Two-dimensional S-matrices from unitarity cuts

Ben Hoare

Humboldt-Universität zu Berlin

DESY Theory Workshop 25th August 2013

Based on work with L. Bianchi and V. Forini [1304.1798]

see also work by O. Engelund, R. McKeown and R. Roiban [1304.4281]

Motivation

- In 4 dimensions unitarity methods have been used extensively, to compute
 - scattering amplitudes
 - form factors
 - correlation functions . . .
- However never really been applied in 2 dimensions.
- Two-dimensional field theories of interest for many reasons. Today:
 - Integrability.
 - Can unitarity methods test integrability?
 - Unitarity methods should give information about the phase.
 - String world-sheet theories.
 - Example: $AdS_5 \times S^5$. Light-cone gauge fix & and expand around BMN.
 - Integrable world-sheet theory for $\mathbf{8}+\mathbf{8}$ massive excitations.
 - World-sheet S-matrix is input for computation of string spectrum.

Ren Hoare

Basics of 2-dimensional scattering

Aim: 4-point amplitude at 1-loop \longrightarrow $2 \rightarrow 2$ S-matrix at 1-loop.

$$egin{aligned} &\langle \Phi^{P}(p_{3}) \Phi^{Q}(p_{4}) | \mathbb{S} | \Phi_{M}(p_{1}) \Phi_{N}(p_{2})
angle \ &= (2\pi)^{2} \delta^{(2)}(p_{1}+p_{2}-p_{3}-p_{4}) \mathcal{A}^{PQ}_{MN}(p_{1},p_{2},p_{3},p_{4}) \end{aligned}$$

Assumptions: • Asymptotic states: all massive with equal mass ($\epsilon_i^2 = p_i^2 + 1$). • Fix ordering on incoming states: $p_1 > p_2$.

Kinematics: (special to 2 dimensions)

$$\begin{split} \delta^{(2)}(p_1 + p_2 - p_3 - p_4) \\ &= \frac{\epsilon_1 \epsilon_2}{\epsilon_2 \mathbf{p}_1 - \epsilon_1 \mathbf{p}_2} \left(\delta(\mathbf{p}_1 - \mathbf{p}_3) \delta(\mathbf{p}_2 - \mathbf{p}_4) + \delta(\mathbf{p}_1 - \mathbf{p}_4) \delta(\mathbf{p}_2 - \mathbf{p}_3) \right) \end{split}$$

S-matrix:

$$S_{MN}^{PQ}(\mathbf{p}_1,\mathbf{p}_2) = \frac{1}{4(\epsilon_2\mathbf{p}_1 - \epsilon_1\mathbf{p}_2)} \mathcal{A}_{MN}^{PQ}(\mathbf{p}_1,\mathbf{p}_2,\mathbf{p}_1,\mathbf{p}_2)$$

 \sim quantities defined in terms of just the amplitude (no Jacobian factor).

Humboldt-Universität zu Berlin

- 2-particle cuts are maximal at 1-loop in 2 dimensions.
- Completely freezes loop momenta (analogous to quadrupole cuts in 4 dimensions).
- Therefore, putting loop momenta on-shell, we can pull the tree-level amplitudes out of the integral.
- Returning the loop momenta off-shell then gives an expression in terms of scalar integrals that gives the "cut-constructible" part of the amplitude.

- 2-particle cuts are maximal at 1-loop in 2 dimensions.
- Completely freezes loop momenta (analogous to quadrupole cuts in 4 dimensions).
- Therefore, putting loop momenta on-shell, we can pull the tree-level amplitudes out of the integral.
- Returning the loop momenta off-shell then gives an expression in terms of scalar integrals that gives the "cut-constructible" part of the amplitude.

- 2-particle cuts are maximal at 1-loop in 2 dimensions.
- Completely freezes loop momenta (analogous to quadrupole cuts in 4 dimensions).
- Therefore, putting loop momenta on-shell, we can pull the tree-level amplitudes out of the integral.
- Returning the loop momenta off-shell then gives an expression in terms of scalar integrals that gives the "cut-constructible" part of the amplitude.

Humboldt-Universität zu Berlin

Two-dimensional S-matrices from unitarity cuts

Ren Hoare

- 2-particle cuts are maximal at 1-loop in 2 dimensions.
- Completely freezes loop momenta (analogous to quadrupole cuts in 4 dimensions).
- Therefore, putting loop momenta on-shell, we can pull the tree-level amplitudes out of the integral.
- Returning the loop momenta off-shell then gives an expression in terms of scalar integrals that gives the "cut-constructible" part of the amplitude.

$$\mathcal{A}_{0MN}^{RS}(p_{1}, p_{2}, p_{1}, p_{2}) \times \mathcal{A}_{0RS}^{PQ}(p_{1}, p_{2}, p_{3}, p_{4}) \times \underbrace{I_{1}}_{N p_{2}} \underbrace{I_{2}}_{S p_{3}} P^{4} Q$$

Ren Hoare

Unitarity cuts in two dimensions - scalar integrals

In the kinematical configuration where $p_3 = p_1$ and $p_4 = p_2$, the scalar integrals are given by:

Unitarity cuts in two dimensions - t-channel

• t-channel is subtle.

- If we first set $p_3 = p_1$ and $p_4 = p_2$ before doing integrals it leads to problems zero momentum flowing across the cut.
- Furthermore, depending on which vertex we choose to use to freeze the loop momenta we end up with different expressions (just for the t-channel).
- Leads to a consistency condition:

$$\tilde{\mathcal{T}}^{(0)}{}^{SP}_{MR}(\mathbf{p}_1,\mathbf{p}_1) \ \tilde{\mathcal{T}}^{(0)}{}^{RQ}_{SN}(\mathbf{p}_1,\mathbf{p}_2) = \ \tilde{\mathcal{T}}^{(0)}{}^{PS}_{MR}(\mathbf{p}_1,\mathbf{p}_2) \ \tilde{\mathcal{T}}^{(0)}{}^{QR}_{SN}(\mathbf{p}_2,\mathbf{p}_2)$$

Unitarity cuts in two dimensions - final formula

Assuming the consistency condition is satisfied, all this leads to an expression for the cut-constructible part of the 1-loop 2-particle S-matrix:

$$\begin{split} \mathcal{T}^{(1)PQ}_{MN}(\mathbf{p}_{1},\mathbf{p}_{2}) &= \frac{1}{4(\epsilon_{2}\,\mathbf{p}_{1}-\epsilon_{1}\,\mathbf{p}_{2})} \left[\tilde{\mathcal{T}}^{(0)RS}_{MN}(\mathbf{p}_{1},\mathbf{p}_{2}) \tilde{\mathcal{T}}^{(0)PQ}_{RS}(\mathbf{p}_{1},\mathbf{p}_{2}) \, I_{s} \right. \\ &+ \tilde{\mathcal{T}}^{(0)SP}_{MR}(\mathbf{p}_{1},\mathbf{p}_{1}) \tilde{\mathcal{T}}^{(0)RQ}_{SN}(\mathbf{p}_{1},\mathbf{p}_{2}) \, I_{t} \\ &+ \tilde{\mathcal{T}}^{(0)SQ}_{MR}(\mathbf{p}_{1},\mathbf{p}_{2}) \tilde{\mathcal{T}}^{(0)PR}_{SN}(\mathbf{p}_{1},\mathbf{p}_{2}) \, I_{u} \, \Big] \end{split}$$

Logarithms better be correct, but are these all the rational terms?

Humboldt-Universität zu Berlin

Unitarity cuts in two dimensions - comments

- Caveats:
 - Have ignored contributions from tadpoles.
 - Result is manifestly finite lose information about

```
renormalizability/finiteness.
```

- Generalized sine-Gordon models (SO(N)/SO(N-1)) gauged WZW model plus integrable potential).
 - N = 1: sine-Gordon, N = 2: complex sine-Gordon, ...
 - Unitarity agrees with perturbation theory up to a shift in the coupling.
- Supersymmetric generalizations.
 - $\mathcal{N} = 1,2$ supersymmetric sine-Gordon ($\mathcal{N} = 4,8$ extensions).
 - Unitarity reproduces full result.
- In both cases, reproduces the result consistent with integrability.
- STRING THEORY ...

Minus signs!

Spectrum of string theories in curved space with RR flux?

- Interested in $AdS \times S$ backgrounds.
 - Important for gauge-string duality.
 - Related to quantum black hole models.
- Certain examples are integrable (for example $AdS_5 \times S^5$),

and we can use this to help us.

Strategy

Starting point: Superstring world-sheet action

$$\frac{T}{2}\int d^2x\sqrt{-h}h^{\alpha\beta}G_{\mu\nu}\partial_{\alpha}X^{\mu}\partial_{\beta}X^{\nu}+\text{ fermions}$$

 $\mathsf{RR}\xspace$ flux \longrightarrow use GS action to include fermions.

Expansion around background: As we have GS action we need to expand around a bosonic background to be able to do perturbation theory (fermion kinetic terms).

Gauge-fixing: Conformal gauge leads to non-unitary world-sheet S-matrix

 \longrightarrow how do we implement Virasoro conditions?

Alternative is to consider physical "light-cone" gauge

 \longrightarrow introduces mass scale ($x^+ = p^+ \tau$) \longrightarrow massive modes.

For the theories under consideration these modes all have equal mass.

Decompactification limit: to define world-sheet S-matrix. (Input into computation of spectrum.)

Unitarity methods

- $AdS_5 \times S^5$:
 - Tree-level S-matrix computed.
 - Exact result from integrability.
 - One-loop unitarity matches integrability result, including rational terms.

[Bianchi, Forini, BH, 2013]

- Two-loop generalized unitarity correctly reproduces logs.
 [Engelund, McKeown, Roiban, 2013]
- For $AdS_3 imes S^3(imes T^4/S^3 imes S^1)$
 - Logs work fine, but rational terms are not so clear consistency condition?
- Logs work fine for $AdS_2 \times S^2(\times T^6)$
- Two-loop rational terms?
- Interplay between integrability and unitarity?
- Non-integrable backgrounds?
- Form factors, correlation functions, ...

[Abbott, Murugan, Sundin, Wulff, 2013]

[Klose, McLoughlin, Roiban, Zarembo, 2006]

[Beisert, 2005; Beisert, Eden, Staudacher, 2006]

Thank you!

Humboldt-Universität zu Berlin