
Monte Carlo methods
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Abstract

Bayesian inference often requires integrating some function with respect to a posterior distribution. Monte
Carlo methods are sampling algorithms that allow to compute these integrals numerically when they are not
analytically tractable. We review here the basic principles and the most common Monte Carlo algorithms,
among which rejection sampling, importance sampling and Monte Carlo Markov chain (MCMC) methods. We
give intuition on the theoretical justification of the algorithms as well as practical advice, trying to relate both.
We discuss the application of Monte Carlo in experimental physics, and point to landmarks in the literature for
the curious reader.
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1 Introduction

Bayesian statistics (see B. Clément’s and D. Sivia’s contributions in this volume) quantify the degree of belief
one has on quantities or hypotheses of interest, given the data collected. More precisely, let us assume that a
model of an experiment is available under the form of a likelihood p(data|x), and that one has chosen a prior
p(x) on the parameters x ∈ X ⊂ Rd of the experiment. Then all knowledge on x is encoded by the posterior
distribution

π(x) = p(x|data) =
p(data|x)p(x)∫
p(data|x)p(x)dx

. (1)

To summarize the inference, one might, for example, want to compute the mean posterior estimate

xMEP =

∫
xπ(x)dx

and report a credible interval C such that xMEP ∈ C and∫
C

π(x)dx ≥ 95%. (2)

Both of these tasks require to be able to compute integrals with respect to π. While in some cases these integrals
might be analytically tractable, they are usually not in experimental physics, since the likelihood p(data|x)
often takes a complex form, which π inherits, as we shall now see in an example inspired by the Pierre Auger
experiment.

1.1 A model inspired by Auger

The Pierre Auger observatory1 is a large-scale particle physics experiment dedicated to the observation of at-
mospheric showers triggered by cosmic rays. These showers are wide cascades of elementary particles raining on
the surface of Earth, resulting from charged nuclei hitting our atmosphere with the highest energies ever seen.

The surface detector of the Pierre Auger experiment (henceforth Auger) consists of water-filled tanks and
their associated electronics – arranged on a triangular grid, the distance between two tanks being 1.5 kilometers,
with the grid covering a total area of 3 000 square kilometers. We model here the tankwise signal produced by
one kind of particle in the shower: muons.

When a muon crosses a water tank, it generates Cherenkov photons and photons coming from other processes
(e.g., delta rays) along its track at a rate depending on its energy. Some of these photons are captured by
photomultipliers. The resulting photoelectrons (PEs) then generate analog signals that are discretized by an
analog-to-digital converter.

In this section, we model the integer photoelectron (PE) count vector n = (n1, . . . , nM ) ∈ NM in the M bins
of the signal, which means that we omit the model of the electronics. Formally, ni is the number of PEs in the
i-th bin

[ti−1, ti) = [t0 + (i− 1)t∆, t0 + it∆), (3)

where t0 is the absolute starting time of the signal, and t∆ = 25ns is the signal resolution (size of one bin). The
goal is to parametrize the likelihood p(n|t, A), where t is the arrival time of the muon and A is the integrated
signal amplitude.

Given the arrival time t of a muon and the associated total number of PEs A, the PE count in the ith bin is
a Poisson variable with parameter

n̄i(t, A) = A

∫ ti

ti−1

r(s− t)ds.

where the ideal unit response r(·) is given in Figure 1(a), the analytical expression being omitted for the sake
of simplicity. Let the number Nµ of muons crossing the tank be known. Adding the contributions of Nµ muons
with signal amplitudes A = (A1, . . . , ANµ) and arrival times t = (t1, . . . , tNµ), the binwise signal expectation is

n̄i(t,A) =

Nµ∑
j=1

n̄i(tj , Aj).

Let now x = (t1, A1, . . . , tNµ , ANµ). Our likelihood is finally

p(n|x) =
M∏
i=1

Poin̄i(t,A)(ni). (4)

A summary of the generating model is depicted in Figure 1(b).

1www.auger.org
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This model is only a sketch of what is needed to achieve inference in Auger: in practice, more nuisance
variables have to be added, to describe, e.g., the noise in the detector electronics. Still, even with simple flat
priors on x, integrals with respect to the resulting posterior

π(x) ∝ p(n|x)p(x)

cannot be analytically computed.

(a) The muonic time response model r(t). (b) An example signal

Figure 1: The generative model of the muonic signal. (a) Ideal unit response function r(·). (b) The green curve is
the time-of-arrival distribution p(tµ) used to generate this example with Nµ = 4. The amplitude distribution is not

shown, but derives from the geometry of the tank. The blue curve is the ideal response
∑4
j=1Ajr(t− tj), and the

red histogram is the signal (PE count vector) n.

1.2 The Monte Carlo principle

Since integrals like (2) cannot be analytically derived, we have to rely on numerical approximation techniques.
The cost of classical non-probabilistic numerical integration based on regular grids grows exponentially with the
dimension d. The rationale behind Monte Carlo (MC) methods is to replace grids by stochastic samples. Let
first

ÎN =
1

N

N∑
i=1

h(Xi). (5)

If X1, . . . , XN ∼ π are independent and identically distributed (i.i.d.), then

ÎN ≈ I =

∫
h(x)π(x)dx. (6)

Note that În in (6) is a random variable. Its expectancy is precisely I (we say ÎN is an unbiased estimator or
I) and its variance is V/N , where V is the variance of h(X) when X ∼ π. This justifies the saying that Monte
Carlo error decreases as

√
N .

Interestingly, one can see the MC principle as the randomization of a grid method: points are not regularly
spread across the space anymore, but sampled according to π. This is intuitively efficient, since regions of the
space should be examined all the more finely that they contribute to the integral I. In other words, putting a
fine grid where π is large and a scarce one where π is small will yield to an estimator ÎN with small variance.

What makes a good MC method is thus its ability to sample from π. In this tutorial, we describe various ways
of sampling according to π, exactly or approximately. Note that the sampling methods we describe are generic
and can find other, non-Bayesian applications in experimental physics: simulators like CORSIKA implement
sampling from complex, hierarchized distributions with MC methods.

Finally, a generic MC method should require only that π is known up to a normalization constant, since in
most applications, the denominator of (1) is intractable.

The rest of this tutorial is organized as follows. In Section 2 we review basic non-MC sampling methods
and MC methods that are based on i.i.d. sampling. The latter are useful in small dimensions (say smaller than
10) and often require that π can be somehow approximated. Section 3 describes Markov chain Monte Carlo
methods (MCMC). MCMC methods generate a dependent sample which asymptotically resembles a sample from
π. Section 4 presents advanced MCMC tools that learn or exploit the structure of π for better sampling.
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2 First sampling methods

2.1 The inverse cdf method

If the cumulative distribution function F of π is known and can be inverted, then it is enough to know how to
sample U from a uniform distribution2 on [0, 1]. Indeed one can show that F−1(U) is then distributed according
to π. This can be applied to generate exponential variables, for example. However, this method is not applicable
beyond simple distributions, since we usually cannot even compute F , as it requires integrating with respect to
π.

2.2 The transformation method

It is sometimes possible to obtain samples from X ∼ π by applying a transformation to variables Y that are
easier to sample. For example, building on the exponential generator of Section 2.1, we can add two independent
exponential variables with parameter 1 to obtain a Gamma variable with parameters (2, 1), as is easily proven
by a convolution. Again, this method is limited in its applications to simple distributions.

2.3 Rejection sampling

Rejection sampling is one of the simplest MC algorithms. It requires the knowledge of a distribution q on X
which is easy to sample from, such as a Gaussian or a Gamma distribution, and a constant M > 0 such that

π ≤Mq. (7)

It works by repeatedly sampling according to a proposal distribution q and accepting or rejecting each sample
with a certain probability that guarantees that the final accepted samples are distributed according to π. The
algorithm is presented in Figure 2.

RejectionSampling
(
π, q,M,N

)
1 S ← ∅,
2 i← 1.

3 while i ≤ N ,

4 Sample x∗ ∼ q and u ∼ U(0,1).

5 Form the acceptance ratio ρ = π(x∗)
Mq(x∗)

.

6 if u < ρ, then

7 S ← S ∪ {x∗},
8 i← i+ 1.

9 else reject.

Figure 2: The pseudocode of the rejection sampling algorithm. The number of iterations to reach N samples from
π is unknown beforehand and depends on the tightness of the bound in (7).

Note that the tighter the bound in the right-hand side of (7), the less samples are rejected. Thus, a good
knowledge of q and M is necessary for rejection sampling to be efficient. When such a bound is not known, one
can resort to importance sampling.

2.4 Importance sampling

Importance sampling takes as input a proposal q but does not require (7), only that q puts mass wherever π
does. Furthermore, it only requires that π is known up to a normalization constant. For clarity, we denote by
π0 the available unnormalized version of π, and will write π only for the normalized target distribution.

Importance sampling is based on the law of large numbers (, Section 7.5) with a reweighting trick. Precisely,
importance sampling approximates the integral I of (6) with the estimator

ĨN =
1

Z

N∑
i=1

wih(xi),

2We shall assume here that a uniform generator is available, the good old rand() function. However, implementing such a generator
is not trivial (, Section 2.6 and references therein).
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where

wi =
π0(xi)

q(xi)
, and Z =

N∑
j=1

wj . (8)

In general, the estimator ĨN is not unbiased, but only asymptotically unbiased. Indeed, applying the law of large
numbers to both the numerator and the denominator, we obtain

ĨN =

∑N
i=1 wih(xi)∑N
j=1 wj

→
∫
h(x)π0(x)dx∫
π0(x)dx

=

∫
h(x)π(x)dx, xi ∼ q i.i.d.

where the convergence is almost sure3. Note, however, that if π0 = π is normalized, one can replace Z by N
in (8) and obtain an unbiased estimator ĨN . The pseudocode of the importance sampling algorithm is given in
Figure 3.

To understand the rôle of the proposal q, it is useful to derive the asymptotic behaviour of the variance of
the estimator:

Var(ĨN ) =
σ2

lim

N
+ o

(
1

N

)
, (9)

with

σ2
lim =

∫
[h(x)− I]2

π(x)

q(x)
π(x)dx.

Thus, in order to keep the variance of ĨN – in physical terms the square of the statistical error – low, q has
to be chosen close to π, and with heavier tails than π. The last requirement means that we must ensure that

sup
x∈X

π(x)

q(x)
<∞.

ImportanceSampling
(
π0, q,N

)
1 Sample independent xi ∼ q, i = 1, . . . , N ,

2 Form the weights wi = π0(xi)
q(xi)

,

3 Compute the normalization constant Z =
∑N
i=1 wi,

4 π is approximated by 1
Z

∑N
i=1 wiδxi .

Figure 3: The pseudocode of the importance sampling algorithm only requires that π is known up to a normalization
constant. Unlike rejection sampling, no sample is wasted.

2.4.1 On the choice of the proposal for importance sampling

In practice, either a reasonable choice for q is available, or not. The first case occurs when, e.g., π is almost
unimodal and concentrates its mass on a small region of X. A Gaussian centered at this small region with a
reasonable variance then yields a good choice for q. Easy-to-sample, heavy-tailed distributions like Student’s
distribution, are also handy. We have often seen the case in particle physics where π is a posterior that puts
all its mass on a small region of Rd. In that case, remember that importance sampling with the right q yields
better accuracy than grid-based methods or uniform sampling.

If the choice of q is not obvious, we recommend the use of an adaptive strategy, such as population Monte
Carlo. A description of population MC and an application to model selection in cosmology can be found in .
Basically, first make a wild guess q(0) for q, say a Gaussian with a large variance. Apply importance sampling
a first time to obtain an estimate of π and fit a Gaussian q(1) to this estimate of π. Now re-apply importance
sampling with q(1) as a proposal, and re-fit a new Gaussian q(2) to π, etc. After T iterations, q(T ) should
be a good proposal distribution for importance sampling. Of course, you can apply this procedure with other
candidate proposals than Gaussians, you should indeed choose a family of distributions among which you think
you may find a good approximation of π. If you have reasons to believe that π is bimodal, for example, you
should probably fit a mixture of two distributions as in rather than a Gaussian, which is unimodal. Usually,
with the right choice of family of distributions, a few iterations are enough to get a reasonable q, and you can
stop when q(t) does not change a lot with t.

A similar method for adaptively tuning the proposal in importance sampling has been quite popular in
physics: nested sampling, on which we recommend . Be careful, however, a common mistake is to forget the
assumption that the final q has to put mass wherever π may.

3There are several modes of convergence for sequences of random variables, cf. (, Section 7.2) for a summary.

5



2.4.2 Convergence diagnostics and confidence intervals

There are a variety of criteria to assess the good behaviour of an importance sampling estimator. An important
thing to check is the empirical distribution of the weights wi. If only a few of the weights are nonzero, the
estimator ĨN is based on too few points and thus has a large variance. It is thus desirable to obtain a weight
distribution with a high number of large and comparable weights, which, again, is achieved by finding a good
proposal q.

More formal quality measures also exist, such as the so-called effective sample-size ESSN :

ESSN =

(
N∑
i=1

(
wi∑N
j=1 wj

)2)−1

.

ESSN ranges from 1 (when only one weight is nonzero) to N (when all weights are equal). Roughly, ESSN is

telling how many of the samples x1, . . . , xN are really independent in the following sense: the accuracy of ĨN is
equivalent to the accuracy obtained with ESSN samples that would be drawn directly from the real π.

Finally, it is possible to derive asymptotic confidence intervals for ĨN − I, since it can be first shown that

√
N(ĨN − I)→ N (0, σ2

lim),

where the convergence is in distribution, and second

N

N∑
i=1

(
wi∑N
j=1 wj

)2(
h(Xi)−

N∑
k=1

wk∑N
j=1 wj

h(Xk)

)2

→ σ2
lim

almost surely.

2.5 Going to higher dimensions

We now consider an insightful example on how rejection and importance sampling scale when the dimension d
of the ambient space grows. Consider a simple unit Gaussian target π = N (0, Id), where Id is the d× d identity
matrix. Say we are fortunate enough to know that π is an isotropic Gaussian, but ignore its variance. A relevant
choice of proposal would then be an isotropic Gaussian q(x) = N (0, σ2Id).

If applying rejection sampling, one must know beforehand that π has variance upper bounded by some
constant σ∗, and then choose σ ≥ σ∗, in order to satisfy (7). This is already a very strong assumption, but there
is worse: the fraction of accepted samples goes as σ−d. This means that if σ is not exactly 1, one should expect
an exponentially small number of accepted samples with growing d. A similar curse of dimensionality happens
with importance sampling: the variance of the weights is either infinite if σ ≤ 1√

2
, or it goes as σd.

2.6 Conclusion on rejection and importance sampling

Rejection sampling is very easy to implement and can work very well in settings where the relevant information
on the target is known, as is sometimes the case in simulators like CORSIKA . Importance sampling is more
generic and can deal with unnormalized targets, as is often the case in Bayesian data analysis. The efficiency of
both methods depends on the design of the proposal distribution q, and both do not scale to high dimensions
(say larger than 10).

3 MCMC basics

Rejection and importance sampling are Monte Carlo methods based on an i.i.d. sample from a proposal distri-
bution q. To tackle large dimensions, other methods have been devised that are based on a non-independent
sampling: Markov chain Monte Carlo methods (MCMC). The prototype of MCMC methods is the Metropolis-
Hastings algorithm, of which almost all MCMC algorithms are variants. Note that although we concentrate here
on applications to inference, MCMC is also used in simulators like CORSIKA, see for an example.

3.1 The Metropolis-Hastings algorithm

We first describe Metropolis’ algorithm in Figure 4. It builds a random walk (Xi) that explores X, and eventually
approximates independent samples from π.

Metropolis’ algorithm is a for loop. At each iteration t, a candidate point x∗ is proposed in the neighborhood
of the current position xt−1, according to a proposal q(·|xt−1). In Metropolis’ algorithm, this proposal is assumed
to be symmetric, i.e., q(x|y) = q(y|x). In practice, a Gaussian with fixed covariance matrix Σ is often used:
q(y|x) = N (y|x,Σ). After the candidate point has been generated, it is accepted as the next position xt only
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MetropolisSampler
(
π0, q, T, x0

)
1 S ← ∅.
2 for t← 1 to T ,

3 Sample x∗ ∼ q(.|xt−1) and u ∼ U(0,1).
4 Form the acceptance ratio

ρ = min

(
1,

π0(x∗)

π0(xt−1)

)
.

5 if u < ρ, then xt ← x∗ else xt ← xt−1.

6 S ← S ∪ {xt}.

Figure 4: The pseudocode of the Metropolis algorithm.

MetropolisHastingsSampler
(
π0, q, T, x0

)
1 S ← ∅.
2 for t← 1 to T ,

3 Sample x∗ ∼ q(.|xt−1) and u ∼ U(0,1).
4 Form the acceptance ratio

ρ = min

(
1,

π0(x∗)

q(x∗|xt−1)

q(xt−1|x∗)

π0(xt−1)

)
.

5 if u < ρ, then xt ← x∗ else xt ← xt−1.

6 S ← S ∪ {xt}.

Figure 5: The pseudocode of the Metropolis-Hastings algorithm.

with a certain probability ρ, which is 1 if π(x∗) is larger than π(xt−1), and smaller than 1 (but not zero!) if
not. This precise definition of ρ relates the random walk (Xi) to π and makes the algorithm different from an
optimization algorithm: it does not always try to move for a point with larger π. Furthermore, the theory of
Markov chains4 guarantees that such an acceptance rule implies that π is the limiting distribution of the chain
(Xi), in a sense that shall become clear soon.

Now we are ready to present the Metropolis-Hastings (MH) algorithm. It is simply Metropolis’ algorithm,
but with general, possibly nonsymmetric proposals. The pseudocode of MH is given in Figure 5. Note the new
definition of the acceptance probability ρ, which ensures the final convergence to π. Intuitively, this acceptance
rule cancels the influence of q on the limiting distribution: the probability of accepting a move that q is likely
to draw often is reduced.

We refer the reader interested by a gentle introduction to theoretical results on MH to (, Chapter 7). We will
limit ourselves to one simple but useful result, since it covers the common Metropolis algorithm with Gaussian
proposals: assume q(·|x) puts mass over all X and that there exists η, ε > 0 such that

‖x− y‖ < δ ⇒ q(y|x) > ε,

then for any integrable function h, MH gives an asymptotically unbiased estimate of the integral I defined in (6):

lim
N→∞

ÎN → I.

This is an example of formal result that states that (Xi) behaves like independent draws from π for large i.

4A Markov chain is a sequence of random variables (Xi) such that Xi+1 depends on the past only through Xi. More formally:
Xi+1|X1, . . . , Xi ∼ Xi+1|Xi.
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3.2 Assessing convergence

MH outputs a sample from a Markov chain that asymptotically approximates independent draws from π. From
a practitioner’s point of view, two questions arise, which we address successively in the rest of this section. First,
since we are waiting for the chain (Xi) to converge to π whatever starting value x0 we input, it is important
to know from which iteration on the chain is independent from x0. Second, even if the iteration number is big
enough that the chain has “forgotten” about x0, a Markov chain is not a series of independent draws, and it
is relevant to ask whether our MCMC chain has reached a good approximation of independence, or, in other
words, how much the variance of the estimator ÎN suffers from the statistical dependence among the Xis.

3.2.1 Has the chain forgotten its starting state?

Although theory on this question is unsatisfying as of today, experimental techniques exist, which help the
practitioner assess his chain has converged. The first thing one might try is to launch in parallel many chains
with different starting points, and check they all give similar results. Besides traceplots, one can plot an online
estimate of the mean:

1

n

n∑
i=0

Xi

versus n = 1, . . . , N for all chains and check they all converge towards the same value. If not, then convergence
has certainly not been reached. Online estimates of the variance of each chain, of quantiles, etc. can also be
useful to plot. There are a number of statistics of the sample that formalize this principle of comparison between
many chains. A popular such convergence assessment is known as the Gelman-Rubin diagnosis (, Section 12.3.4).
See (, Chapter 12) for a review of other convergence diagnostics.

To cancel the influence of the starting point in the evaluation of ÎN , it is usually advised to discard the first
B samples of the chain and replace ÎN by

ÎN,B =
1

N −B + 1

N∑
i=B

Xi.

The discarded B samples are called a burn-in sample. Though reducing initialization bias, discarding the first
B samples also usually makes the variance of ÎN,B larger than the variance of ÎN , and so B should be as small
as possible to keep the final statistical error low. The choice of an optimal B is an open question. In practice,
our personal take is to keep the burn-in below 25% of the sample, and simply go for a large enough number of
samples N that multiple chains with different initializations give similar answers.

3.2.2 How independent do the samples look?

After initialization bias, the second convergence issue is that of the independence of the samples. Identifying an
MCMC chain converging to π to a dynamical system progressively stabilizing at equilibrium, Sokal speaks here
of autocorrelation in equilibrium . This is related to the variance of ÎN in the following way: the more correlation
there is between samples (Xi) (the autocorrelation of the chain), the higher the variance of ÎN . The variance of

ÎN will still decrease in K/N , but the constant K might be much larger than in the independent case .
Again, theoretical answers to this question are not very satisfying as of today, but practical diagnostics exist.

Besides plotting the different components of the chain (Xi) versus i and checking independence, the simplest
idea is to plot the autocorrelation function of the chain. If d = 1, it is defined as

ρ(t) =
C(t)

C(0)
, where C(t) =

1

N − t+ 1

N−t∑
i=0

(Xi −X)(Xi+t −X), (10)

where X = N−1∑N
i=1 Xi. If d > 1 one considers the autocorrelation in each component. The autocorrelation

function for t ≥ 0 should look like a rapidly decreasing exponential starting at 1 and going to 0, as in Figure 7(b).
If not, then one can thin the chain, i.e., keep only one sample every other 10 or higher if necessary. But while
this may lead to more independent samples, it also leads to a waste of computational effort and an increase in
the variance of the final estimator. If strong autocorrelation is revealed, we recommend to start all over with a
different q. Indeed, strong autocorrelation often reveals a bad choice in the proposal. Finally, note that if one is
only interested in estimating

∫
h(x)π(x)dx for a single h, then one should monitor the autocorrelation function

of h(X) rather than X, which is obtained by replacing each occurrence of X in (10) by h(X).

3.2.3 Tuning the proposal distribution of MH

Consider the Metropolis algorithm of Figure 4. If q proposes only small steps, then the candidates x∗ will often
be accepted since the ratio of the posteriors in Step 4 of Figure 5 will be close to 1. This will lead to high
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acceptance but also high autocorrelation: Xi+1 is almost always in the neighborhood of Xi, and the chain needs
a lot of iterations to cross the space, see Figure 6(a) for a typical traceplot. On the other hand, if q proposes
too big steps, then it is likely that they will be rejected, especially if the current state of the chain has a high
value of π. This will lead to the chain being blocked for several iterations, which is an even worse case of
autocorrelation, see Figure 6(b) for a typical traceplot. There is thus a compromise to find between small steps
and large acceptance rate, and large steps and small acceptance rate. Theory suggests that when the target and
the proposals are Gaussian, the acceptance rate to reach minimum variance of ÎN is approximately 0.5 when
d ≤ 2 and 0.25 otherwise ; . In the common case where the proposal is Gaussian, practitioners usually proceed
as follows: take a proposal with some free stepsize parameter σ:

q(y|x) = N (y|x, σΣ0), (11)

launch several preliminary runs with different values for σ, and finally select the value of σ that yielded the
desired acceptance rate for the final run.

At this stage, we personally advocate the use of a pseudoadaptive strategy: adaptive because it learns a good
σ along the run, and pseudo because we stop the adaptation before the end of the burn-in5. While t ≤ B′,
where B′ is smaller than the burn-in length B, we advise to adapt σ in the following manner: at each iteration
t, replace log(σ) by

log(σ) +
1

t0.7
(αt − α∗) (12)

where αt ∈ [0, 1] is the current acceptance rate (the number of accepted samples so far divided by t), α∗ is 0.5
if d ≤ 2 and 0.25 else. The log transformation guarantees that σ remains positive. The rationale behind (12) is
that if αt > α∗, then too many steps are accepted, so that the stepsize should be increased, and vice versa. (12)
with a large enough B′ is simply an automatic way to perform the preliminary search for σ.

3.2.4 Asymptotic confidence intervals for ÎN

After having obtained a sample with good properties as discussed previously, we are interested in deriving a
confidence interval for ÎN − I. Note that this is not the same as finding a credible interval as in Figure 7(d):

we are here interested in knowing how ÎN varies when the full sample (X1, ..., XN ) varies, being drawn from the
same chain. It is a tougher and more open question than with importance sampling. First, we need to check
that the chain satisfies a central limit theorem (CLT):

√
N(ÎN − I)→ N (0, σ2

lim)

where the convergence is in distribution. A discussion on the CLT for Markov chains can be found in (, Section
6.7.2), with a note on MH in (, Section 7.8.2). For our needs, we just state that a CLT holds for Metropolis’
algorithm with Gaussian proposals and a target with bounded support, see (, Theorem 4.1). Now, when a CLT
holds, confidence intervals can be built using proper6 approximations of σ2

lim . These estimators of σ2
lim are not

difficult to understand, but their description and the conditions for convergence are fairly technical, and we refer
the interested reader to [Theorems 1 and 2] for recent results on the so-called spectral and overlapping batch
means method, our two favourites. A less technical but not up-to-date spectral method is described in (, Section
3).

3.3 Implementation tips

First, MCMC can deal with constrained variables. If the variable is discrete, it is usually easy to find a proposal
with the right constrained support. Constrained continuous variables are to be treated differently. One could,
for example, include an indicator in the prior that will yield rejection of all points outside the allowed region.
But if π is large near the boundary of this allowed region, it is likely that the chain will spend time there and thus
a lot of points will be rejected only because they do not satisfy the constraint. This is a waste of computational
effort, and, if possible, it is usually advised to reparametrize the problem so that it becomes unbounded. If x
has to remain positive, then use log(x). If x has to remain in an interval, then use Argth, for example.

Second, as with most multivariate methods, it is usually better to scale one’s variables. The rough idea is
that a step in every direction should have the same effect on π. This should make Gaussians with covariance
proportional to the identity reasonable proposals.

Third, whenever manipulating likelihoods, it is advisable to work in the log domain. Computing log-
likelihoods is numerically more stable than doing large products of potentially very small numbers, and MCMC
code can always be written using only log-likelihoods.

5In Section 4.1, we discuss a fully adaptive algorithm where a similar adaptation is carried out to the end of the run.
6By proper, we mean a sequence σ̂N that converges to σlim at least in probability.
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Figure 6: Two examples high autocorrelation with different causes.

3.4 A worked out example

Consider the model of Section 1.1 with a single muon entering the tank: Nµ = 1. We simulated data with an
arrival time ttrue = 55 and an amplitude Atrue = 20. The simulated signal n is depicted in Figure 7(a).

We place a wide independent Gaussian prior on t and A: p(t, A) = N (t|100, 1002)N (A|20, 202). Let us apply
MH to obtain the posterior p(t, A|n). First, let us change variables for log(t) and log(A), to avoid dealing with
a boundary in R2. log(t) and log(A) roughly have the same scale, so we do not modify them further. Let
T = 20 000 iterations, of which we discard the first B = 5 000 as burn-in. We take a Gaussian with covariance
σ2I as a proposal and apply the pseudoadaptive tuning of (12).

The results7 can be seen in Figures 7(a) to 7(e). The autocorrelation function in Figure 7(b) indicates a fairly
independent behaviour of the chain. This is confirmed by the traceplot in Figure 7(c) where no clear dependence
can be detected by eye.

To obtain marginal distributions of π, one can simply collect the corresponding coordinate among the Xis.
The marginal histograms here look regular, as shown by the log(t) marginal in Figure 7(d). The acceptance has
approximately reached the optimal 50% by the end of the burn-in and stabilized there. To check independence
from the starting point, we ran 10 chains with uniform initialization on a wide rectangle, and plotted the online
sample mean and standard deviations of each chain in Figure 7(f): all chains are consistent.

When reporting a result, the best practice is to give a summary of and make available the entire posterior
sample. When X is high-dimensional, a series of marginal histograms, or 2D plots of one component versus the
other, etc. can be given. In terms of estimation, credible intervals with level c can be computed easily once the
sample has been drawn: simply report any interval that contains a proportion c of the samples. Such an interval
is computed and given in Figure 7(d), for example.

Finally, we give here two highly correlated traceplot examples of badly tuned chains that should ring an
alarm, and be compared to the correct behaviour in Figure 7(c). On Figure 6(a), σ is too small, leading to an
overly slow exploration of the parameter space. On Figure 6(b), σ is too large, causing the chain to stay blocked
very often.

3.5 Physics-inspired variants of MH: Gibbs, Langevin and Hamilton

MH with a simple unimodal proposal (Gaussian, Student) is very generally applicable, but can be enhanced
through the use of additional information on the target distribution π. Although, in our experience, they are
rarely used in experimental physics due to the complexity of the models, we quickly review here some popular
variants of MH that were actually inspired by physics.

3.5.1 The Gibbs sampler

For x = (x1, . . . , xd) ∈ X a vector8 of length d, define x−i = (x1, . . . , xi−1, xi+1, . . . xd). If the posterior is simple
enough that it is easy to sample from all conditional distributions π(xi|x−i), then one can replace Step 3 of MH

7The matlab code used to generate the figures in this section is available on www.stats.ox.ac.uk/~bardenet.
8We use here upper indices to number components of the vector, and keep lower indices for the iteration number in MH
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Figure 7: Results of applying MH in the setup of Section 3.4. See text for details.
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GibbsSampler
(
π(xi|x−i) ∀i, T, x0

)
1 S ← ∅.
2 for t← 1 to T ,

3 Sample x1∗ ∼ π(x1|x−1
t−1),

4 Sample x2∗ ∼ π(x2|x1∗, x3t−1, . . . , x
d
t−1),

5
...

6 Sample xd∗ ∼ π(xd|x1∗, . . . , xd−1
∗ , xdt−1).

7 Set xt ← x∗.

8 S ← S ∪ {xt}.

Figure 8: The pseudocode of the Gibbs sampler.

in Figure 5 by a sequence of draws from the conditionals, conditioning on the components already drawn. The
acceptance probability ρ in Step 4 in Figure 5 then evaluates to 1 and every proposal is thus accepted. The
pseudocode of the Gibbs sampler is given in Figure 8.

The Gibbs sampler is useful in models where the dependencies between variables are non-trivial, but the
conditional distributions are easy to sample. Even if this is rarely the case in particle physics, it can happen that
some conditional distributions are available, and one might then use Gibbs proposals on some of the variables
within an MH scheme. Any concatenation of MCMC steps is permitted, as long as the same concatenation is
repeated over and over.

3.5.2 Langevin diffusion

If not the conditionals, one might know how to compute the gradient of π. This is also useful information:
although MH is not an optimization algorithm, visiting all modes of π is essential. The Langevin sampler is an
MH sampler with a proposal that is partly deterministic: from xt−1, a small step in the direction of the gradient
of π at xt−1 is done, and from there a small Gaussian step is performed. Basically, the Langevin sampler is MH
with proposal

q(y|x) = N (y|x+
σ2

2
∇ log π(x), σ2Id).

The Langevin sampler is actually inspired by the discretization of a diffusion equation (, Section 7.8.5 and
references therein). Interestingly, the MH acceptance step can here be interpreted as a correction for the
discretization error of the numerical scheme solving the diffusion equation.

Another popular sampler, inspired by mechanics, is Hamiltonian MCMC, or hybrid MCMC . Its main fea-
tures are that the target is plugged in an energy function, points in X are interpreted as space coordinates and
augmented with an artificial momentum variable, and proposals include a deterministic move along an approx-
imate solution to a system of differential equations, as well as an MH correction step. Hamiltonian MCMC
in its original form also requires a closed form for the gradient, which is again rarely available. Details of the
pseudocode of Hamiltonian MCMC are out of the scope of this chapter, but we refer interested readers to .

4 Advanced MCMC methods

Motivated by the Auger-inspired example of Section 1.1, we review in this section some useful advanced MCMC
algorithms. Consider first the case where at least two muons entered the tank: Nµ > 1. If two muons crossed
the tank around the same time, the corresponding amplitude variables A1 and A2 are likely to be anticorrelated
under the posterior: if A1 is large and the first muon explains most of the signal, then A2 should be small,
and vice versa. Thus, having an MH proposal that detects and uses this correlation, proposing large “diagonal”
jumps in the (A1, A2) subspace, would be more efficient than an independent proposal. In Section 4.1, we present
an MCMC algorithm that learns its proposal covariance on the fly. Another difficulty one encounters with the
model of Section 1.1 is that in practice Nµ itself is unknown and should be inferred. In Section 4.3 we present an
MCMC algorithm that makes proposals across models with different numbers of muons. Finally, the likelihood
(4) is invariant to the ordering of the muons. This has undesirable effects on marginal inference that MCMC
can cope with, as presented in Section 4.2.
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4.1 Adaptive MCMC

We already mentioned a pseudoadaptive update scheme in (12), where the stepsize of the MH proposal was
tuned during a finite number of iterations before being frozen for the rest of the run. Now a legitimate question
is whether the asymptotic guarantees on MCMC hold if we let the adaptation run forever?

Adaptive MCMC is a research topic that focuses on designing provably valid MCMC algorithms with pro-
posals that are tuned on the fly until the complete end of the run. The literature is dense, and we single out
here one adaptive MCMC algorithm that we use in almost every physics application: the adaptive Metropolis
algorithm (AM; ).

The pseudocode of AM is given in Figure 9. Note that in practice, it may help to wait for say 10d iterations
before using the adapted covariance matrix in the proposal. β should be taken in ( 1

2
, 1], 1 meaning freezing the

covariance Σt faster. By default, we personally use 0.7. In the literature, the covariance matrix scale factor,
or stepsize, σ is often set to (2.38)2/d, as it is shown in that this stepsize is optimal in a sense for Gaussian
proposals and targets. However, in practice, we recommend the use of an adaptive scheme such as Step 9 in
Figure 9, which preserves the convergence of AM. Other adaptive scalings are discussed in .

Remark that AM is still called an MCMC algorithm, although the chain is not Markov anymore: given Xt−1,
Xt is still dependent on the previous history of the chain through Σt−1. Still, AM was proven to provide an
asymptotically unbiased estimator ÎN .

AdaptiveMetropolisSampler
(
π0, µ0,Σ0, β ∈ ( 1

2 , 1], σ0, T, x0
)

1 S ← ∅.
2 for t← 1 to T ,

3 Sample x∗ ∼ N (.|xt−1, σt−1Σt−1) and u ∼ U(0,1).
4 Form the acceptance ratio

ρ = min

(
1,

π0(x∗)

π0(xt−1)

)
.

5 if u < ρ, then xt ← x∗ else xt ← xt−1.

6 S ← S ∪ {xt}.
7 µt ← µt−1 + 1

tβ

(
Xt − µt−1

)
8 Σt ← Σt−1 + 1

tβ

(
(Xt − µt−1) (Xt − µt−1)

T − Σt−1

)
9 log(σt)← log(σt−1) + 1

tβ
(ρ− α∗)

Figure 9: The pseudocode of the adaptive Metropolis algorithm. Modifications with respect to the Metropolis
algorithm in Figure 4 are Steps 7 to 9 (in blue). The setting of free parameters β and c is discussed in the main
text. When d ≤ 2, we usually set α∗ to 0.5, and 0.25 else, but this is only a rule of thumb.

4.2 Label switching

Another feature of the likelihood (4) is that it is invariant to permutations of the muons. In the case where
Nµ = 2, for example,

p(n|t1, A1, t2, A2) = p(n|t2, A2, t1, A1).

If the prior is also invariant, then the posterior π inherits the same property. π has then as many redundant modes
as there are permutations to which it is invariant, and this is undesirable when it comes to marginal inference.
Indeed, Figures 10(a) and 10(b) illustrate the challenges when running vanilla AM on the example presented in
Figure 7(a). The red variable gets stuck in one of the mixture components, whereas the blue, green, and brown
variables visit all the three remaining components, a phenomenon called label switching. As a result, marginal
estimates computed for the blue, green, and brown variables are then mostly identical as seen on Figure 10(b).
In addition, the shaded ellipses, depicting the marginal posterior covariances of the two parameters t and A of
each muon, indicate that the resulting empirical covariance estimate is very broad, resulting in poor efficiency of
the adaptive algorithm. Label switching is addressed by so-called relabeling algorithms (, Chapter 8). A recent
relabeling mechanism that interweaves favorably with AM can be found in , along with an application to the
Auger model of Section 1.1.

13



(a) AM: component chains and means

(b) AM: component posteriors

Figure 10: The results of AM on the signal example of Figure 1(b). (a) Three of the four t chains switch position
constantly as a result of the target π being invariant to permutations of the muons. The corresponding running
means (thick lines) converge to similar values. For reference, the thick black line depicts the mean of the coloured
thick lines. (b) Label switching causes artificially multimodal marginals. Black dots: the x-coordinates are the
real time-of-arrival parameters t, and the y-coordinates are proportional to the amplitudes A. Colored ellipses are
exp(1/2)-level sets of Gaussian distributions: the means are the Bayesian estimates of (t, A) for each muon, and
the covariance is the marginal posterior covariance of each (t, A) couple.

4.3 Transdimensional problems

Until now, we have always considered Nµ fixed and known. Now consider the problem of letting Nµ free and
trying to estimate it. This problem is termed model selection in statistics, and various Bayesian answers have
been given. One full MCMC solution is called reversible jump MCMC (RJMCMC) and is due to Green . We
will introduce the algorithm through an example here, the generic description of the method and implementation
advice can be found in (, Section 11.2).
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Say we know there were 1 ≤ Nµ ≤ 2 muons in the tank from some other measurements, and we would like
to infer Nµ as well as the corresponding times and amplitudes. Let the prior on Nµ be

p(Nµ = 1) = p(Nµ = 2) =
1

2
.

We need a chain that targets

π(x) ∝ p(n|Nµ, t1, A1, . . . , tNµ, ANµ)p(t1, A1, . . . , tNµ, ANµ |Nµ)p(Nµ)

and that can take values such as (1, t, A) and (2, t1, A1, t2, A2). In other words, the state space of the chain
would be

{1} × R2 ∪ {2} × R4.

This chain should be able to jump within models, i.e., from (1, t, A) to (1, t′, A′) or from (2, t1, A1, t2, A2) to
some other point (2, t′1, A

′
1, t
′
2, A

′
2) with two muons. The chain should also be able to jump across models, i.e.,

from (1, t, A) to some point (2, t′1, A
′
1, t
′
2, A

′
2) and vice versa. For jumps within the same model, we implement

usual MH moves. The main contribution of RJMCMC is a general rule to build jumps across models and the
corresponding acceptance probability. The key is to design jumps across models that are likely to be accepted.
In our example, to jump from a point (Nµ = 1, t, A) to (Nµ = 2, t1, t2, A1, A2), we may break a muon into two
separate mons with roughly half the original amplitude each:

• let u be sampled from a distribution q(u), and let t1 = t− u, t2 = t+ u.

• let v be sampled from another distribution r(v), and let the two new amplitudes add up to A, by setting
A1 = A/2− v and A2 = A/2 + v.

This move can be summarized by the application of a one-to-one transformation

T1→2(t, A, u, v) = (t− u, A
2
− v, t+ u,

A

2
+ v),

whose jacobian is J1→2 = 2. Now that this move from a model with one muon to a model with two muons
is fixed, the opposite move is constrained in RJMCMC. A valid choice is the inverse transformation T−1, with
Jacobian J2→1 = 1/2. Finally, the user has to specify the probabilities p1→2 and p2→1 that a move from Nµ = 1
to Nµ = 2 is proposed and vice versa. In the end, the acceptance probability ρ of a move from (1, t, A) to
(2, t1, A1, t2, A2) is given by

ρ = min

(
1, J1→2

π(2, t1, A1, t2, A2)

π(1, t, A)q( t2−t1
2

)r(A2−A1
2

)

p2→1

p1→2

)
,

and the acceptance probability ρ of a move from (2, t1, A1, t2, A2) to (1, t, A) is given by

ρ = min

(
1, J2→1

π(1, t, A)q( t2−t1
2

)r(A2−A1
2

)

π(2, t1, A1, t2, A2)

p1→2

p2→1

)
.

RJMCMC is very generic, but transdimensional moves have to be designed with care to be accepted often
enough. However, once the chain obtained, inference on Nµ is as easy as on any other parameter: simply
count how many times Nµ = 1 in the chain, divide it by the length of the chain, and you have the posterior
probability that Nµ = 1 ! Reporting the results of an RJMCMC chain can be tricky. Here, one could report the
posterior distribution on Nµ, and plot the marginals of the other parameters for the most probable values of Nµ.
Sophisticated summaries have recently been proposed , which can compute the probability that one muon in
particular is present. Finally, we note that while AM and relabeling can be merged, further including reversible
jumps is still research work.

5 Conclusion and the Monte Carlo ladder

We reviewed basic Monte Carlo ideas and methods, along with some advanced ones like adaptive MCMC. We
tried to give intuition for picking the right method, since none is uniformly powerful, and practical advice on
implementations. To sum up the algorithms presented here and point to other important ones that we did
not cover, we adapt and complete Murray’s integration ladder9. Growing item number means higher practical
complexity, but also either higher efficiency or wider applicability. Check when no further reference is given.

1. Quadrature,

2. Rejection sampling,

9Cf. his recommended two-part video lecture at http://videolectures.net/mlss09uk_murray_mcmc/
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3. Quasi-MC, Importance sampling,

4. MCMC (MH, slice sampling, etc.),

5. Adaptive MCMC , hybrid MC , tempering methods , sequential MC , particle MCMC .

6. Approximate Bayesian computation (ABC; ).

6 Appendix: Notations, acronyms, and recommended readings

Target densities. π always denotes the target probability density function, which in Bayesian inference problems
is a posterior. Its support is X ⊂ Rd, and so d denotes the dimension of the problem. π0 denotes an unnormalized
version of π, formally written as π0 ∝ π. In Bayesian inference problems, π0 is often of the form likelihood×prior.

Estimators. ÎN always denote the estimator defined in (5), but the Xis used to build it depend on the

context. ĨN only denotes the importance sampling estimator.
Distributions. We write X ∼ p when the probability density function of X is p. Used acronyms are summed

up for reference in Figure 11.

MEP mean posterior (estimate)
PE photoelectron
MC Monte Carlo

MCMC Markov chain Monte Carlo
MH Metropolis-Hastings (algorithm)

CLT central limit theorem
AM adaptive Metropolis (algorithm)

Figure 11: Glossary of acronyms, in order of appearance.

For further reading on MC methods, we strongly recommend the textbook , to which this tutorial owes a lot.
We have tried to refer to specific parts of this book whenever possible. An introduction to MCMC specifically
meant for physicists is . While it is a bit outdated now, it still provides insightful and untraditional explanations,
especially on assessing MCMC convergence.
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