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collaboration structure

new management

spokesperson:                                                    G. Schnell

deputy spokesperson & analysis coordinator: A. Rostomyan

deputy analysis coordinator:                   C. Van Hulse

will lead to small changes in collaboration board to take place in 

next days
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data preservation

data-analysis platform completely moved from HERMES batch 

system to DESY’s BIRD infrastructure

no hardware maintenance required from collaboration for 

data analysis 

medium-term analysis platform secured

switch to 64bit system and SLD5 required some fine-tuning 

and lead to slow-down in analyses

close to 100% of analyses have moved to new system

some remaining data and services (e.g., web pages and mailing 

lists) in process of migration to IT-maintained infrastructure
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publications and new preliminary results 

since 74th PRC mtg.
The HERMES Recoil Detector 

submitted to JINST, arXiv:1302.6092 and DESY 13-034

referee comments received (“minor revision”)
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since 74th PRC mtg.
The HERMES Recoil Detector 

submitted to JINST, arXiv:1302.6092 and DESY 13-034

referee comments received (“minor revision”)

Azimuthal distributions of charged hadrons, pions, and kaons 

produced in deep-inelastic scattering off unpolarized protons 

and deuterons
A. Airapetian et al., Phys. Rev. D 87 (2013) 012010. 

arXiv:1204.4161 and DESY-12-060
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reevaluation of the strange-quark distribution

spin-density matrix elements for exclusive omega production 
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analysis of cross section
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the fundamental tenet of universality of PDFs and FFs was revised [7 – 9]. New factoriza-

tion proofs for the process under consideration here were put forward [10, 11], updating past

work [12]. Some relations proposed in ref. [1] turned out to be invalid [13, 14], and three

new PDFs were discovered [15, 16]. In the meanwhile, several experimental measurements

of azimuthal asymmetries in semi-inclusive DIS were performed [17 – 26].

We consider it timely to present in a single, self-contained paper the results for one-

particle-inclusive deep inelastic scattering at small transverse momentum, in particular

including in the cross section all functions recently introduced. In section 2 we recall the

general form of the cross section for polarized semi-inclusive DIS and parameterize it in

terms of suitable structure functions. In section 3 we give the full parameterization of

quark-quark and quark-gluon-quark correlation functions up to twist three and review the

relations between these functions which are due to the QCD equations of motion. The

structure functions for semi-inclusive DIS at small transverse momentum and twist-three

accuracy are given in section 4, and section 5 contains our conclusions. The relation of the

structure functions in the present paper with the parameterization in ref. [27] is given in

appendix A, and results for one-jet production in DIS are listed in appendix B.

2. The cross section in terms of structure functions

We consider the process

!(l) + N(P ) → !(l′) + h(Ph) + X, (2.1)

where ! denotes the beam lepton, N the nucleon target, and h the produced hadron, and

where four-momenta are given in parentheses. Throughout this paper we work in the one-

photon exchange approximation and neglect the lepton mass. We denote by M and Mh

the respective masses of the nucleon and of the hadron h. As usual we define q = l− l′ and

Q2 = −q2 and introduce the variables

x =
Q2

2P · q
, y =

P · q
P · l

, z =
P ·Ph

P · q
, γ =

2Mx

Q
. (2.2)

Throughout this section we work in the target rest frame. Following the Trento conven-

tions [28] we define the azimuthal angle φh of the outgoing hadron by

cosφh = −
lµPhν gµν

⊥
√

l2⊥ P 2
h⊥

, sin φh = −
lµPhν εµν

⊥
√

l2⊥ P 2
h⊥

, (2.3)

where lµ⊥ = gµν
⊥ lν and Pµ

h⊥ = gµν
⊥ Phν are the transverse components of l and Ph with respect

to the photon momentum. The tensors

gµν
⊥ = gµν −

qµP ν + Pµqν

P · q (1 + γ2)
+

γ2

1 + γ2

(

qµqν

Q2
−

PµP ν

M2

)

, (2.4)

εµν
⊥ = εµνρσ Pρ qσ

P · q
√

1 + γ2
(2.5)
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+ S‖λe
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√
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√
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]
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sin(φh − φS)
(

F sin(φh−φS)
UT,T + εF sin(φh−φS)

UT,L

)

+ ε sin(φh + φS)F sin(φh+φS)
UT + ε sin(3φh − φS)F sin(3φh−φS)

UT

+
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2 ε(1 + ε) sin(2φh − φS)F sin(2φh−φS)
UT

]

+ |S⊥|λe

[

√

1 − ε2 cos(φh − φS)F cos(φh−φS)
LT +

√

2 ε(1 − ε) cos φS F cos φS

LT

+
√
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]}

, (2.7)

where α is the fine structure constant and the structure functions on the r.h.s. depend

on x, Q2, z and P 2
h⊥. The angle ψ is the azimuthal angle of &′ around the lepton beam

axis with respect to an arbitrary fixed direction, which in case of a transversely polarized

target we choose to be the direction of S. The corresponding relation between ψ and φS

is given in ref. [27]; in deep inelastic kinematics one has dψ ≈ dφS . The first and second

subscript of the above structure functions indicate the respective polarization of beam and

target, whereas the third subscript in FUU,T , FUU,L and F sin(φh−φS)
UT,T , F sin(φh−φS)

UT,L specifies

the polarization of the virtual photon. Note that longitudinal or transverse target polar-

ization refer to the photon direction here. The conversion to the experimentally relevant

longitudinal or transverse polarization w.r.t. the lepton beam direction is straightforward

and given in [27]. The ratio ε of longitudinal and transverse photon flux in (2.7) is given

by

ε =
1 − y − 1

4 γ2y2

1 − y + 1
2 y2 + 1

4 γ2y2
, (2.8)

so that the depolarization factors can be written as

y2
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)

≈
(

1 − y + 1
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√
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[see, e.g., Bacchetta et al., 

JHEP 0702 (2007) 093]
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analysis of cross section
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the fundamental tenet of universality of PDFs and FFs was revised [7 – 9]. New factoriza-

tion proofs for the process under consideration here were put forward [10, 11], updating past

work [12]. Some relations proposed in ref. [1] turned out to be invalid [13, 14], and three

new PDFs were discovered [15, 16]. In the meanwhile, several experimental measurements

of azimuthal asymmetries in semi-inclusive DIS were performed [17 – 26].

We consider it timely to present in a single, self-contained paper the results for one-

particle-inclusive deep inelastic scattering at small transverse momentum, in particular

including in the cross section all functions recently introduced. In section 2 we recall the

general form of the cross section for polarized semi-inclusive DIS and parameterize it in

terms of suitable structure functions. In section 3 we give the full parameterization of

quark-quark and quark-gluon-quark correlation functions up to twist three and review the

relations between these functions which are due to the QCD equations of motion. The

structure functions for semi-inclusive DIS at small transverse momentum and twist-three

accuracy are given in section 4, and section 5 contains our conclusions. The relation of the

structure functions in the present paper with the parameterization in ref. [27] is given in

appendix A, and results for one-jet production in DIS are listed in appendix B.

2. The cross section in terms of structure functions

We consider the process

!(l) + N(P ) → !(l′) + h(Ph) + X, (2.1)

where ! denotes the beam lepton, N the nucleon target, and h the produced hadron, and

where four-momenta are given in parentheses. Throughout this paper we work in the one-

photon exchange approximation and neglect the lepton mass. We denote by M and Mh

the respective masses of the nucleon and of the hadron h. As usual we define q = l− l′ and

Q2 = −q2 and introduce the variables

x =
Q2

2P · q
, y =

P · q
P · l

, z =
P ·Ph
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. (2.2)
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where α is the fine structure constant and the structure functions on the r.h.s. depend

on x, Q2, z and P 2
h⊥. The angle ψ is the azimuthal angle of &′ around the lepton beam

axis with respect to an arbitrary fixed direction, which in case of a transversely polarized

target we choose to be the direction of S. The corresponding relation between ψ and φS

is given in ref. [27]; in deep inelastic kinematics one has dψ ≈ dφS . The first and second

subscript of the above structure functions indicate the respective polarization of beam and

target, whereas the third subscript in FUU,T , FUU,L and F sin(φh−φS)
UT,T , F sin(φh−φS)

UT,L specifies

the polarization of the virtual photon. Note that longitudinal or transverse target polar-

ization refer to the photon direction here. The conversion to the experimentally relevant

longitudinal or transverse polarization w.r.t. the lepton beam direction is straightforward

and given in [27]. The ratio ε of longitudinal and transverse photon flux in (2.7) is given

by
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[see, e.g., Bacchetta et al., 
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axis with respect to an arbitrary fixed direction, which in case of a transversely polarized
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Fig. 1. The multiplicity corrected to 4π of charged kaons in semi-inclusive DIS from
a deuterium target, as a function of Bjorken x. The continuous curve is calculated
from the curve in Fig. 2 using Eq. (3). The dashed (dash-dotted) curve is the non-
strange (strange) quark contribution to the multiplicity for this fit. The dotted curve
is the best fit to

∫
DK

S (z)dz using Cteq6l PDFs. The error bars are statistical. The
band represents the systematic uncertainties. The values of 〈Q 2〉 for each x bin are
shown in the lower panel.

Combining Eqs. (1), (2) and neglecting the term 2S(x) compared to
5Q (x), it follows immediately that

S(x)
∫

DK
S (z)dz # Q (x)

[
5

d2NK (x)
d2NDIS(x)

−
∫

DK
Q (z)dz

]
. (3)

Eq. (3) is the basis for the extraction of the quantity S(x)
∫
DK

S (z)dz.
The data were recorded with a longitudinally nuclear-polarized

deuteron gas target internal to the E = 27.6 GeV Hera positron
storage ring at Desy. The self-induced beam polarization was mea-
sured continuously with Compton backscattering of circularly po-
larized laser beams [22,23]. The open-ended target cell was fed
by an atomic-beam source based on Stern–Gerlach separation with
hyperfine transitions. The nuclear polarization of the atoms was
flipped at 90 s time intervals, while both this polarization and
the atomic fraction inside the target cell were continuously mea-
sured [24]. The average value of the deuteron polarization was
0.845 with a fractional systematic uncertainty of 3.5%.

Scattered beam leptons and coincident hadrons were detected
by the Hermes spectrometer [25]. Leptons were identified with an
efficiency exceeding 98% and a hadron contamination of less than
1% using an electromagnetic calorimeter, a transition–radiation
detector, a preshower scintillation counter and a ring-imaging
Čerenkov (RICH) detector [26]. The dual-radiator RICH was also
used to identify charged kaons. Events were selected subject to
the kinematic requirements Q 2 > 1 GeV2, W 2 > 10 GeV2 and
y < 0.85, where W is the invariant mass of the photon–nucleon
system, and y = ν/E . Coincident hadrons were accepted if 0.2 <
z < 0.8 and xF ≈ 2pL/W > 0.1, where pL is the longitudinal mo-
mentum of the hadron with respect to the virtual photon direction
in the photon–nucleon center of mass frame. The Bjorken x range
of measurement was 0.02–0.6.

The charged kaon multiplicity was extracted by summing over
the kaon yields for the two beam-target polarization states. An
event weighting procedure was used to correct for RICH kaon iden-
tification inefficiencies. The effects of QED radiation, instrumental
resolution, and acceptance were simulated [27–29], and correc-
tions were applied to the data for each polarization state using
a technique that unfolds kinematic migration of events [20]. The
results are presented in Fig. 1. The trends in the data were not
reproduced (see dotted curve in Fig. 1) by fitting the points us-
ing the Cteq6l [30] strange quark PDFs in Eqs. (1) and (2), with∫
DK

Q (z)dz and
∫
DK

S (z)dz as free parameters. In view of the
paucity of reliable data on S(x), it was assumed instead that it is
unknown, and the analysis was carried out extracting the product

Fig. 2. The strange fragmentation product S(x, Q 2)
∫
DK

S (z)dz obtained from the
measured Hermes multiplicity for charged kaons at the 〈Q 2〉 for each bin. The curve
is a least squares fit of the form x−0.863e−x/0.0487(1 − x). The band represents sys-
tematic uncertainties.

S(x)
∫
DK

S (z)dz in LO. For x > 0.15 the multiplicity is constant at a
value of about 0.080, implying that S(x)/Q (x) is constant. For this
analysis S(x) is assumed to be negligible at large x from which
it follows that S(x) = 0 for x > 0.15 and that

∫ 0.8
0.2 DK

Q (z)dz =
0.398±0.010, in excellent agreement with the value 0.435±0.044
obtained for Q 2 = 2.5 GeV2 from the most recent global analysis
of fragmentation functions [31]. The value 0.398 was then used in
Eq. (3) together with values of Q (x) from Cteq6l and the mea-
sured multiplicities to obtain the product S(x)

∫
DK

S (z)dz shown in
Fig. 2. A small iterative correction was made to account for the
neglect of the 2S(x) term in Eq. (1). The result for the product to-
gether with a fit of the form x−a1e−x/a2(1 − x) is shown in Fig. 2,
and leads to the continuous curve in Fig. 1.

The improved fit (continuous curve in Fig. 1) to the multiplicity
is an indication that the actual distribution of S(x) is substantially
different from the average of those of the nonstrange antiquarks.
To explore this point, the Hermes result for S(x)

∫
DK

S (z)dz has
been evolved to Q 2

0 = 2.5 GeV2. The Q 2 evolution factors were
taken from Cteq6l and the fragmentation function compilation
given in [31]. Consideration of corrections to the evolution due
to higher twist contributions is not necessary, since higher twist
effects are expected to be significant [32] only for larger values
of x where the extracted distribution of xS(x) vanishes. The dis-
tribution of xS(x) was obtained from S(x)

∫
DK

S (z)dz by dividing
by

∫
DK

S (z)dz = 1.27 ± 0.13, the value at Q 2 = 2.5 GeV2 given
in [31]. The results are presented in Fig. 3 together with (as an ex-
ample) parameterizations of xS(x) and x(ū(x) + d̄(x)) from Cteq6l.
The normalization of the Hermes points is determined by the value
of

∫
DK

S (z)dz assumed. However, whatever the normalization, the
shape of xS(x) implied by the Hermes data is incompatible with
xS(x) from Cteq6l and other global QCD fits of PDFs as well as the
assumption of an average of an isoscalar nonstrange sea. The ab-

Fig. 3. The strange parton distribution xS(x) from the measured Hermes multiplic-
ity for charged kaons evolved to Q 2

0 = 2.5 GeV2 assuming
∫
DK

S (z)dz = 1.27±0.13.
The solid curve is a 3-parameter fit for S(x) = x−0.924e−x/0.0404(1 − x), the dashed
curve gives xS(x) from Cteq6l, and the dot–dash curve is the sum of light anti-
quarks from Cteq6l.
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Fig. 1. The multiplicity corrected to 4π of charged kaons in semi-inclusive DIS from
a deuterium target, as a function of Bjorken x. The continuous curve is calculated
from the curve in Fig. 2 using Eq. (3). The dashed (dash-dotted) curve is the non-
strange (strange) quark contribution to the multiplicity for this fit. The dotted curve
is the best fit to

∫
DK

S (z)dz using Cteq6l PDFs. The error bars are statistical. The
band represents the systematic uncertainties. The values of 〈Q 2〉 for each x bin are
shown in the lower panel.

Combining Eqs. (1), (2) and neglecting the term 2S(x) compared to
5Q (x), it follows immediately that

S(x)
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S (z)dz # Q (x)
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−
∫

DK
Q (z)dz
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Eq. (3) is the basis for the extraction of the quantity S(x)
∫
DK

S (z)dz.
The data were recorded with a longitudinally nuclear-polarized

deuteron gas target internal to the E = 27.6 GeV Hera positron
storage ring at Desy. The self-induced beam polarization was mea-
sured continuously with Compton backscattering of circularly po-
larized laser beams [22,23]. The open-ended target cell was fed
by an atomic-beam source based on Stern–Gerlach separation with
hyperfine transitions. The nuclear polarization of the atoms was
flipped at 90 s time intervals, while both this polarization and
the atomic fraction inside the target cell were continuously mea-
sured [24]. The average value of the deuteron polarization was
0.845 with a fractional systematic uncertainty of 3.5%.

Scattered beam leptons and coincident hadrons were detected
by the Hermes spectrometer [25]. Leptons were identified with an
efficiency exceeding 98% and a hadron contamination of less than
1% using an electromagnetic calorimeter, a transition–radiation
detector, a preshower scintillation counter and a ring-imaging
Čerenkov (RICH) detector [26]. The dual-radiator RICH was also
used to identify charged kaons. Events were selected subject to
the kinematic requirements Q 2 > 1 GeV2, W 2 > 10 GeV2 and
y < 0.85, where W is the invariant mass of the photon–nucleon
system, and y = ν/E . Coincident hadrons were accepted if 0.2 <
z < 0.8 and xF ≈ 2pL/W > 0.1, where pL is the longitudinal mo-
mentum of the hadron with respect to the virtual photon direction
in the photon–nucleon center of mass frame. The Bjorken x range
of measurement was 0.02–0.6.

The charged kaon multiplicity was extracted by summing over
the kaon yields for the two beam-target polarization states. An
event weighting procedure was used to correct for RICH kaon iden-
tification inefficiencies. The effects of QED radiation, instrumental
resolution, and acceptance were simulated [27–29], and correc-
tions were applied to the data for each polarization state using
a technique that unfolds kinematic migration of events [20]. The
results are presented in Fig. 1. The trends in the data were not
reproduced (see dotted curve in Fig. 1) by fitting the points us-
ing the Cteq6l [30] strange quark PDFs in Eqs. (1) and (2), with∫
DK

Q (z)dz and
∫
DK

S (z)dz as free parameters. In view of the
paucity of reliable data on S(x), it was assumed instead that it is
unknown, and the analysis was carried out extracting the product

Fig. 2. The strange fragmentation product S(x, Q 2)
∫
DK

S (z)dz obtained from the
measured Hermes multiplicity for charged kaons at the 〈Q 2〉 for each bin. The curve
is a least squares fit of the form x−0.863e−x/0.0487(1 − x). The band represents sys-
tematic uncertainties.
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∫
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S (z)dz in LO. For x > 0.15 the multiplicity is constant at a
value of about 0.080, implying that S(x)/Q (x) is constant. For this
analysis S(x) is assumed to be negligible at large x from which
it follows that S(x) = 0 for x > 0.15 and that

∫ 0.8
0.2 DK

Q (z)dz =
0.398±0.010, in excellent agreement with the value 0.435±0.044
obtained for Q 2 = 2.5 GeV2 from the most recent global analysis
of fragmentation functions [31]. The value 0.398 was then used in
Eq. (3) together with values of Q (x) from Cteq6l and the mea-
sured multiplicities to obtain the product S(x)

∫
DK

S (z)dz shown in
Fig. 2. A small iterative correction was made to account for the
neglect of the 2S(x) term in Eq. (1). The result for the product to-
gether with a fit of the form x−a1e−x/a2(1 − x) is shown in Fig. 2,
and leads to the continuous curve in Fig. 1.

The improved fit (continuous curve in Fig. 1) to the multiplicity
is an indication that the actual distribution of S(x) is substantially
different from the average of those of the nonstrange antiquarks.
To explore this point, the Hermes result for S(x)

∫
DK

S (z)dz has
been evolved to Q 2

0 = 2.5 GeV2. The Q 2 evolution factors were
taken from Cteq6l and the fragmentation function compilation
given in [31]. Consideration of corrections to the evolution due
to higher twist contributions is not necessary, since higher twist
effects are expected to be significant [32] only for larger values
of x where the extracted distribution of xS(x) vanishes. The dis-
tribution of xS(x) was obtained from S(x)
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in [31]. The results are presented in Fig. 3 together with (as an ex-
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The normalization of the Hermes points is determined by the value
of
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DK

S (z)dz assumed. However, whatever the normalization, the
shape of xS(x) implied by the Hermes data is incompatible with
xS(x) from Cteq6l and other global QCD fits of PDFs as well as the
assumption of an average of an isoscalar nonstrange sea. The ab-

Fig. 3. The strange parton distribution xS(x) from the measured Hermes multiplic-
ity for charged kaons evolved to Q 2

0 = 2.5 GeV2 assuming
∫
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curve gives xS(x) from Cteq6l, and the dot–dash curve is the sum of light anti-
quarks from Cteq6l.
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Fig. 1. The multiplicity corrected to 4π of charged kaons in semi-inclusive DIS from
a deuterium target, as a function of Bjorken x. The continuous curve is calculated
from the curve in Fig. 2 using Eq. (3). The dashed (dash-dotted) curve is the non-
strange (strange) quark contribution to the multiplicity for this fit. The dotted curve
is the best fit to

∫
DK

S (z)dz using Cteq6l PDFs. The error bars are statistical. The
band represents the systematic uncertainties. The values of 〈Q 2〉 for each x bin are
shown in the lower panel.

Combining Eqs. (1), (2) and neglecting the term 2S(x) compared to
5Q (x), it follows immediately that

S(x)
∫

DK
S (z)dz # Q (x)

[
5

d2NK (x)
d2NDIS(x)

−
∫

DK
Q (z)dz

]
. (3)

Eq. (3) is the basis for the extraction of the quantity S(x)
∫
DK

S (z)dz.
The data were recorded with a longitudinally nuclear-polarized

deuteron gas target internal to the E = 27.6 GeV Hera positron
storage ring at Desy. The self-induced beam polarization was mea-
sured continuously with Compton backscattering of circularly po-
larized laser beams [22,23]. The open-ended target cell was fed
by an atomic-beam source based on Stern–Gerlach separation with
hyperfine transitions. The nuclear polarization of the atoms was
flipped at 90 s time intervals, while both this polarization and
the atomic fraction inside the target cell were continuously mea-
sured [24]. The average value of the deuteron polarization was
0.845 with a fractional systematic uncertainty of 3.5%.

Scattered beam leptons and coincident hadrons were detected
by the Hermes spectrometer [25]. Leptons were identified with an
efficiency exceeding 98% and a hadron contamination of less than
1% using an electromagnetic calorimeter, a transition–radiation
detector, a preshower scintillation counter and a ring-imaging
Čerenkov (RICH) detector [26]. The dual-radiator RICH was also
used to identify charged kaons. Events were selected subject to
the kinematic requirements Q 2 > 1 GeV2, W 2 > 10 GeV2 and
y < 0.85, where W is the invariant mass of the photon–nucleon
system, and y = ν/E . Coincident hadrons were accepted if 0.2 <
z < 0.8 and xF ≈ 2pL/W > 0.1, where pL is the longitudinal mo-
mentum of the hadron with respect to the virtual photon direction
in the photon–nucleon center of mass frame. The Bjorken x range
of measurement was 0.02–0.6.

The charged kaon multiplicity was extracted by summing over
the kaon yields for the two beam-target polarization states. An
event weighting procedure was used to correct for RICH kaon iden-
tification inefficiencies. The effects of QED radiation, instrumental
resolution, and acceptance were simulated [27–29], and correc-
tions were applied to the data for each polarization state using
a technique that unfolds kinematic migration of events [20]. The
results are presented in Fig. 1. The trends in the data were not
reproduced (see dotted curve in Fig. 1) by fitting the points us-
ing the Cteq6l [30] strange quark PDFs in Eqs. (1) and (2), with∫
DK

Q (z)dz and
∫
DK

S (z)dz as free parameters. In view of the
paucity of reliable data on S(x), it was assumed instead that it is
unknown, and the analysis was carried out extracting the product

Fig. 2. The strange fragmentation product S(x, Q 2)
∫
DK

S (z)dz obtained from the
measured Hermes multiplicity for charged kaons at the 〈Q 2〉 for each bin. The curve
is a least squares fit of the form x−0.863e−x/0.0487(1 − x). The band represents sys-
tematic uncertainties.
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∫
DK

S (z)dz in LO. For x > 0.15 the multiplicity is constant at a
value of about 0.080, implying that S(x)/Q (x) is constant. For this
analysis S(x) is assumed to be negligible at large x from which
it follows that S(x) = 0 for x > 0.15 and that

∫ 0.8
0.2 DK

Q (z)dz =
0.398±0.010, in excellent agreement with the value 0.435±0.044
obtained for Q 2 = 2.5 GeV2 from the most recent global analysis
of fragmentation functions [31]. The value 0.398 was then used in
Eq. (3) together with values of Q (x) from Cteq6l and the mea-
sured multiplicities to obtain the product S(x)

∫
DK

S (z)dz shown in
Fig. 2. A small iterative correction was made to account for the
neglect of the 2S(x) term in Eq. (1). The result for the product to-
gether with a fit of the form x−a1e−x/a2(1 − x) is shown in Fig. 2,
and leads to the continuous curve in Fig. 1.

The improved fit (continuous curve in Fig. 1) to the multiplicity
is an indication that the actual distribution of S(x) is substantially
different from the average of those of the nonstrange antiquarks.
To explore this point, the Hermes result for S(x)

∫
DK

S (z)dz has
been evolved to Q 2

0 = 2.5 GeV2. The Q 2 evolution factors were
taken from Cteq6l and the fragmentation function compilation
given in [31]. Consideration of corrections to the evolution due
to higher twist contributions is not necessary, since higher twist
effects are expected to be significant [32] only for larger values
of x where the extracted distribution of xS(x) vanishes. The dis-
tribution of xS(x) was obtained from S(x)

∫
DK

S (z)dz by dividing
by

∫
DK

S (z)dz = 1.27 ± 0.13, the value at Q 2 = 2.5 GeV2 given
in [31]. The results are presented in Fig. 3 together with (as an ex-
ample) parameterizations of xS(x) and x(ū(x) + d̄(x)) from Cteq6l.
The normalization of the Hermes points is determined by the value
of

∫
DK

S (z)dz assumed. However, whatever the normalization, the
shape of xS(x) implied by the Hermes data is incompatible with
xS(x) from Cteq6l and other global QCD fits of PDFs as well as the
assumption of an average of an isoscalar nonstrange sea. The ab-

Fig. 3. The strange parton distribution xS(x) from the measured Hermes multiplic-
ity for charged kaons evolved to Q 2

0 = 2.5 GeV2 assuming
∫
DK

S (z)dz = 1.27±0.13.
The solid curve is a 3-parameter fit for S(x) = x−0.924e−x/0.0404(1 − x), the dashed
curve gives xS(x) from Cteq6l, and the dot–dash curve is the sum of light anti-
quarks from Cteq6l.
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Fig. 1. The multiplicity corrected to 4π of charged kaons in semi-inclusive DIS from
a deuterium target, as a function of Bjorken x. The continuous curve is calculated
from the curve in Fig. 2 using Eq. (3). The dashed (dash-dotted) curve is the non-
strange (strange) quark contribution to the multiplicity for this fit. The dotted curve
is the best fit to

∫
DK

S (z)dz using Cteq6l PDFs. The error bars are statistical. The
band represents the systematic uncertainties. The values of 〈Q 2〉 for each x bin are
shown in the lower panel.

Combining Eqs. (1), (2) and neglecting the term 2S(x) compared to
5Q (x), it follows immediately that

S(x)
∫

DK
S (z)dz # Q (x)

[
5

d2NK (x)
d2NDIS(x)

−
∫

DK
Q (z)dz

]
. (3)

Eq. (3) is the basis for the extraction of the quantity S(x)
∫
DK

S (z)dz.
The data were recorded with a longitudinally nuclear-polarized

deuteron gas target internal to the E = 27.6 GeV Hera positron
storage ring at Desy. The self-induced beam polarization was mea-
sured continuously with Compton backscattering of circularly po-
larized laser beams [22,23]. The open-ended target cell was fed
by an atomic-beam source based on Stern–Gerlach separation with
hyperfine transitions. The nuclear polarization of the atoms was
flipped at 90 s time intervals, while both this polarization and
the atomic fraction inside the target cell were continuously mea-
sured [24]. The average value of the deuteron polarization was
0.845 with a fractional systematic uncertainty of 3.5%.

Scattered beam leptons and coincident hadrons were detected
by the Hermes spectrometer [25]. Leptons were identified with an
efficiency exceeding 98% and a hadron contamination of less than
1% using an electromagnetic calorimeter, a transition–radiation
detector, a preshower scintillation counter and a ring-imaging
Čerenkov (RICH) detector [26]. The dual-radiator RICH was also
used to identify charged kaons. Events were selected subject to
the kinematic requirements Q 2 > 1 GeV2, W 2 > 10 GeV2 and
y < 0.85, where W is the invariant mass of the photon–nucleon
system, and y = ν/E . Coincident hadrons were accepted if 0.2 <
z < 0.8 and xF ≈ 2pL/W > 0.1, where pL is the longitudinal mo-
mentum of the hadron with respect to the virtual photon direction
in the photon–nucleon center of mass frame. The Bjorken x range
of measurement was 0.02–0.6.

The charged kaon multiplicity was extracted by summing over
the kaon yields for the two beam-target polarization states. An
event weighting procedure was used to correct for RICH kaon iden-
tification inefficiencies. The effects of QED radiation, instrumental
resolution, and acceptance were simulated [27–29], and correc-
tions were applied to the data for each polarization state using
a technique that unfolds kinematic migration of events [20]. The
results are presented in Fig. 1. The trends in the data were not
reproduced (see dotted curve in Fig. 1) by fitting the points us-
ing the Cteq6l [30] strange quark PDFs in Eqs. (1) and (2), with∫
DK

Q (z)dz and
∫
DK

S (z)dz as free parameters. In view of the
paucity of reliable data on S(x), it was assumed instead that it is
unknown, and the analysis was carried out extracting the product

Fig. 2. The strange fragmentation product S(x, Q 2)
∫
DK

S (z)dz obtained from the
measured Hermes multiplicity for charged kaons at the 〈Q 2〉 for each bin. The curve
is a least squares fit of the form x−0.863e−x/0.0487(1 − x). The band represents sys-
tematic uncertainties.

S(x)
∫
DK

S (z)dz in LO. For x > 0.15 the multiplicity is constant at a
value of about 0.080, implying that S(x)/Q (x) is constant. For this
analysis S(x) is assumed to be negligible at large x from which
it follows that S(x) = 0 for x > 0.15 and that

∫ 0.8
0.2 DK

Q (z)dz =
0.398±0.010, in excellent agreement with the value 0.435±0.044
obtained for Q 2 = 2.5 GeV2 from the most recent global analysis
of fragmentation functions [31]. The value 0.398 was then used in
Eq. (3) together with values of Q (x) from Cteq6l and the mea-
sured multiplicities to obtain the product S(x)

∫
DK

S (z)dz shown in
Fig. 2. A small iterative correction was made to account for the
neglect of the 2S(x) term in Eq. (1). The result for the product to-
gether with a fit of the form x−a1e−x/a2(1 − x) is shown in Fig. 2,
and leads to the continuous curve in Fig. 1.

The improved fit (continuous curve in Fig. 1) to the multiplicity
is an indication that the actual distribution of S(x) is substantially
different from the average of those of the nonstrange antiquarks.
To explore this point, the Hermes result for S(x)

∫
DK

S (z)dz has
been evolved to Q 2

0 = 2.5 GeV2. The Q 2 evolution factors were
taken from Cteq6l and the fragmentation function compilation
given in [31]. Consideration of corrections to the evolution due
to higher twist contributions is not necessary, since higher twist
effects are expected to be significant [32] only for larger values
of x where the extracted distribution of xS(x) vanishes. The dis-
tribution of xS(x) was obtained from S(x)

∫
DK

S (z)dz by dividing
by

∫
DK

S (z)dz = 1.27 ± 0.13, the value at Q 2 = 2.5 GeV2 given
in [31]. The results are presented in Fig. 3 together with (as an ex-
ample) parameterizations of xS(x) and x(ū(x) + d̄(x)) from Cteq6l.
The normalization of the Hermes points is determined by the value
of

∫
DK

S (z)dz assumed. However, whatever the normalization, the
shape of xS(x) implied by the Hermes data is incompatible with
xS(x) from Cteq6l and other global QCD fits of PDFs as well as the
assumption of an average of an isoscalar nonstrange sea. The ab-

Fig. 3. The strange parton distribution xS(x) from the measured Hermes multiplic-
ity for charged kaons evolved to Q 2

0 = 2.5 GeV2 assuming
∫
DK

S (z)dz = 1.27±0.13.
The solid curve is a 3-parameter fit for S(x) = x−0.924e−x/0.0404(1 − x), the dashed
curve gives xS(x) from Cteq6l, and the dot–dash curve is the sum of light anti-
quarks from Cteq6l.
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Fig. 1. The multiplicity corrected to 4π of charged kaons in semi-inclusive DIS from
a deuterium target, as a function of Bjorken x. The continuous curve is calculated
from the curve in Fig. 2 using Eq. (3). The dashed (dash-dotted) curve is the non-
strange (strange) quark contribution to the multiplicity for this fit. The dotted curve
is the best fit to

∫
DK

S (z)dz using Cteq6l PDFs. The error bars are statistical. The
band represents the systematic uncertainties. The values of 〈Q 2〉 for each x bin are
shown in the lower panel.

Combining Eqs. (1), (2) and neglecting the term 2S(x) compared to
5Q (x), it follows immediately that

S(x)
∫

DK
S (z)dz # Q (x)

[
5

d2NK (x)
d2NDIS(x)

−
∫

DK
Q (z)dz

]
. (3)

Eq. (3) is the basis for the extraction of the quantity S(x)
∫
DK

S (z)dz.
The data were recorded with a longitudinally nuclear-polarized

deuteron gas target internal to the E = 27.6 GeV Hera positron
storage ring at Desy. The self-induced beam polarization was mea-
sured continuously with Compton backscattering of circularly po-
larized laser beams [22,23]. The open-ended target cell was fed
by an atomic-beam source based on Stern–Gerlach separation with
hyperfine transitions. The nuclear polarization of the atoms was
flipped at 90 s time intervals, while both this polarization and
the atomic fraction inside the target cell were continuously mea-
sured [24]. The average value of the deuteron polarization was
0.845 with a fractional systematic uncertainty of 3.5%.

Scattered beam leptons and coincident hadrons were detected
by the Hermes spectrometer [25]. Leptons were identified with an
efficiency exceeding 98% and a hadron contamination of less than
1% using an electromagnetic calorimeter, a transition–radiation
detector, a preshower scintillation counter and a ring-imaging
Čerenkov (RICH) detector [26]. The dual-radiator RICH was also
used to identify charged kaons. Events were selected subject to
the kinematic requirements Q 2 > 1 GeV2, W 2 > 10 GeV2 and
y < 0.85, where W is the invariant mass of the photon–nucleon
system, and y = ν/E . Coincident hadrons were accepted if 0.2 <
z < 0.8 and xF ≈ 2pL/W > 0.1, where pL is the longitudinal mo-
mentum of the hadron with respect to the virtual photon direction
in the photon–nucleon center of mass frame. The Bjorken x range
of measurement was 0.02–0.6.

The charged kaon multiplicity was extracted by summing over
the kaon yields for the two beam-target polarization states. An
event weighting procedure was used to correct for RICH kaon iden-
tification inefficiencies. The effects of QED radiation, instrumental
resolution, and acceptance were simulated [27–29], and correc-
tions were applied to the data for each polarization state using
a technique that unfolds kinematic migration of events [20]. The
results are presented in Fig. 1. The trends in the data were not
reproduced (see dotted curve in Fig. 1) by fitting the points us-
ing the Cteq6l [30] strange quark PDFs in Eqs. (1) and (2), with∫
DK

Q (z)dz and
∫
DK

S (z)dz as free parameters. In view of the
paucity of reliable data on S(x), it was assumed instead that it is
unknown, and the analysis was carried out extracting the product

Fig. 2. The strange fragmentation product S(x, Q 2)
∫
DK

S (z)dz obtained from the
measured Hermes multiplicity for charged kaons at the 〈Q 2〉 for each bin. The curve
is a least squares fit of the form x−0.863e−x/0.0487(1 − x). The band represents sys-
tematic uncertainties.

S(x)
∫
DK

S (z)dz in LO. For x > 0.15 the multiplicity is constant at a
value of about 0.080, implying that S(x)/Q (x) is constant. For this
analysis S(x) is assumed to be negligible at large x from which
it follows that S(x) = 0 for x > 0.15 and that

∫ 0.8
0.2 DK

Q (z)dz =
0.398±0.010, in excellent agreement with the value 0.435±0.044
obtained for Q 2 = 2.5 GeV2 from the most recent global analysis
of fragmentation functions [31]. The value 0.398 was then used in
Eq. (3) together with values of Q (x) from Cteq6l and the mea-
sured multiplicities to obtain the product S(x)

∫
DK

S (z)dz shown in
Fig. 2. A small iterative correction was made to account for the
neglect of the 2S(x) term in Eq. (1). The result for the product to-
gether with a fit of the form x−a1e−x/a2(1 − x) is shown in Fig. 2,
and leads to the continuous curve in Fig. 1.

The improved fit (continuous curve in Fig. 1) to the multiplicity
is an indication that the actual distribution of S(x) is substantially
different from the average of those of the nonstrange antiquarks.
To explore this point, the Hermes result for S(x)

∫
DK

S (z)dz has
been evolved to Q 2

0 = 2.5 GeV2. The Q 2 evolution factors were
taken from Cteq6l and the fragmentation function compilation
given in [31]. Consideration of corrections to the evolution due
to higher twist contributions is not necessary, since higher twist
effects are expected to be significant [32] only for larger values
of x where the extracted distribution of xS(x) vanishes. The dis-
tribution of xS(x) was obtained from S(x)

∫
DK

S (z)dz by dividing
by

∫
DK

S (z)dz = 1.27 ± 0.13, the value at Q 2 = 2.5 GeV2 given
in [31]. The results are presented in Fig. 3 together with (as an ex-
ample) parameterizations of xS(x) and x(ū(x) + d̄(x)) from Cteq6l.
The normalization of the Hermes points is determined by the value
of

∫
DK

S (z)dz assumed. However, whatever the normalization, the
shape of xS(x) implied by the Hermes data is incompatible with
xS(x) from Cteq6l and other global QCD fits of PDFs as well as the
assumption of an average of an isoscalar nonstrange sea. The ab-

Fig. 3. The strange parton distribution xS(x) from the measured Hermes multiplic-
ity for charged kaons evolved to Q 2

0 = 2.5 GeV2 assuming
∫
DK

S (z)dz = 1.27±0.13.
The solid curve is a 3-parameter fit for S(x) = x−0.924e−x/0.0404(1 − x), the dashed
curve gives xS(x) from Cteq6l, and the dot–dash curve is the sum of light anti-
quarks from Cteq6l.
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multi-dimensional analysis allows exploration of new kinematic dependences
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azimuthal moments

10

!

"#$%&'()*+, -+.)/0#1&23)4+560-5

),,,(...... ⊥= hPzyxFF

{ }hh

UUhUUh FyBFyC φφ φφ 2coscos 2cos)(cos)( ++ h

UUF φ2cosh

UUF φcos

{ }LUUTUU

hh

FyBFyA
xxyQdPddzdydx

d
,,

2

2

2

2

5

)()(
2

1 +!!
"

#
$$
%

&
+=

⊥

γα

φ

σ
TUUF , LUUF ,d5σ

dxdydzdφhdP 2
h⊥

∝
(
1 +

γ2

2x

)
{FUU,T + εFUU,L

+
√
2ε(1− ε)F cosφh

UU cosφh + εF cos 2φh

UU cos 2φh}



hermes
Hamburg - April 11th, 2013gunar.schnell @ desy.de

!!

"#$%&'()*+, -+.)/0#1&23)4+560-5

azimuthal moments

10

!

"#$%&'()*+, -+.)/0#1&23)4+560-5

),,,(...... ⊥= hPzyxFF

{ }hh

UUhUUh FyBFyC φφ φφ 2coscos 2cos)(cos)( ++ h

UUF φ2cosh

UUF φcos

{ }LUUTUU

hh

FyBFyA
xxyQdPddzdydx

d
,,

2

2

2

2

5

)()(
2

1 +!!
"

#
$$
%

&
+=

⊥

γα

φ

σ
TUUF , LUUF ,d5σ

dxdydzdφhdP 2
h⊥

∝
(
1 +

γ2

2x

)
{FUU,T + εFUU,L

+
√
2ε(1− ε)F cosφh

UU cosφh + εF cos 2φh

UU cos 2φh}



hermes
Hamburg - April 11th, 2013gunar.schnell @ desy.de

Boer-Mulders effect 
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Boer-Mulders effect 

spin-effect in unpolarized reactions

“QCD Sokolov-Ternov effect” - transverse polarization of 

“orbiting” quarks 

QCD: sign change for DIS vs. Drell-Yan

up to now little data from DIS 

!HERMES with most comprehensive data set
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signs of Boer-Mulders
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signs of Boer-Mulders

opposite sign for charged pions with larger magnitude for !- 

-> same-sign BM-function for valence quarks?
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signs of Boer-Mulders

opposite sign for charged pions with larger magnitude for !- 

-> same-sign BM-function for valence quarks?

intriguing behavior for kaons

[Airapetian et al., PRD 87 (2013) 012010]
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exclusive meson production
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exclusive meson production
modified perturbative approach -Goloskokov, Kroll (2006)-

A ∝ F (x, ξ, t; µ2) ⊗ K(x, ξ, z; log(Q2/µ2) ⊗ Φ(z, k⊥; µ2)

t

−2ξ

x + ξ x − ξ

at leading-twist: H, E, eH, eE
H and eH conserve the nucleon helicity

E and eE describe the nucleon helicity flip

quantum numbers of final state selects different GPDs

vector mesons (γ∗
L → ρL, ωL, φL): H, E

pseudoscalar mesons (γ∗
L → π, η): eH, eE

factorization for σL (and ρL, ωL, φL ) only

σL − σT suppressed by 1/Q

σT suppressed by 1/Q2

power corrections: k⊥ is not neglected

regulate the singularity in the transverse

amplitude

γ∗
T → ρ0

T transitions can be calculated

(model dependent)

-Ami Rostomyan- – p. 2

H,E, H̃, Ẽ, . . .
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exclusive meson production
modified perturbative approach -Goloskokov, Kroll (2006)-
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factorization for σL (and ρL, ωL, φL ) only

σL − σT suppressed by 1/Q

σT suppressed by 1/Q2

power corrections: k⊥ is not neglected

regulate the singularity in the transverse

amplitude

γ∗
T → ρ0

T transitions can be calculated

(model dependent)

-Ami Rostomyan- – p. 2

H,E, H̃, Ẽ, . . .

factorization proven for longitudinal photons

GPDs convoluted with meson amplitude

access to various quark-flavor combinations

vector-meson cross section:

look at various angular (decay) distributions to study helicity 

transitions (“spin-density matrix elements”)
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… exclusive ! production

helicity-conserving 

SDMEs dominate

hardly any violation of 

SCHC

interference smaller 

than for phi and rho 

production

(not shown) unnatural-

parity exchange 

significant
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summary

changes in management

analysis platform basically moved to BIRD system

mile-stone analyses of unpolarized semi-inclusive DIS cross 

section finished

hadron multiplicities give essential input to hadronization 

phenomenology

 azimuthal moments will give unique insights in spin-

momentum structure of nucleons

preliminary results on strange distribution and omega SDMEs
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