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Some properties of the Top Quark

• The top quark is the heaviest heavy flavour quark

• The top quarks decay almost 100 % of the time into (b + W+)

• Top quarks decay before they can hadronize. Top quark decays

provide ideal setting to test perturbative QCD (no hadronization

effects, negligible ΛQCD/mt effects)

• The decay t → b + W+ is weak =⇒ the W+-boson is polarized

• The W+ decays weakly (→ (l+ + νl), (qi + q̄j)) =⇒ it is

self-analyzing.

• LHC will produce a (tt̄)-pair every 4 (0.4) seconds in low (high)

luminosity run
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Helicity rates of the W–boson in t → b + W+
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• ΓL: longitudinal

• Γ+: transverse plus

• Γ−: transverse minus

• polar angle θ is measured in W–rest frame.

Integrating over cos θ one recovers the total rate Γ = ΓL + Γ+ + Γ−.
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Leading Order (LO) Calculation

For the helicity fractions Gi = Γi/Γ the LO results are

GL : G+ : G− =
1

1 + 2x2
: 0 :

2x2

1 + 2x2

(GL + G+ + G− = 1) where x2 = m2
W /m2

t = 0.211.

Numerically one has

GL : G+ : G− = 0.703 : 0 : 0.297
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Anticipate: Γ+ 6= 0 at NLO, NNLO
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Next-to-Leading Order (NLO)
Calculation

NLO corrections to the helicity rates have been calculated in

H.S. Do, M. Fischer, S. Groote, B. Lampe, M.C. Mauser,

J.G.K.(99,01,02,03)

Numerically one has (Γ̂i = ΓLO+NLO
i /ΓLO

U+L)

Γ̂ = 1 − 0.0854

Γ̂L = 0.703(1 − 0.095)

Γ̂+ = 0.000927

Γ̂− = 0.297(1 − 0.0656)

6



NLO helicity fractions are

GL : G+ : G− = 0.696 : 0.001 : 0.303

compared to LO helicity fractions

GL : G+ : G− = 0.703 : 0 : 0.297

An early MC study quotes experimental sensitivities of ∆GL = 0.7 %

and ∆G+ = 0.3 % for an integrated luminosity of 100 fb−1 at

Tevatron II energies (≈ 8 · 106 (tt̄-pairs)). Compare this to NLO

changes ∆GL = 0.7 % and ∆G+ = 0.1 %. Much higher event rates

can be reached at the LHC in one year.

A more recent MC study based on 10 fb−1 at the LHC quotes

measurement uncertainties of ∆GL = 1.9 %, ∆G+ = 0.21 % and

∆G− = 1.8 %.
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Experimentally, there has been a continuing interest in the

measurement of the helicity fractions. Latest measurements:

CDF(2007) : GL = 0.85+0.15
−0.22(stat) ± 0.06(syst)

G+ = 0.05+0.11
−0.05(stat) ± 0.03(syst)

DO(2005) : GL = 0.56 ± 0.31

and, assuming that GL is fixed at its SM value, they quote :

DO(2007) : G+ = 0.056 ± 0.080(stat) ± 0.057(syst)

All of these measurements are well within SM predictions.

Latest: (Dec. 12th 2007; DO)

GL = 0.425 ± 0.16(stat) ± 0.053(syst)

G+ = 0.119 ± 0.090(stat) ± 0.053(syst)

Consistent with the SM only at the 30% confidence level.
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Next-to-Next-to-Leading Order
(NNLO) Calculation

Motivation :

• check on convergence properties of perturbative series; e.g. size of

Γ+ at NNLO.

• NNLO calculations are the call of the day

• develop new techniques which may be useful in other NNLO

calculations
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Use a technique developed by Blokland et al. which has been

succesfully applied to the calculation of the total rate (Blokland,

Czarnecki,Ślusarczyk,Tkachov 04,05). The main ideas are

• Reduce two-mass-scale problem (mt, mW ) to one mass scale

problem (mt). Obtain results as an expansion in powers of

mW /mt and logarithms lnmW /mt.

• Optical theorem: Calculate three-loop diagrams and take

imaginary parts

Γ(two − loop) =
1

mt

Im (Σ(three − loop)) ,

• Use dimensional regularization to regularize UV and IR/M

singularities
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• Expansion by regions. Consider two regions:

i) hard region

All loop momenta are hard O(mt). Can expand W -propagator

1

q2 − m2
W

=
1

q2
+

m2
W

q4
+

m4
W

q6
+ ...

Massive propagator has been converted into a sum of massless

propagators.

ii) soft region

All momenta are hard but momentum flowing through W is soft.

Cannot use above expansion of the W propagator. But integrals

factorize into two-loop self-energy-type integrals and a one-loop

vacuum bubble diagram.

• reduction to 23 master integrals by integration-by-parts identities.

Use of Laporta’s algorithm.

• Viability of method has been checked against known NLO result
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36 O(α2
s) three-loop Feynman diagrams :

Abelian graphs:
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Non-Abelian graphs:

Quark loop contributions
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Two new features appear in the NNLO calculation of the helicity rates

ΓL,± :

• Treatment of γ5 in dimensional regularization

replace

γµγ5 → 1

3!
εµαβγγαγβγγ

Need additional finite three-loop counter terms

(Larin, Vermaseren 91,93)

• Replacement of the total rate projector

IPµν
U+L = −gµν +

qµqν

m2
W

by projectors IPµν
L,± onto the three helicity rates.

Viability of the treatment of the new features have been tested against

known LO and NLO results.
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Construction of Helicity Projectors IPµν
L,±

It is convenient to define covariant projectors to project onto the

helicity rates, cif.

Γi ∼ IPµν
i Hµν (i = L,+,−)

Start with

IPµν
L = εµ

L ε∗ν
L

IPµν
± = εµ

± ε∗ν
±

In the rest frame of the W+ one has

εµ
L = (0; 0, 0, 1)

εµ
± =

1√
2
(0;∓1,−i, 0)
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The covariant projectors can be constructed from the following three

projectors

• Projector for the total rate

IPµν
U+L = −gµν +

qµqν

m2
W

• Projector for the longitudinal helicity rate

IPµν
L =

m2
W

m2
t

1

|~q |2
(

pµ
t − pt · q

m2
W

qµ
)(

pν
t − pt · q

m2
W

qν
)

.

• Projector for the forward-backward asymmetric helicity rate

IPµν
F = − 1

mt

1

|~q | iε
µναβpt,αqβ
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Finally, the three projectors read (Γi ∼ IPµν
i Hµν ; i = L,+,−,)

IPµν
L =

m2
W

m2
t

1

|~q |2
(

pµ
t − pt · q

m2
W

qµ
)(

pν
t − pt · q

m2
W

qν
)

IPµν
± =

1

2

(

IPµν
U+L − IPµν

L ± IPµν
F )

The denominator factors |~q |−2 and |~q |−1 are needed for the correct

normalization of the projectors, cif.

gαβ IPµα
i IPβµ

j = −δij IP
µν
i

The denominator factors |~q |−2 and |~q |−1 somewhat complicate the

NLO and NNLO calculation of the helicity rates as compared to the

total rate.
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How to deal with the propagator-like factors |~q |−2 and |~q |−1 in the

helicity projectors?

I) Hard region

Expand in inverse powers of the (large) propagator factor

N := (pt + q)2 − m2
t .

|~q |2 = q2
0 − m2

W

=

(

ptq

mt

)2

− m2
W

Expand in propagator factor N := (pt + q)2 − m2
t = 2ptq + q2, i.e.

ptq = 1
2N(1 − m2

W N−1)). One then has

1

|~q | 2 =
4m2

t

N2

∞
∑

i=0

(

2m2
W N2 − m4

W + 4m2
t m

2
W

N2

)i

,
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1

|~q | =
2mt

N

∞
∑

i=0

(

2i

i

) (

2m2
W N − m4

W + 4m2
t m

2
W

4 N2

)i

.

II) soft region

We cannot perform an expansion of |~q |, since |~q |2 = q2
0 − m2

W and q0

is of order mW in the soft region. However, in this region the W

boson loop factorises. Therefore, we only have to replace the usual

one-loop vacuum bubble integrals with integrals of the type

∫

ddq

(q2 − m2
W ) (q2

0 − m2
W )n

,
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NNLO Results for the helicity
rates

Colour structure of rates:

Γi =
GF m3

t |Vtb|2
8
√

2π

{

Γ̂
(0)
i +

αs

2π
CF Γ̂

(1)
i

+
(αs

2π

)2 [

C2
F ĜFF

i + CF CA ĜFA
i + CF TF

(

ĜFH
i + nl Ĝ

FL
i

)]

}

,

The NNLO contributions have been calculated up to x10(x10 lnx). As

a sample result we show ĜFF
L .
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ĜFF
L = 20 − 119

12
π2 + 19π2 ln 2 − 53

2
ζ3 −

11

180
π4

+

[

384 − 32π2 +
35

3
π2 ln 2 − 32

3
π2 ln2 2 − 225

2
ζ3 −

11

60
π4 +

+
8

3
ln4 2 + 64 Li4(1/2)

]

x2

+

[

3761

8
− 145

9
π2 − 55

4
π2 ln 2 +

32

3
π2 ln2 2 − 2119

24
ζ3 −

211

180
π4

− 8

3
ln4 2 − 64 Li4(1/2) +

(

1535

108
− 25

18
π2

)

lnx

]

x4

+

[

− 12651131

540000
+

53941

9000
lnx +

285727

7200
π2

+
7

15
π2lnx − 155

3
π2 ln 2 − 19

10
π4 +

911

6
ζ3

]

x6
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+

[

− 1011779148461

2593080000
+

11838863

2315250
lnx +

1044164059

8467200
π2 − 11

630
π2lnx

− 173π2 ln 2 − 19

10
π4 +

93829

210
ζ3

]

x8

+

[

− 2728292460101459

1680315840000
+

1866474913

2000376000
lnx +

62340595343

152409600
π2 +

1

42
π2lnx

− 12289

21
π2 ln 2 − 19

10
π4 +

929779

630
ζ3

]

x10 + O
(

x12
)

where ζn denotes Riemann’s zeta function with integer argument n.
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Some features of the polarized NNLO calculation:

• 12 new three-loop master integrals

• Convergence of the x–expansion =⇒ Table

• Convergence of the perturbation series

Define helicity fractions up to O(n) by writing (n = 0, 1, 2 denote

the contributions up to LO, NLO and NNLO , respectively)

G(n)
i =

∑n
i=0 Γ

(n)
i

∑n
i=0 Γ(n)

,

where i = L,+,−.
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Results are presented in the form Gi = G(0)
i + ∆G(1)

i + ∆G(2)
i with

increments ∆G(n)
i = G(n)

i − G(n−1)
i and also, if G(0)

i 6= 0, as

Gi = G(0)
i (1 + δG(1)

i + δG(2)
i ).

GL = 0.6971 − 0.0075 − 0.0023

= 0.6971(1 − 0.0108 − 0.0034)

G+ = 0 + 0.00103 + 0.00023

G− = 0.3029 + 0.0065 + 0.0021

= 0.3029(1 + 0.0214 + 0.0070)

The perturbative expansion is well behaved.
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Table 1: Numerical values for coefficients of [xn, xn lnx]

Γ̂L Γ̂+ Γ̂− Γ̂

[x0] −1.959 · 10−2 0 0 −1.959 · 10−2

[x2] 4.756 · 10−3 3.875 · 10−4 −3.876 · 10−3 1.267 · 10−3

[x4] 6.758 · 10−4 1.370 · 10−4 −9.983 · 10−4 −1.856 · 10−4

[x5] 0 −5.388 · 10−4 5.388 · 10−4 0

[x6] −1.482 · 10−4 1.197 · 10−4 4.930 · 10−4 4.646 · 10−4

[x7] 0 7.795 · 10−5 −7.795 · 10−5 0

[x8] −1.725 · 10−5 −2.366 · 10−5 −1.746 · 10−5 −5.837 · 10−5

[x9] 0 3.464 · 10−6 −3.464 · 10−6 0

[x10] −1.296 · 10−6 −1.876 · 10−6 −2.214 · 10−6 −5.386 · 10−6

Σ −1.433 · 10−2 1.613 · 10−4 −3.944 · 10−3 −1.811 · 10−2

25


