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Preamble: Intense fields can polarise the vacuum

” In strong external fields the normal vacuum is unstable and
decays into a new vacuum that contains real particles. ”

Greiner and Muller, QED of Strong Fields

The Schwinger limit (Ecr = 1018 V/m)

Particles in future linear colliders will see E → Ecr

How do we incorporate a strong external field in QFT?
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(W.H.) Furry Picture

Separate gauge field into external
Aext
µ and quantum Aµ parts

LInt
QED=ψ̄(i/∂−m)ψ− 1

4 (Fµν)2−eψ̄( /Aext+ /A)ψ

LFP
QED=ψ̄FP(i/∂−e /Aext−m)ψFP− 1

4 (Fµν)2−eψ̄FP /AψFP

Euler-Lagrange equation→ new equations of motion requires
exact (w.r.t. Aext) solutions ψFP

(i/∂−e /Aext−m)ψFP = 0

For certain classes of external fields (plane waves, Coloumb
fields and combinations) exact solutions exist [Volkov Z Physik 94 250

(1935), Bagrov and Gitman Exact solutions of Rel wave equations (1990)]

A QFT which is non-perturbative wrt external gauge field Aext

and perturbative wrt ψFP, A
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assorted Furry Picture features

External field makes space-time inhomogeneous so propagator
depends on separate space-time points rather than on the
difference between them [Berestetski Lifshitz Pitaevski, QED §109]

Normalised IN and OUT states can be formed and LSZ extended
to include such states [Meyer, J Math Phys 11 312 (1970)]

Vanishing field strength at t = ±∞→ stable vacuum

Vacuum can be polarised so must include tadpole diagrams
[Schweber Relativistic QFT §15g]

Operator and path integral representations for generating
functional [Fradkin, QED in an unstable vacuum]

Anomalous magnetic moment (one-loop) in a const crossed field
varies from α

2π
[Ritus, JETP 30 1181 (1970)]

∆µ

µ0
=

α

2π

∫ ∞
0

2π dx

(1 + x)3

(
x

Υ

)1/3
Gi
(
x

Υ

)1/3
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Synopsis

This is not a talk about the general structure of the
Furry Picture, rather...applications

1. The Furry picture predicts distinct phenomenology

2. We are in an era of experimental tests of this phenomenology

3. The next generation of linear colliders will yield FP phenomena

4. We need solutions of the equations of motion in the particular
field configuration

5. We need to apply the solutions in transition probabilities
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Strong field experiments - SLAC E144 - 1990s

x

kp
f f

p
i

Collided intense laser (1018 W/cm2)
with 46.6 GeV electrons

effective momentum q = p− e2a2

2k·p
k

(
∑
n

) qi + nk → qf + kf

Compton-like scattering (HICS)

Compton edge shifted by multiphoton
effects
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Strong fields at the collider Interaction Point

ΥΥΥ ≈ 1 sets the strong field
scale.

Υ =
e|~a|
mEcr

(k · p)

Υ depends on collider bunch parameters and the pinch effect
Future linear colliders will have ”strong” IP fields
All collider processes are potentially ”strong field processes”

Machine LEP2 SLC ILC CLIC
E (GeV) 94.5 46.6 500 1500
N(×1010) 334 4 2 0.37
σx, σy (µm) 190, 3 2.1, 0.9 0.49, 0.002 0.045, 0.001
σz (mm) 20 1.1 0.15 0.044

Υav 0.00015 0.001 0.24 4.9
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(Volkov) Solution of the FP Dirac equation
Solution of the 2nd order Dirac equation with
external 4-potential Aext

µ

[D
2

+m
2

+
e

2
σ
µν
Fµν ]ψ

FP
= 0, Dµ = ∂µ + ieA

ext
µ

ψ
FP

= e
−i[p·x+/Sp(k·x)] up

/S
p
(k·x) =

1

2(k·p)

∫ k·x
2eA

ext ·p−e2Aext 2 − e /A
ext/k

Volkov phase

Volkov spinor

Lorenz gauge with condition
A0 = 0 =⇒ ~a1 ⊥ ~a2 ⊥ ~k

a
1 x

1

f

ϕ
f

fθ

k

kp
f

x
3

x
2

a
2

Orthornormality and Completeness of Volkov solutions [Ritus, Ann Phys 69 552 (1971),
Bergou and Varro, J Phys A 13 2823 (1980), Zakowicz JMathPhys 46 032304 (2005)]

∫
d4x

(2π)4
e
i[Sp(k·x)−Sq(k·x)] = δ

(4)
(q − p)

∫
d4p

(2π)4
e
i[Sp(k·x)−Sp(k·y)] = δ

(4)
(x− y)
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Volkov-type solutions

known solutions

Single plane wave field [Volkov, Z Phys 1935]

Circ/Linearly polarised field, constant field [Nikishov and Ritus, JETP 1964]

Elliptically polarised field [Lyulka, JETP 40 p815 1975]

2 collinear orthogonal fields [Lyulka 1975, Pardy 2004]

Coulomb fields + combinations [Bagrov Gitman, Exact sols of Rel wave eqns 1990]

General procedure

Klein-Gordon:
(
D2 +m2

)
φe = 0 → Volkov phase

2nd order Dirac:
(
D2 +m2 ± ie

2
Fµνσµν

)
ψe = 0 → Volkov spinor

Dirac:
(
i /D −m

)
ψe = 0 → particular solution
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Solution of the FP Dirac equation in two fields
top view

W−

p
+−

p

W
+

1
k k

2

oncoming view

b

A2 = (0, a2, 0, 0)

A1 = (0, a1, 0, 0)

k1 = (ω1, 0, k
y

1
, kz

1
)

k2 = (ω2, 0, k
y

2
, kz

2
)

Transition probabilities are covariant, so choose collinear ~k1||~k2 reference frame
external field is a superposition; rewrite as orthogonal components

Aµ = A1µ(k1 ·x) +A2µ(k2 ·x)→ A+µ +A−µ where A+ ·A− = 0

solution is a product of Volkov solutions

[
i/∂−e /A+−e /A−−m

]
ψFP = 0 =⇒ ψFP = e

−i
[
p·x+/S

p
++/S

p
−

]
ur(p)

where /S
p
+ =

∫
2eA+(φ)·p−e2A+(φ)2−e /A+(φ)/k1

2k1 ·p
dφ
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!st order Furry picture process and dressed vertex

x

kp
f f

p
i

FP Feynman diagrams only require a dressed vertex

γFP
µ (pf , pi) = e

i
[
/S
pf
+ +/S

pf
−

]
γµ e

−i
[
/S
pi
+ +/S

pi
−

]

γFP
µ (pf , pi)→

∫
dr1dr2 F -1

[
γFP
µ (pf , pi)

]
ei(r1k1+r2k2)·x

contribution r1k1, r2k2 from external field enters
into the conservation of momentum, allowing 1 vertex process

δ4(pf+kf−pi−r1k1 − r2k2)

two constant crossed fields leads to BesselK functions

Aext
µ = a1µ(k1 ·x)+a2µ(k2 ·x) : F -1

[
γFP
µ (pf , pi)

]
∝ K1

3
,
2
3

(z)

Traces are more complicated, and integration over final states needs care [Hartin and
Moortgat-Pick EPJC (2011)]

|Mfi|2

V T
=−e2

∫
dr1dr2 Tr[..r1..r2..]

d~pfd~kf

4ωf εf
δ(4)(pf+kf−pi−r1k1−r2k2)
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Beamstrahlung transition probability

We get a modification to the standard beamstrahlung transition probability

W = − e
2m

2εi

∫ ∞
0

du

(1 + u)2

[∫
dz +

1 + (1 + u)2

1 + u
X

d

dz

]
Ai(z), u =

ωf

εi − ωf

1 field: z =
u2/3

(k2 ·pi)2/3
, X =

(k2 ·pi)2/3

u2/3
, k2 ≡ Υ2k̂2

2 fields: z =
u2/3

[(k1 ·pi)2 + (k2 ·pi)2]1/3
, X =

(k1 ·pi)2+(k2 ·pi)2+2a1 ·a2(k1 ·pi)(k2 ·pi)
u2/3 [(k1 ·pi)2 + (k2 ·pi)2]2/3

p

k
2

i

(Υ )
2

k
11

p
f

kf

(Υ )

θ

Radiation power spectrum alters with the
angle between the fields

For Colliders there is little change θi ≈ π
Can perform the analysis with laser fields
where θi can be large
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(e.g.) Generic two vertex Furry picture S channel

Mfi=g1g2

∫
dr1dr2ds1ds2 v̄p+γ

FPµ up− ε̄f+γ
FP
µ εf−

δ(F−I−(r1+s1)k1+(r2+s2)k2)

(I + r1k1 + r2k2)2

final states momentum F ≡ f− + f+ initial
state momentum I ≡ p− + p+

spin and polarisation sums as usual

two dressed vertices γFP

r1, r2, s1, s2 momentum contribution from two
external fields at two vertices

Phase integral not (much) more complicated
than for 1 vertex process

p

p
−

+

q

f

f−

+

|Mfi|2

V T
=(g1g2)2

∫
dr1dr2dl1dl2 Tr[..r1..r2..]

d ~f−d ~f+

4ωf−ωf+

δ(F−I−l1k1+l2k2)

(I + r1k1 + r2k2)4

The pole structure depends on r1, r2 and is not standard
need careful consideration of loops
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Vertex function in (one) external field

ΓFP=2ie2

∫
drdsdl

∫
d4k′

k′2
γFPν

/p′ +m

(qf−k′−rk)2−m2
∗
γFP
µ

/p +m

(qi−k′+sk)2−m2
∗
γFP
ν δ(qf+kf−qi−lk)

p

k
f

p
f

i

p

p’

k’

• Examine pole structure of the
vertex function

•We combine denominators using
Feynman parameters as normal,∫

d4k′

k′2[(qf−k′−rk)2−m2
∗][(qi−k′+sk)2−m2

∗]

=

∫ 1

0
dxdydz

d4k′

(k′2 −∆)3
δ(x+y+z−1)

• Numerator more complicated than the
usual case - need new tricksbut apart from

the usual divergences we end up with
additional poles in the residual

1

∆(r, s, x, y, z)

• Additional poles in the residue which match those in the tree level FP processwa
• Vertex function can be same order as tree-level diagram - must include!
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Summary

The Furry picture is a semi-classical nonperturbative QFT which treats external
electromagnetic fields exactly

The Furry picture has several interesting features, non-vanishing vacuum
currents, propagators that depend on separate space-time points

For field vanishing at t = ±∞ LSZ can be extended to the FP and
phenomenology can be calculated

We are in the era of measurable effects, future linear colliders and intense lasers
produce ”strong fields”

New exact solutions for charged particles in two external fields applied to the
photon radiation process - power spectrum changes

ALL collider processes are potentially FP processes, need to extend this analysis
to second and higher orders

FP has a unique pole structure, need to include loops and show cancellation to
all orders
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Strong field processes at Collider IP

x

kp
f f

p
i

p
−

f+f−

p
+

q

1st order:

Beamstrahlung & coherent pair production

beam-beam simulations (CAIN,
Guinea-PIG)

basis of ISR/FSR simulations

1-vertex permitted pi + rk − pf − kf = 0

ALL processes at the IP are ”strong field”
processes

2nd order:

”normal processes” in limit E → 0

Need Volkov solution in fields of both
bunches

Need to obtain the cross-section for a
generic 2nd order process
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Equiv Photon Approx and Perturbation expansion

decompose external field into n equivalent photons

sum the series to desired order of accuracy

+= + + ...

Ge = G+GV̂ G+GV̂ GV̂ G+ ...

G = (p2 −m2)−1

V̂ = 2eAe · p− e2Ae 2

within certain constraints:
scalar particle
monochromatic photons

the summation can be
performed (Reiss Eberly
1966)

Can the entire summation
be performed in general ?

The alternative is the Furry/Feynman method...
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Requirements for a strong field event generator
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IPstrong - towards a strong field event generator

Adaptive grid

Distribute charges to grid

Poisson solver

Furry Pic monte carlo

Initialise beam

Move particles

Output events

Fortran 2003 with openMPI (Fortran
2008 has inbuilt gpu)

3D electrostatic poisson solver (MPI)

Furry picture processes replace all other
processes

output in multiple formats (stdhep, lcio)

cross-checks with existing programs
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Infinite momentum frame

QED can be formulated in a Lorentz frame moving at the limit of
the speed of light (Kogut & Soper Phys Rev D 1(10) 2901 (1970))

regular coordinates (t, x, y, z) can be expressed in light cone

coordinates x± =
1

2
(t± z) ; x⊥ = (x, y)

light cone dirac matrices separate into sub-algebras whose
members anti-commute γ±γ⊥ = −γ⊥γ±

light cone scalar products are a.b = 2a+b− + 2a−b+ − a⊥.b⊥
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Collider strong field physics

” Strong field processes are physics processes calculated
simultaneously in the normal perturbation theory as well as
exactly with respect to a strong electromagnetic field. ”

” Such calculations are necessary when the external field
seen by a particle approaches or exceeds Ecr. ”
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Strong fields at the collider IP

moving charge has longitudinal length
contraction

relativistic charge bunch produces constant
crossed plane wave field

Aµ = a1µ(k · x)

a1µ = (0,~a)

particle p sees a field strength parameter Υ

Υ =
e|~a|
mEcr

(k · p)
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Volkov-type solutions in two external fields

W−

p
+−

p

W
+

1
k k

2

both incoming bunches contribute
external fields

external field wavevectors are
generally anti-collinear

Need new Volkov-type solution

strategy is to first solve Klein-Gordon equation (D2 +m2
W )φ±e

φ±e =
1√

2εpV

∫
dr exp

[
−ib p · x− ireAe −

(r − f)2

2|z|

]

For constant crossed field Dirac equation solution proceeds from
the Klein-Gordon solution
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W boson Volkov Solution

Equation of motion for the W
boson

Wµ

(D2 +m2
W )Wν + i2eFµνWµ = 0, DµWµ = 0

with solution Wµ = EWp e−ip·x wp where

EWp =

(
gµν +

e

k · p

∫
Fµν −

e2

2(k · p)2
Ae2kµkν

)
� exp

[
− i

2(k · p)
(
2e(Ae · p)− e2Ae2

)]

similar solutions can be found for other particles that couple to Ae

A. Hartin exact solutions in two external fields



Beamstrahlung, incoherent/coherent pair production
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IP beam-beam simulators - CAIN,
Guinea-Pig

beamstrahlung & coherent pair production
calculated via quasi-classical approx

incoherent pairs calculated with
beamstrahlung photon and equivalent
photon approx (EPA)

more exactly these are 1st and 2nd order
Furry picture processes

bkgd pairs current proposed
coherent quasi-classical 1 vertex

Furry picture
incoherent EPA 2 vertex

Furry picture
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Formation length

” distance travelled by a charged particle while a radiated
photon moves one wavelength in front of it ”

A bad argument: ” If the bunch is sufficiently short we dont need to
worry about strong field effects”

classical argument that only applies to the beamstrahlung

strong field propagator integrated over all length scales
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