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Simulating a QCD Event

Hadron collisions are messy!

• 2 → n parton interaction.
Method: Calculating
Feynman diagrams
(MADGRAPH,HELAC,etc.)

• Off-shell partons radiate.
Method: Parton showers
(Pythia,Herwig)

• Finally, hadrons form.
Diverse phen. models.

• Photons might be emitted
from every charged particle.
Method: QED shower
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Parton Branching

pa

pb

pc

• Emission from an off-shell quark:
p2b , p

2
c ≪ p2a = t

• z = Ec/Ea

• ∼ 1
(pb+pc)2

= 1
p0
b
p0
c
(1−cos θbc)

→ Enhancement for small emission
angles or transverse momenta

Collinear factorization of matrix elements:

|Mn+1|2 ∼ αs

t
P̂qq(z)|Mn|2,

Spin-averaged Altarelli-Parisi splitting function

P̂qq(z) = CF

1 + z2

1− z
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The Shower Approach

• Probability for one parton splitting

dP =
αs

2π
P̂ij(z)

dt

t
dz = F (z, t)dtdz

• Non-splitting probability ∆(t1, t2): Sudakov form factor

∆(t1, t2) = exp

[

−
∫ t1

t2

dzdtF (z, t)

]

• Cross section after first splitting:

dσPS = B(Φn)dΦn




 ∆(t1, t2)

︸ ︷︷ ︸

No emission - Born like

+∆R(t1, tem)F (zem, tem)dΦrad
︸ ︷︷ ︸

Emission at (zem, tem)






B(Φn): Born matrix element (including PDFs, flux, etc.),
Φn: n-particle phase space, Φrad: Radiation phase space

5 / 20



Parton Shower beyond Leading Order

NLO matrix element

• Reliable in the non-collinear
region (production of jets)

• Complicated calculation

• Effective for inclusive quantities

Parton shower

• Reliable in the collinear region
(internal structure of jets)

• Easy calculation

• Resums leading logarithms
Problem: Soft emissions only count as O(1)!

O(1)

soft

O(1)

soft

O(αs)

hard

• Because: |Msoft|2 ∼ 1
k2
T

→ log
pmax
T

pmin
T

after phase-space integration

• Smallness of αs is compensated by this logarithm: αs log
pmax
T

pmin
T

∼ 1
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POWHEG

POWHEG: Hardest Emission First!

• Generate events according to

dσ = B̄(Φn)

[

∆NLO
R (pmin

T ) + ∆NLO
R (kT )

R(Φn+1)

B(Φn)
dΦrad

]

,

with

B̄(Φn) = B(Φn) + V (Φn) +

∫

dΦradR(Φn+1)

and

∆NLO
R (pT ) = exp

[

−
∫

dΦrad
R(Φn+1)

B(Φn)
θ(kT (Φn+1)− pT )

]

• Perform re-arranged parton shower, where the hardest
emission is generated first!

Paolo Nason,
hep-ph/0409146
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The POWHEG BOX

POWHEG BOX
Reshuffled

Parton Shower

Compare!Experiment

Event Files

Showered Event Files

Real Data

• Up to recently, only QCD calculations

• Various different processes implemented
so far: Z,H + 0,1,2 jet; single top
and tt̄, dijet, vector-boson fusion, ...

• Several electroweak additions on
the way!

• Uses the FKS subtraction scheme

Frixione,Nason,
Oleari, arXiv:
0709.2092

Alioli,Nason,
Oleari,Re,arXiv:
1002.2581

Frixione,Kunszt,
Signer,1995
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The Drell-Yan Process

P

x1P

x2PP

γ/Z

l+

l−

• Easy to detect lepton pair

• Sensitive to electroweak
parameters, MZ,W , ΓZ,W ,
cos θW .

• PDF measurement

• Background process for
many searches

• Possibly new physics in high
energy tail

• Final state not affected by
QCD corrections, but
photon radiation

Idea: Use POWHEG to create
photon. QED-Shower will be
NLO-accurate.
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Singular Regions

Two particles which can come from the same splitting make up a singular
region.
QCD:

q

q̄

γ/Z

l+

l−

+
q

q̄

γ/Z

l+

l−

One singular
region, (0,g)

QED:

(
initial-
state

)

+
q

q̄

γ/Z

l+

l−

+
q

q̄

γ/Z

l+

l−

Three singular
regions, (0,γ),
(+,γ), (-,γ)

Teach the POWHEG BOX how to take into account leptons as
emitters both in real and virtual amplitudes.
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Electroweak Corrections - QCD vs. EW

QCD Electroweak
Strong scale variance of αS ,
→ Use running coupling

Almost no scale variance of αe,
→ Use α(0) = 1/137

Color Correlation between different
legs,
→ CF , CA, TF

Color Correlation replaced by charge
correlation,
CF → Q2

f , CA → 0

Only one virtual graph A multitude of virtual graphs, inclu-
ding exchange of γ, Z, W±, Higgs,...

One singular region Three singular regions: one initial-
state and two final-state ones

The POWHEG BOX is now able to deal with user-defined electroweak
processes.
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Phenomenological Checks

To test the implementation, several checks ware made. Two of them:

• Comparison to the QED shower PHOTOS1

• Only final-state radiation → Check of emission generation.
• Different regularization of IR-divergences requires recombination.

• Comparison to a fixed-order calculation2

• Difference to the POWHEG BOX calculation is small.
• Most comprehensive test of a single process implementation.

1P. Golonka, Z. Was, hep-ph/0506026
2Provided by A. Mück and checked against the results of S. Dittmaier and M.

Huber, arXiv:0911.2329
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Comparison with PHOTOS
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Comparision to a fixed-order calculation
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Summary and Conclusion

• POWHEG solves the problem of parton shower - matrix element -
matching by rearranging the emissions of the parton shower.

• We have introduced the possibility to implement arbitrary
electroweak processes in the POWHEG BOX.

Possible Future Work:

• For the Drell-Yan process:
• Completely massive treatment.
• Inclusion of real massive gauge boson emissions.
• Inclusion of photon-induced processes.

• In general:

• Combined QCD/QED.
• Check that application of a pT -ordered shower keeps NLO accuracy.
• Implementation of more processes.
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Veto procedure

∆U (pmax
T ) = 1

Solve ∆U (pT )
∆U (pmax

T
) = r for pT

pT > pmin
T ?

Generate real phase space

Ur′ < R
B

?

pmax
T = pT

Create radia-
tion event

Create Born event

r ∈ [0,1]

pT

yes

r′ ∈ [0,1]

no

r ∈ [0,1]

no

yes
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Mapping into singular regions using the FKS scheme

• Project real matrix elements onto singular regions via Rα = RSα,
α ∈ {(0, γ), (+, γ), (−, γ)}

• Sα is purely phase-space dependent. In the α-singular region
Sα ≈ 1, in all others Sα ≈ 0

• Example: Mappings for electroweak Drell Yan, S(0,γ)
︸ ︷︷ ︸

ISR

, S(+,γ), S(−,γ)
︸ ︷︷ ︸

FSR

S(i,j) =
1

d(i,j) /d(0,γ) + d(i,j)/d(+,γ) + d(i,j)/d(−,γ)

d(i,j) → 0 if i,j are soft or i is collinear w.r.t. j

• Suppose e.g. γ is collinear w.r.t. l+, → d(+,γ) = 0

⇒ S(0,γ) = S(−,γ) =
1
∞

= 0, but S(+,γ) =
1

0+1+0 = 1
Only R(+,γ) contributes to real matrix element!
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Subtraction in the FKS scheme

Define:

ξi =
2k0i√
s
yi = cos θi yij = cos θij

Define also f(ξ, y) = J(ξ,y,φ)
ξ

[
(1− y)ξ2Rα

]
.

Subtraction terms are generated automatically using plus-distrubitons:

B̄real =

∫

dΦn

∫ 2π

0

dφ

∫ 1

−1

dy

∫ 1

0

dξ

(
1

1− y

)

+

(
1

ξ

)

+

f(ξ, y)

=

∫

dΦn

∫ 2π

0

dφ

∫ 1

−1

dy

1− y

∫ 1

0

dξ








f(ξ, y)

ξ
− f(0, y)

ξ
︸ ︷︷ ︸

soft

− f(ξ, 1)

ξ
︸ ︷︷ ︸

coll.

− f(0, 1)

ξ
︸ ︷︷ ︸

soft−coll.
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