

J.G. Körner at LHC-D Workshop 2008 - Topquark Physik (III), Bad Honnef, Februar 8 - 5, 2008

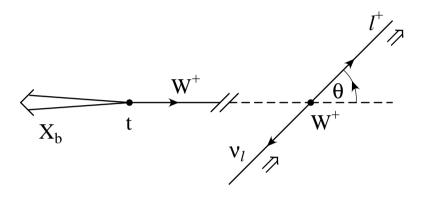
Helicity Content of *W*-Bosons from Top quark Decays at NNLO

In collaboration with A. Czarnecki and J. Piclum (Univ. of Alberta) (much help from A. Kadeer (Mainz) and S. Groote (Univ of Tartu))

Some properties of the Top Quark

- The top quark is the heaviest heavy flavour quark
- The top quarks decay almost 100% of the time into $(b+W^+)$
- Top quarks decay before they can hadronize. Top quark decays provide ideal setting to test perturbative QCD (no hadronization effects, negligible Λ_{QCD}/m_t effects)
- The decay $t \to b + W^+$ is weak \implies the W^+ -boson is polarized
- The W^+ decays weakly $(\rightarrow (l^+ + \nu_l), (q_i + \bar{q}_j)) \implies$ it is self-analyzing.
- LHC will produce a $(t\bar{t})$ -pair every 4 (0.4) seconds in low (high) luminosity run

Helicity rates of the *W*-boson in $t \rightarrow b + W^+$



$$\frac{d\Gamma}{d\cos\theta} = \frac{3}{4}\sin^2\theta\,\,\Gamma_L + \frac{3}{8}(1+\cos\theta)^2\Gamma_+ + \frac{3}{8}(1-\cos\theta)^2\Gamma_-$$

- Γ_L : longitudinal
- Γ_+ : transverse plus
- Γ_- : transverse minus
- polar angle θ is measured in W-rest frame.

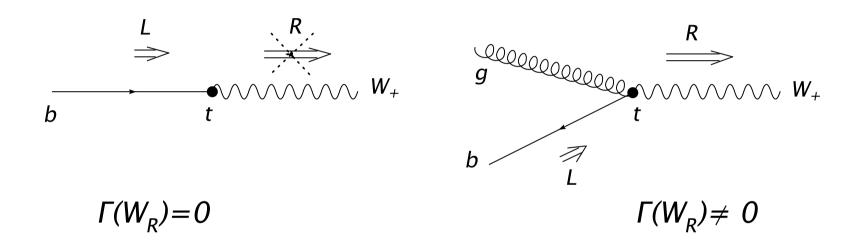
Integrating over $\cos \theta$ one recovers the total rate $\Gamma = \Gamma_L + \Gamma_+ + \Gamma_-$.

Leading Order (LO) Calculation

For the helicity fractions $\mathcal{G}_i = \Gamma_i / \Gamma$ the LO results are

$$\mathcal{G}_L:\mathcal{G}_+:\mathcal{G}_-=\frac{1}{1+2x^2}:0:\frac{2x^2}{1+2x^2}$$
$$(\mathcal{G}_L+\mathcal{G}_++\mathcal{G}_-=1) \text{ where } x^2=m_W^2/m_t^2=0.211.$$
Numerically one has

$$\mathcal{G}_L : \mathcal{G}_+ : \mathcal{G}_- = 0.703 : 0 : 0.297$$



Anticipate: $\Gamma_+ \neq 0$ at NLO, NNLO

Next-to-Leading Order (NLO) Calculation

NLO corrections to the helicity rates have been calculated in H.S. Do, M. Fischer, S. Groote, B. Lampe, M.C. Mauser, J.G.K.(99,01,02,03) Numerically one has $(\hat{\Gamma}_i = \Gamma_i^{LO+NLO} / \Gamma_{U+L}^{LO})$

$$\hat{\Gamma} = 1 - 0.0854$$

$$\hat{\Gamma}_L = 0.703(1 - 0.095)$$

$$\hat{\Gamma}_+ = 0.000927$$

$$\hat{\Gamma}_- = 0.297(1 - 0.0656)$$

NLO helicity fractions are

$$\mathcal{G}_L : \mathcal{G}_+ : \mathcal{G}_- = 0.696 : 0.001 : 0.303$$

compared to LO helicity fractions

$$\mathcal{G}_L : \mathcal{G}_+ : \mathcal{G}_- = 0.703 : 0 : 0.297$$

An early MC study quotes experimental sensitivities of $\Delta \mathcal{G}_L = 0.7 \%$ and $\Delta \mathcal{G}_+ = 0.3 \%$ for an integrated luminosity of 100 fb⁻¹ at Tevatron II energies ($\approx 8 \cdot 10^6 \ (t\bar{t}$ -pairs)). Compare this to NLO changes $\Delta \mathcal{G}_L = 0.7 \%$ and $\Delta \mathcal{G}_+ = 0.1 \%$. Much higher event rates can be reached at the LHC in one year. A more recent MC study based on 10 fb^{-1} at the LHC quotes measurement uncertainties of $\Delta \mathcal{G}_L = 1.9 \%$, $\Delta \mathcal{G}_+ = 0.21 \%$ and

 $\Delta \mathcal{G}_{-} = 1.8 \%.$

Experimentally, there has been a continuing interest in the measurement of the helicity fractions. Latest measurements:

CDF(2007) :
$$\mathcal{G}_L = 0.85^{+0.15}_{-0.22}(\text{stat}) \pm 0.06(\text{syst})$$

 $\mathcal{G}_+ = 0.05^{+0.11}_{-0.05}(\text{stat}) \pm 0.03(\text{syst})$
DO(2005) : $\mathcal{G}_L = 0.56 \pm 0.31$

and, assuming that \mathcal{G}_L is fixed at its SM value, they quote :

DO(2007): $\mathcal{G}_{+} = 0.056 \pm 0.080(\text{stat}) \pm 0.057(\text{syst})$

All of these measurements are well within SM predictions. Latest: (Dec. 12th 2007; DO) $\mathcal{G}_L = 0.425 \pm 0.16(\mathrm{stat}) \pm 0.053(\mathrm{syst})$ $\mathcal{G}_+ = 0.119 \pm 0.090(\mathrm{stat}) \pm 0.053(\mathrm{syst})$ Consistent with the SM only at the 30% confidence level.

Next-to-Next-to-Leading Order (NNLO) Calculation

Motivation :

- check on convergence properties of perturbative series; e.g. size of Γ_+ at NNLO.
- NNLO calculations are the call of the day
- develop new techniques which may be useful in other NNLO calculations

Use a technique developed by Blokland et al. which has been succesfully applied to the calculation of the total rate (Blokland, Czarnecki,Ślusarczyk,Tkachov 04,05). The main ideas are

- Reduce two-mass-scale problem (m_t, m_W) to one mass scale problem (m_t) . Obtain results as an expansion in powers of m_W/m_t and logarithms $\ln m_W/m_t$.
- Optical theorem: Calculate three-loop diagrams and take imaginary parts

$$\Gamma(two-loop) = \frac{1}{m_t} \operatorname{Im} (\Sigma(three-loop)) ,$$

Use dimensional regularization to regularize UV and IR/M singularities

- Expansion by regions. Consider two regions:
 - i) hard region

All loop momenta are hard $\mathcal{O}(m_t)$. Can expand W-propagator

$$\frac{1}{q^2 - m_W^2} = \frac{1}{q^2} + \frac{m_W^2}{q^4} + \frac{m_W^4}{q^6} + \dots$$

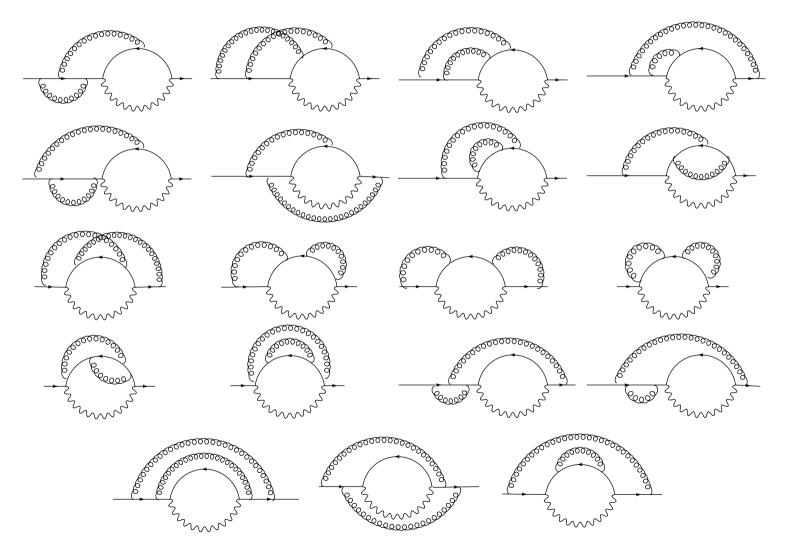
Massive propagator has been converted into a sum of massless propagators.

ii) soft region

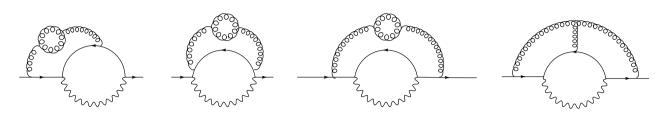
All momenta are hard but momentum flowing through W is soft. Cannot use above expansion of the W propagator. But integrals factorize into two-loop self-energy-type integrals and a one-loop vacuum bubble diagram.

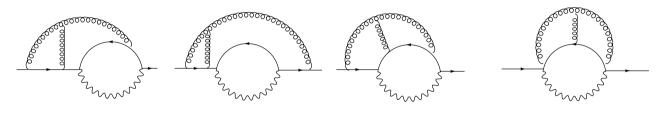
- reduction to 23 master integrals by integration-by-parts identities.
 Use of Laporta's algorithm.
- Viability of method has been checked against known NLO result

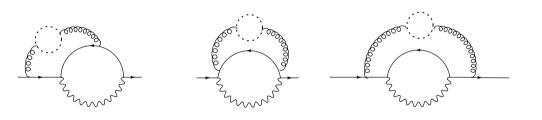
 $\mathcal{O}(\alpha_s^2)$ three-loop Feynman diagrams : Abelian graphs:



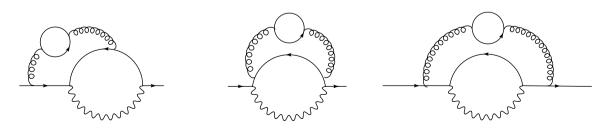
Non-Abelian graphs:







Quark loop contributions



Two new features appear in the NNLO calculation of the helicity rates $\Gamma_{L,\pm}$:

• Treatment of γ_5 in dimensional regularization replace

$$\gamma_{\mu}\gamma_{5} \to \frac{1}{3!} \epsilon_{\mu\alpha\beta\gamma}\gamma^{\alpha}\gamma^{\beta}\gamma^{\gamma}$$

Need additional finite three-loop counter terms (Larin, Vermaseren 91,93)

• Replacement of the total rate projector

$$\mathbb{P}_{U+L}^{\mu\nu} = -g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{m_W^2}$$

by projectors $\mathbb{P}_{L,\pm}^{\mu\nu}$ onto the three helicity rates.

Viability of the treatment of the new features have been tested against known LO and NLO results.

Construction of Helicity Projectors $\mathbf{P}_{L,\pm}^{\mu u}$

It is convenient to define covariant projectors to project onto the helicity rates, *cif.*

$$\Gamma_i \sim \mathbb{P}_i^{\mu\nu} H_{\mu\nu} \qquad (i = L, +, -)$$

Start with

$$P_L^{\mu\nu} = \epsilon_L^{\mu} \epsilon_L^{*\nu}$$
$$P_{\pm}^{\mu\nu} = \epsilon_{\pm}^{\mu} \epsilon_{\pm}^{*\nu}$$

In the rest frame of the W^+ one has

$$\epsilon_L^{\mu} = (0; 0, 0, 1)$$

 $\epsilon_{\pm}^{\mu} = \frac{1}{\sqrt{2}}(0; \pm 1, -i, 0)$

The covariant projectors can be constructed from the following three projectors

• Projector for the total rate

$$\mathbb{P}_{U+L}^{\mu\nu} = -g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{m_W^2}$$

• Projector for the longitudinal helicity rate

$$\mathbb{P}_{L}^{\mu\nu} = \frac{m_{W}^{2}}{m_{t}^{2}} \frac{1}{|\vec{q}\,|^{2}} \Big(p_{t}^{\mu} - \frac{p_{t} \cdot q}{m_{W}^{2}} q^{\mu} \Big) \Big(p_{t}^{\nu} - \frac{p_{t} \cdot q}{m_{W}^{2}} q^{\nu} \Big).$$

• Projector for the forward-backward asymmetric helicity rate

$$\mathbf{P}_{F}^{\mu\nu} = -\frac{1}{m_{t}} \frac{1}{|\vec{q}\,|} i \epsilon^{\mu\nu\alpha\beta} p_{t,\alpha} q_{\beta}$$

Finally, the three projectors read $(\Gamma_i \sim \mathbb{P}_i^{\mu\nu} H_{\mu\nu}; i = L, +, -,)$

$$\begin{split} \mathbf{P}_{L}^{\mu\nu} &= \frac{m_{W}^{2}}{m_{t}^{2}} \frac{1}{|\vec{q}|^{2}} \left(p_{t}^{\mu} - \frac{p_{t} \cdot q}{m_{W}^{2}} q^{\mu} \right) \left(p_{t}^{\nu} - \frac{p_{t} \cdot q}{m_{W}^{2}} q^{\nu} \right) \\ \mathbf{P}_{\pm}^{\mu\nu} &= \frac{1}{2} \left(\mathbf{P}_{U+L}^{\mu\nu} - \mathbf{P}_{L}^{\mu\nu} \pm \mathbf{P}_{F}^{\mu\nu} \right) \end{split}$$

The denominator factors $|\vec{q}|^{-2}$ and $|\vec{q}|^{-1}$ are needed for the correct normalization of the projectors, cif.

$$g_{\alpha\beta} \mathbb{P}_i^{\mu\alpha} \mathbb{P}_j^{\beta\mu} = -\delta_{ij} \mathbb{P}_i^{\mu\nu}$$

The denominator factors $|\vec{q}|^{-2}$ and $|\vec{q}|^{-1}$ somewhat complicate the NLO and NNLO calculation of the helicity rates as compared to the total rate.

How to deal with the propagator-like factors $|\vec{q}|^{-2}$ and $|\vec{q}|^{-1}$ in the helicity projectors?

I) Hard region

Expand in inverse powers of the (large) propagator factor $N := (p_t + q)^2 - m_t^2.$

$$|\vec{q}|^2 = q_0^2 - m_W^2$$
$$= \left(\frac{p_t q}{m_t}\right)^2 - m_W^2$$

Expand in propagator factor $N := (p_t + q)^2 - m_t^2 = 2p_t q + q^2$, i.e. $p_t q = \frac{1}{2}N(1 - m_W^2 N^{-1}))$. One then has

$$\frac{1}{|\vec{q}|^2} = \frac{4m_t^2}{N^2} \sum_{i=0}^{\infty} \left(\frac{2m_W^2 N^2 - m_W^4 + 4m_t^2 m_W^2}{N^2}\right)^i \,,$$

$$\frac{1}{|\vec{q}|} = \frac{2m_t}{N} \sum_{i=0}^{\infty} {2i \choose i} \left(\frac{2m_W^2 N - m_W^4 + 4m_t^2 m_W^2}{4N^2}\right)^i \,.$$

II) soft region

We cannot perform an expansion of $|\vec{q}|$, since $|\vec{q}|^2 = q_0^2 - m_W^2$ and q_0 is of order m_W in the soft region. However, in this region the W boson loop factorises. Therefore, we only have to replace the usual one-loop vacuum bubble integrals with integrals of the type

$$\int \frac{\mathrm{d}^d q}{(q^2 - m_W^2) \, (q_0^2 - m_W^2)^n} \,,$$

NNLO Results for the helicity rates

Colour structure of rates:

$$\Gamma_{i} = \frac{G_{F}m_{t}^{3}|V_{tb}|^{2}}{8\sqrt{2}\pi} \left\{ \hat{\Gamma}_{i}^{(0)} + \frac{\alpha_{s}}{2\pi}C_{F}\hat{\Gamma}_{i}^{(1)} + \left(\frac{\alpha_{s}}{2\pi}\right)^{2} \left[C_{F}^{2}\hat{G}_{i}^{FF} + C_{F}C_{A}\hat{G}_{i}^{FA} + C_{F}T_{F}\left(\hat{G}_{i}^{FH} + n_{l}\hat{G}_{i}^{FL}\right)\right] \right\},$$

The NNLO contributions have been calculated up to $x^{10}(x^{10}\ln x).$ As a sample result we show $\hat{G}_L^{FF}.$

$$\begin{split} \hat{G}_{L}^{FF} &= 20 - \frac{119}{12}\pi^{2} + 19\pi^{2}\ln 2 - \frac{53}{2}\zeta_{3} - \frac{11}{180}\pi^{4} \\ &+ \left[384 - 32\pi^{2} + \frac{35}{3}\pi^{2}\ln 2 - \frac{32}{3}\pi^{2}\ln^{2} 2 - \frac{225}{2}\zeta_{3} - \frac{11}{60}\pi^{4} + \right. \\ &+ \frac{8}{3}\ln^{4} 2 + 64\operatorname{Li}_{4}(1/2) \right] x^{2} \\ &+ \left[\frac{3761}{8} - \frac{145}{9}\pi^{2} - \frac{55}{4}\pi^{2}\ln 2 + \frac{32}{3}\pi^{2}\ln^{2} 2 - \frac{2119}{24}\zeta_{3} - \frac{211}{180}\pi^{4} \right. \\ &- \frac{8}{3}\ln^{4} 2 - 64\operatorname{Li}_{4}(1/2) + \left(\frac{1535}{108} - \frac{25}{18}\pi^{2} \right)\ln x \right] x^{4} \\ &+ \left[-\frac{12651131}{540000} + \frac{53941}{9000}\ln x + \frac{285727}{7200}\pi^{2} \right. \\ &+ \left. \frac{7}{15}\pi^{2}\ln x - \frac{155}{3}\pi^{2}\ln 2 - \frac{19}{10}\pi^{4} + \frac{911}{6}\zeta_{3} \right] x^{6} \end{split}$$

$$+ \left[-\frac{1011779148461}{2593080000} + \frac{11838863}{2315250} \ln x + \frac{1044164059}{8467200} \pi^2 - \frac{11}{630} \pi^2 \ln x \right. \\ \left. - 173\pi^2 \ln 2 - \frac{19}{10} \pi^4 + \frac{93829}{210} \zeta_3 \right] x^8 \\ \left. + \left[-\frac{2728292460101459}{1680315840000} + \frac{1866474913}{2000376000} \ln x + \frac{62340595343}{152409600} \pi^2 + \frac{1}{42} \pi^2 \ln x \right. \\ \left. - \frac{12289}{21} \pi^2 \ln 2 - \frac{19}{10} \pi^4 + \frac{929779}{630} \zeta_3 \right] x^{10} + \mathcal{O} \left(x^{12} \right) \right]$$

where ζ_n denotes Riemann's zeta function with integer argument n.

Some features of the polarized NNLO calculation:

- 12 new three-loop master integrals
- Convergence of the x-expansion \implies Table
- Convergence of the perturbation series

Define helicity fractions up to $\mathcal{O}(n)$ by writing (n = 0, 1, 2 denote the contributions up to LO, NLO and NNLO , respectively)

$$\mathcal{G}_i^{(n)} = \frac{\sum_{i=0}^n \Gamma_i^{(n)}}{\sum_{i=0}^n \Gamma^{(n)}},$$

where i = L, +, -.

Results are presented in the form $\mathcal{G}_i = \mathcal{G}_i^{(0)} + \Delta \mathcal{G}_i^{(1)} + \Delta \mathcal{G}_i^{(2)}$ with increments $\Delta \mathcal{G}_i^{(n)} = \mathcal{G}_i^{(n)} - \mathcal{G}_i^{(n-1)}$ and also, if $\mathcal{G}_i^{(0)} \neq 0$, as $\mathcal{G}_i = \mathcal{G}_i^{(0)}(1 + \delta \mathcal{G}_i^{(1)} + \delta \mathcal{G}_i^{(2)})$.

$$\mathcal{G}_L = 0.6971 - 0.0075 - 0.0023$$

= 0.6971(1 - 0.0108 - 0.0034)
$$\mathcal{G}_+ = 0 + 0.00103 + 0.00023$$

$$\mathcal{G}_- = 0.3029 + 0.0065 + 0.0021$$

= 0.3029(1 + 0.0214 + 0.0070)

The perturbative expansion is well behaved.

Table 1: Numerical values for coefficients of $[x^n, x^n \ln x]$

	$\hat{\Gamma}_L$	$\hat{\Gamma}_+$	$\hat{\Gamma}_{-}$	Γ
$[x^0]$	$-1.959 \cdot 10^{-2}$	0	0	$-1.959 \cdot 10^{-2}$
$[x^2]$	$4.756 \cdot 10^{-3}$	$3.875 \cdot 10^{-4}$	$-3.876 \cdot 10^{-3}$	$1.267 \cdot 10^{-3}$
$[x^4]$	$6.758 \cdot 10^{-4}$	$1.370 \cdot 10^{-4}$	$-9.983 \cdot 10^{-4}$	$-1.856 \cdot 10^{-4}$
$[x^5]$	0	$-5.388 \cdot 10^{-4}$	$5.388 \cdot 10^{-4}$	0
$[x^{6}]$	$-1.482 \cdot 10^{-4}$	$1.197\cdot 10^{-4}$	$4.930 \cdot 10^{-4}$	$4.646 \cdot 10^{-4}$
$[x^7]$	0	$7.795 \cdot 10^{-5}$	$-7.795 \cdot 10^{-5}$	0
$[x^8]$	$-1.725 \cdot 10^{-5}$	$-2.366 \cdot 10^{-5}$	$-1.746 \cdot 10^{-5}$	$-5.837 \cdot 10^{-5}$
$[x^9]$	0	$3.464 \cdot 10^{-6}$	$-3.464 \cdot 10^{-6}$	0
$[x^{10}]$	$-1.296 \cdot 10^{-6}$	$-1.876 \cdot 10^{-6}$	$-2.214 \cdot 10^{-6}$	$-5.386 \cdot 10^{-6}$
\sum	$-1.433 \cdot 10^{-2}$	$1.613 \cdot 10^{-4}$	$-3.944 \cdot 10^{-3}$	$-1.811 \cdot 10^{-2}$