

An Experiment to Determine the Two-Photon Contribution to

Elastic Lepton-Proton Scattering

Nucleon Form Factor

One photon exchange approximation $\langle N(P') | J^{\mu}_{EM}(0) | N(P) \rangle =$

$$\bar{u}(P')\left[\gamma^{\mu}F_1^N(Q^2) + i\sigma^{\mu\nu}q_{\nu}\frac{\kappa}{2M}F_2^N(Q^2)\right]u(P)$$

Electric and magnetic form factors

$$G_E^N = F_1^N - \tau \kappa F_2^N; \qquad G_M^N = F_1^N + \kappa F_2^N$$

Rosenbluth cross section

$$\left(\frac{d\sigma}{d\Omega}\right)_{Mott} \left[\left(\frac{G_E^{N\,2} + \tau G_M^{N\,2}}{1 + \tau}\right) + 2\tau G_M^{N\,2} \tan^2 \frac{\theta}{2} \right]$$

$$\boldsymbol{G_E^p} \approx \frac{1}{\mu_p} \boldsymbol{G_M^p} \approx \frac{1}{\mu_n} \boldsymbol{G_M^n} \approx \boldsymbol{G_D} \sim \left(1 + \frac{Q^2}{0.71}\right)^{-2}$$

lepton virtual photon nucleon

$$\leftrightarrow \quad \rho_D(r) = \rho_0 e^{-\sqrt{0.71}r}$$

D.K. Hasell

Rosenbluth Separation

Form Factor Ratio - µp GE / GM

At low Q² simple model okay

- form factor ratio ≈ 1
- dipole shape for G_E and G_M

At high Q²

- unpolarized results looked okay
 - but were not okay
- Rosenbluth separation difficult
 - cross sections dominated by G_M
 - insensitive to G_E
 - reflected in spread and error bars

Polarized beams and targets

- direct measure of ratio
- striking discrepancy
- Rosenbluth and polarization
 measurements since confirmed

Form Factor Ratio - µp GE / GM

At low Q² simple model okay

- form factor ratio ≈ 1
- dipole shape for G_E and G_M

At high Q²

- unpolarized results looked okay
 - but were not okay
- Rosenbluth separation difficult
 - cross sections dominated by $G_{\ensuremath{\mathsf{M}}}$
 - insensitive to G_E
 - reflected in spread and error bars

Polarized beams and targets

- direct measure of ratio
- striking discrepancy
- Rosenbluth and polarization
 measurements since confirmed

2 Photon Exchange Explanation

Previously dismissed ?

small effect

Radiative correction ?

- already included
- difficult to calculate

 $\sigma(e^{\pm}p) \propto |M_{1\gamma}|^2 \alpha^2 \pm 2|M_{1\gamma}||M_{2\gamma}|\alpha^3 + \dots$

1.2 Recent calculations may 1.0 resolve the discrepancy × 0.8 ئ polarization transfer പ്^{ല്} 0.6 measurements 204 unpolarized Rosenbluth data corrected for two photon 0.2 exchange 0.0 10^{-1} 10¹ 10 Q^2 [GeV²]

Definitive Measure of Multi-Photon Effect

$\sigma(e^{\pm}p) \propto |M_{1\gamma}|^2 \alpha^2 \pm 2|M_{1\gamma}||M_{2\gamma}|\alpha^3 + \dots$

Measure ratio e⁺p / e⁻p

 interference term changes sign under e⁻ ⇔ e⁺

Existing data inconclusive

- low Q²
- large error bars

Range of theoretical results

- large variation in effect
- lack constraint of precise data

Need a definitive experiment

Definitive Measure of Multi-Photon Effect

$\sigma(e^{\pm}p) \propto |M_{1\gamma}|^2 \alpha^2 \pm 2|M_{1\gamma}||M_{2\gamma}|\alpha^3 + \dots$

Measure ratio e⁺p / e⁻p

 interference term changes sign under e⁻ ⇔ e⁺

Existing data inconclusive

- low Q²
- large error bars

Range of theoretical results

- large variation in effect
- lack constraint of precise data

OLYMPUS Detector

OLYMPUS Detector

OLYMPUS Toroid Magnet

9

OLYMPUS Target Cell

OLYMPUS Scattering Chamber

OLYMPUS Wire Chamber and TOF

Experiment as Originally Proposed

3×10¹⁵ atoms/cm² target density

100 mA electron and positron beams

Change beam species and reverse toroid polarity daily

500 hours of e⁺ and e⁻ \Rightarrow 3.6 fb⁻¹ integrated luminosity

$$N_{e^{\pm}\pm} = L_{e^{\pm}\pm}\sigma_{e^{\pm}}\kappa_{e^{\pm}\pm}^{p}\kappa_{e^{\pm}\pm}^{l}$$

$$\kappa_{e^{+}\pm}^{p} \approx \kappa_{e^{-}\pm}^{p} \qquad \kappa_{e^{+}+}^{l} \approx \kappa_{e^{-}-}^{l} \qquad \kappa_{e^{+}-}^{l} \approx \kappa_{e^{-}+}^{l}$$

$$\frac{N_{e^{+}+}/L_{e^{+}+}}{N_{e^{-}+}/L_{e^{-}+}} \cdot \frac{N_{e^{+}-}/L_{e^{+}-}}{N_{e^{-}-}/L_{e^{-}-}} = \left(\frac{\sigma_{e^{+}}}{\sigma_{e^{-}}}\right)^{2}$$

OLYMPUS - February, 2012 Data Run

Experience in February Data Period

DORIS ran very smoothly

- but we could only handle ~50 mA
- limited by deadtime in the data acquisition system

Target density only ~5×10¹⁴ atoms/cm²

- able to flow more gas than expected
- limit determined by beam lifetime
- leak in gas system inside scattering chamber before target cell
 - realized after February run
 - large discrepancy between measured luminosity and expectation from beam current and gas flow

However, data collection efficiency higher than design

- planned for 50% but achieved 80%
- through efficiency of DAQ and slow control systems

February run luminosity collected less than design

approximately 1/10 of design

Luminosity - February, 2012

October - December, 2012 Data Run

After February run

- repaired leak in target cell
- implemented second level trigger to reduce deadtime
- pursued top-up mode with DORIS
- repaired bad channels in wire chamber
- improved trigger scintillators for 12° detectors
- modified DAQ to run continuously even during injection

Exceeded design luminosity, made up February losses

BUT - could not run with negative toroid polarity

- background rate too high at any reasonable luminosity
- electrons from Møller / Bhabha scattering swept into wire chamber
- 3 weeks spent trying to solve problem

Decided to run with just positive polarity on toroid

- concern for systematics, four-fold ratio not possible
- now requires careful understanding of detector

Showering from Møller / Bhabha Events

Toroid B < 0

 negative charged particles bent away from beamline

Møller/Bhabha

- very high rate of e⁻
- strike scattering chamber, target cell
- bent into chambers

At high luminosity

- high background rate
- unable to run B<0

Had to choose

 high luminosity or four fold ratio

Lines of Electron Drift at B = 0 G

Single super-layer of drift cells in OLYMPUS wire chamber

- "Jet-style" drift cells -> sense wires "see" large distances left and right
- longest drift times around 1.1 micro-second (11 beam crossings)

- Range of track angles relative to sense wire plane
- wire chambers subtend 20° 80° in polar angle
- chamber inclined by 16.5° ⇒ tracks vary -6.5° ⇔ 53.5° to normal
- prefer track perpendicular to electron drift for reconstruction

Lines of Electron Drift at B = 3000 G

Electron drift tilted through Lorentz force Helps reconstruction at forward angles

Lines of Electron Drift at B = -3000 G

Reconstruction worse at forward angles

Differences in reconstructing e⁺/e⁻ with ± toroid field

four-fold ratio may not be as easy as planned

Initial Reconstruction of February Data B<0

D.K. Hasell

DORIS Operation in Top-Up Mode

OLYMPUS Data Log: Time Plot

D.K. Hasell

Luminosity - Fall, 2012

OLYMPUS Luminosity

OLYMPUS Luminosity

OLYMPUS Luminosity

Time of Flight Scintillator Bars

D.K. Hasell

TOF Timing Offsets

ToF meantime offset comparison (adjusted)

Time of Flight Scintillator Bars

ADC vs. TDC (backward bars)

12° GEM and MWPC Luminosity Monitors

12° Luminosity Monitor

Telescope of 3 GEM and 3 MWPC detectors interleaved

- each ~10×10 cm² effective area
- track e[±] in region of 12° depending on magnet polarity
- trigger by pairs of SiPM scintillator tiles and lead glass calorimeter

Single detector resolutions from last data run

- GEM ~80 microns
- MWPC ~260 microns
- Trigger efficiency
 SiPM Coincidence Efficiency Right Sector

12° Luminosity Monitor

Rates for e[±]p events

ratio = 1.56

Acceptance from MC • ratio = 1.55

D.K. Hasell

Symmetric Møller / Bhabha Detector

Coincidence of Left and Right Detectors

Symmetric Møller / Bhabha Detector

Symmetric Møller / Bhabha Detector

OLYMPUS Activities After Data Running

January, 2013

- 1 month collecting cosmic ray data ~12 million events
- toroid magnet off most of the time
- straight tracks useful for tuning wire chamber calibration constants
- determine timing offsets for time of flight detectors

TOF efficiency studies

- sandwiching each TOF scintillator bar with SiPM scintillators
- using cosmic found 97-99 % efficiency depending on TOF bar

February, 2013

- complete optical survey of target chamber and all detectors
- not completed still need survey TOF

March - April, 2013

- map the OLYMPUS toroid magnet field
- 50×50×50 mm grid in high field regions 100×100×100 mm elsewhere
- also along beamline for Møller detector

Analysis Strategy

Reconstruction waiting on field map and optical survey

- global fit to optimize time to distance relationship in wire chambers
- code developed and tested

Monte Carlo also needs map and survey

• simulation and digitization of most detectors complete

Radiative Corrections

The diagrams of ep scattering in the 1γ and 2γ approximations.

Virtual photon corrections, which don't depend on the detector geometry.

Corrections related to the bremsstrahlung of the first order. Their contribution is determined by the detector geometry!

Corrections are significant

• Depend on detector momentum resolution and cuts applied

Working with Novosibirsk and JLAB on common code

Radiated Photon Distribution

OLYMPUS Collaboration

13 institutions, 45 physicists, 10 students

- Arizona State University, USA 1, 1
 - wire chambers, particle identification, simulations
- Deutsches Elektronen-Synchrotron, Germany 4, 0
 - modifications to DORIS, DORIS operation, infrastructure
- Friedrich Wilhelms Universität Bonn, Germany 4, 1
 - trigger, data acquisition, data quality monitor
- Hampton University, USA 2, 1
 - 12° GEM luminosity monitor, simulations, data quality monitor
- Instituto Nazionale di Fisica Nucleare Bari, Italy 2, 0
 - GEM electronics
- Instituto Nazionale di Fisica Nucleare Ferrara, Italy 3, 0
 - target cell
- Instituto Nazionale di Fisica Nucleare Rome, Italy 1, 0
 - GEM electronics
- Johannes Gutenberg Universität Mainz, Germany 3, 1
 - Møller / Bhabha luminosity detector, simulations
- Massachusetts Institute of Technology, USA 7, 4
 - BLAST spectrometer, wire chambers, target and vacuum system, trigger, slow control, Monte Carlo, analysis framework
- Petersburg Nuclear Physics Institute, Russia 7, 1
 - 12° MWPC luminosity detector, data acquisition, slow control, simulations
- University of Glasgow, UK 5, 0
 - time of flight detector, flasher system
- University of New Hampshire, USA 1, 0
 - time of flight scintillator
- Yerevan Physics Institute, Armenia 5, 1
 - time of flight scintillator, infrastructure support, simulations

Experimental Phase Nearly Over

Finish magnetic field map and optical survey this month

Concentrate on analysis

- good preliminary result in 6 months
- final result in 1 year

Experimental Phase Nearly Over

Finish magnetic field map and optical survey

Concentrate on analysis

- good preliminary result in 6 months
- final result in 1 year

Many people contributed to the success of OLYMPUS

- Alexander Winnebeck, Jürgen Diefenbach, Alexander Kisselev
 - all have moved on now but hopefully are available for phone calls late at night
- DORIS machine group
 - Frank Brinker
- PRC
- DESY

OLYMPUS Timeline

2005

- May BLAST Experiment at MIT-Bates ends
- November BLAST @ ELSA Kohl, Hasell, BLAST @ DORIS Schneekloth, Hasell 2007
- May 2-Photon Exchange seminars at DESY, Zeuthen, and PRC Milner
- June letter of intent

2008

- September OLYMPUS proposal
- December conditionally approved by DESY and the PRC

2009

- August Technical Design Report
- september technical review

2010

- January received funding
- February June disassemble BLAST at MIT-Bates and ship to DESY
- July start reassembly at DESY, rewire wire chambers, modify TOF detectors, remove ARGUS, and modify DORIS ring

2011

- January install target and test detectors
- February ring run to test target and measure rates and background
- July finish assembly of OLYMPUS detector in the DORIS hall and roll into DORIS ring
- August December numerous test runs during DORIS service days

2012

- February first data run
- July repair and reinstall target, fix bad channels, upgrade trigger
- October December second data run

2013

• January - April - cosmic run, optical survey of all detectors, magnetic field map

Novosibirsk and JLAB Experiments

Theory: P. G. Blunden, et al., Phys. Rev. C 72 (2005) 034612

11 April, 2013