop gauge } \beta \text{ functions} \\ \beta_2 &= 2\alpha_2^2 \left\{ -\frac{43}{12} + \frac{2n_G}{3} + \left(\frac{1}{4} + \frac{n_G}{6}\right) \alpha_1 + \left(-\frac{259}{12} + \frac{49n_G}{6}\right) \alpha_2 + 2n_G \alpha_3 + \left(\frac{163}{1152} - \frac{35n_G}{54} - \frac{55n_G^2}{162}\right) \alpha_1^2 \\ &+ \left(\frac{187}{64} + \frac{13n_G}{24}\right) \alpha_1 \alpha_2 - \frac{n_G}{18} \alpha_1 \alpha_3 + \left(-\frac{667111}{3456} + \frac{3206n_G}{27} - \frac{415n_G^2}{54}\right) \alpha_2^2 \\ &+ \frac{13n_G}{2} \alpha_2 \alpha_3 + \left(\frac{125n_G}{6} - \frac{22n_G^2}{9}\right) \alpha_3^2 \\ &+ \alpha_t \left[-\frac{3}{4} - \frac{593}{192} \alpha_1 - \frac{729}{64} \alpha_2 - \frac{7}{2} \alpha_3 + \left(\frac{57}{32} + \frac{45n_t}{16}\right) \alpha_t \right] + \alpha_\lambda \left(\frac{1}{4} \alpha_1 + \frac{3}{4} \alpha_2 - \frac{3}{2} \alpha_\lambda\right) \right\} \end{split}$$

$$\beta_{\lambda} = \frac{9}{16}\alpha_2^2 - \frac{9}{2}\alpha_{\lambda}\alpha_2 + \frac{3}{16}\alpha_1^2 - \frac{3}{2}\alpha_{\lambda}\alpha_1 + \frac{3}{8}\alpha_1\alpha_2 + 12\alpha_{\lambda}^2 + 6\alpha_{\lambda}\alpha_t - 3\alpha_t^2 + \dots$$

11/15

÷

The Standard Model β functions

$$\begin{split} \beta_{1} &= 2\alpha_{1}^{2} \Biggl\{ \frac{1}{12} + \frac{10n_{G}}{9} + \left(\frac{1}{4} + \frac{95n_{G}}{54} \right) \alpha_{1} + \left(\frac{3}{4} + \frac{n_{G}}{2} \right) \alpha_{2} \right\} \xrightarrow{22n_{G}}{9} \alpha_{3} + \left(\frac{163}{1152} - \frac{145n_{G}}{81} - \frac{5225n_{G}^{2}}{1458} \right) \alpha_{1}^{2} \\ &+ \left(\frac{87}{64} - \frac{7n_{G}}{72} \right) \alpha_{1}\alpha_{2} - \frac{137n_{G}}{162} \alpha_{1}\alpha_{3} + \left(\frac{401}{384} + \frac{83n_{G}}{36} - \frac{11n_{G}^{2}}{18} \right) \alpha_{2}^{2} + \left(\frac{1375n_{G}}{54} - \frac{242n_{G}^{2}}{81} \right) \alpha_{3}^{2} - \frac{n_{G}}{6} \alpha_{2}\alpha_{3} \\ &+ \alpha_{t} \Biggl[-\frac{17}{12} - \frac{2827}{576} \alpha_{1} - \frac{785}{64} \alpha_{2} - \frac{29}{\alpha_{3}} + \left(\frac{113}{32} + \frac{101n_{t}}{16} \right) \alpha_{t} \Biggr] + \alpha_{\lambda} \Biggl(\frac{3}{4} \alpha_{1} + \frac{3}{4} \alpha_{2} - \frac{3}{2} \alpha_{\lambda} \Biggr) \Biggr\} \\ & \text{relations between the 2-loop gauge } \beta \text{ functions} \\ \beta_{2} &= 2\alpha_{2}^{2} \Biggl\{ -\frac{43}{12} + \frac{2n_{G}}{3} + \left(\frac{1}{4} + \frac{n_{G}}{6} \right) \alpha_{1} + \left(-\frac{259}{12} + \frac{49n_{G}}{6} \right) \alpha_{2} + 2n_{G}\alpha_{3} + \left(\frac{163}{1152} - \frac{35n_{G}}{54} - \frac{55n_{G}^{2}}{162} \right) \alpha_{1}^{2} \Biggr\} \\ & + \left(\frac{187}{64} + \frac{13n_{G}}{24} \right) \alpha_{1}\alpha_{2} - \frac{n_{G}}{18} \alpha_{1}\alpha_{3} + \left(-\frac{667111}{3456} + \frac{3206n_{G}}{27} - \frac{415n_{G}^{2}}{54} \right) \alpha_{2}^{2} \Biggr\} \\ & + \frac{13n_{G}}{2} \alpha_{2}\alpha_{3} + \left(\frac{125n_{G}}{6} - \frac{22n_{G}^{2}}{9} \right) \alpha_{3}^{2} \Biggr\} \\ & + \alpha_{t} \Biggl[-\frac{3}{4} - \frac{593}{192} \alpha_{1} - \frac{729}{64} \alpha_{2} - \frac{7}{2} \alpha_{3} + \left(\frac{57}{32} + \frac{45n_{t}}{16} \right) \alpha_{t} \Biggr] + \left(\alpha_{\lambda} \left(\frac{1}{4} \alpha_{1} + \frac{3}{4} \alpha_{2} - \frac{3}{2} \alpha_{\lambda} \right) \Biggr\} \end{aligned}$$

Precision running in the Standard Model

Knowing the value of the Standard Model couplings at an arbitrary scale is important: vacuum stability, grand unification, cosmology...

The state-of-the-art computation makes use of the gauge, top Yukawa and Higgs quartic β functions at the 3-loops order

Degrassi et al. (2012), Buttazzo et al. (2013)

Inconsistent with the conformal symmetry at energies $E > v \sim 246$ GeV!

Precision running in the Standard Model

Knowing the value of the Standard Model couplings at an arbitrary scale is important: vacuum stability, grand unification, cosmology...

The state-of-the-art computation makes use of the gauge, top Yukawa and Higgs quartic β functions at the 3-loops order

Degrassi et al. (2012), Buttazzo et al. (2013)

Inconsistent with the conformal symmetry at energies $E > v \sim 246$ GeV!

Already going to 2 loops in the Higgs quartic β functions means including diagrams that contributes to the 4-loop gauge β functions

Precision running in the Standard Model

Knowing the value of the Standard Model couplings at an arbitrary scale is important: vacuum stability, grand unification, cosmology...

The state-of-the-art computation makes use of the gauge, top Yukawa and Higgs quartic β functions at the 3-loops order

Degrassi et al. (2012), Buttazzo et al. (2013)

Inconsistent with the conformal symmetry at energies $E > v \sim 246$ GeV!

Already going to 2 loops in the Higgs quartic β functions means including diagrams that contributes to the 4-loop gauge β functions

The best Weyl-consistent running based on the existing computations:

Standard Model Vacuum Stability

Standard Model Vacuum Stability

Standard Model Vacuum Stability

Importance of precision running

Importance of precision running

Importance of precision running

Summary & Outlook

- The Weyl symmetry constrains the RG flow of a theory (more in the talks by M. Luty and R. Rattazzi tomorrow?)
- $\diamond\,$ For theories with multiple couplings, there are relations among the β functions at different loop order
- A consistent scheme was established and used in the Standard Model to determine the vacuum stability

Summary & Outlook

- The Weyl symmetry constrains the RG flow of a theory (more in the talks by M. Luty and R. Rattazzi tomorrow?)
- $\diamond\,$ For theories with multiple couplings, there are relations among the β functions at different loop order
- A consistent scheme was established and used in the Standard Model to determine the vacuum stability

- Important for the search of perturbative fixed points in gauge-Yukawa theories Antipin, Gillioz, Mølgaard, Sannino (2013)
- $\diamond~$ The Weyl consistency conditions could be used to determine the SM gauge β functions at 4-loop

