International Linear Collider at DESY

Machine, Detector, Project

Karsten Buesser

75. Physics Research Committee DESY, 11.04.2013

The International Linear Collider

- > 200-500 GeV $E_{cm} e^+e^-$ collider
 - Upgrade: ~1 TeV
- L ~2x10³⁴ cm⁻² s⁻¹
- SCRF Technology
 - 1.3 GHz, 31.5 MV/m
 - 17000 cavities
 - 1700 cryomodules
 - 2x11 km linacs
- > Global Collaboration
 - ~130 Institutes
 - no central host lab
 - www.linearcollider.org

DESY and the ILC

- DESY is in an exceptional position to support the ILC developments
 - XFEL experience in pushing the superconducting RF technology to industrial production readiness is unique in the world
 - FLASH is the only operating ILC-like linac worldwide
 - Advanced detector infrastructure enables DESY to play a role as a European focus for advanced detector technology R&D
 - Strong physics studies groups (theory and experiment)
- > Main objectives:
 - Accelerator:
 - SCRF high gradient developments using XFEL recipes
 - FLASH beam tests with ILC-like high current beams
 - Source developments
 - Physics/Detector
 - Physics studies
 - Detector concept design
 - R&D on advanced detector technologies (HCAL, TPC, FCAL, Vertex)
 - Integration
 - Project office for machine and detector integration

ILC Physics Studies - Exploring the Higgs Sector

> After the CERN discovery: understand how well a LC can do in detail:

ZH @ 250 GeV (~mZ+mH+20GeV) :

- Higgs mass, width, J^{PC}
- Gauge quantum numbers
- Absolute measrement of HZZ coupling (recoil mass)
- BR(h->VV,qq,ll,invisible) : V=W/Z(direct), g, γ (loop)

ttbar @ 340-350GeV (~2mt) : ZH meas. Is also possible

- Threshold scan --> indirect meas. of top Yukawa coupling
- A_{FB}, Top momentum measurements
- Form factor measurements

$\gamma \gamma \rightarrow HH @ 350GeV \text{ possibility}$

-> couplings to H (other than top)

vvH @ 350 - 500GeV :

- HWW coupling -> total width --> absolute normalization of couplings ZHH @ 500GeV (~mZ+2mH+170GeV) :
- Prod. cross section attains its maximum at around 500GeV -> Higgs self-coupling ttbarH @ 500GeV (~2mt+mH+30GeV) :
- Prod. cross section becomes maximum at around 700GeV.
- QCD threshold correction enhances the cross section -> top Yukawa measurable at 500GeV concurrently with the self-coupling

We can complete the mass-coupling plot at ~500GeV!

K.Fujii @ LCWS12, Oct.24, 2012

SCRF: The Path to High Performance

- Control of niobium material
- Mechanical construction
 - electron-beam welding (EBW)
- Preparing RF (inner) surface ultraclean mirror surface
 - electro-polishing (EP)
- Removing hydrogen from the surface layer
 - 800 deg C bake
- Removing surface contamination
 - alcohol and/or detergent rinsing
 - 2-4 bar high-pressure rinsing (HPR)

Automatic Optical Cavity Inspection

Optical Inspection: Cavity Weld

Cavity Gradient Yield

94% (±6%) acceptable for ILC mass

XFEL Mass Production and the ILC

- > 17.5 GeV
- > 100 cryomodules
- > 800 cavities
 - 23.6 MV/m
- Industrialisation and mass production
 - 1 CM/week

> 800 tested cavities increase worldwide statistics by orders of magnitude

- > 24 cavities from ILC-HiGrade project foreseen for ILC high-gradient programme
- Expect very reliable yield numbers for 1st pass treatment
 - good impression of 2nd pass...
- Centrifugal barrel polishing machine for surface preparations coming soon

9mA Beam Studies at FLASH

DES

High beam power and long bunch-trains (Sept 2009)			
Metric	ILC Goal	Achieved	
Macro-pulse current	9mA	9mA	
Bunches per pulse	2400 x 3nC (3MHz)	1800 x 3nC 2400 x 2nC	
Cavities operating at high gradients, close to quench	31.5MV/m +/-20%	4 cavities > 30MV/m	

Gradient operating margins (Feb 2012)

Metric	ILC Goal	Achieved
Cavity gradient flatness (all cavities in vector sum)	2% ΔV/V (800μs, 5.8mA) (800μs, 9mA)	<0.3% Δ V/V (800 μ s, 4.5mA) First tests of automation for Pk/QI control
Gradient operating margin	All cavities operating within 3% of quench limits	Some cavities within ~5% of quench (800us, 4.5mA) First tests of operations strategies for gradients close to quench
Energy Stability	0.1% rms at 250GeV	<0.15% p-p (0.4ms) <0.02% rms (5Hz)

Global Mass Production Scenarios

- Industrialisation studies are the key to realistic cost estimates
- > Major DESY contributions:
 - XFEL experience
 - ILC-HiGrade
 - Industrial studies
 - Cavity construction and surface preparation (Research Instruments)
 - Cryomodule assembly (Babcock-Noell, CERN)
- Impact on TDR cost update

DESY Detector Strategy

> Strategy:

- Define a detector concept for the Linear Collider that is optimised for particle flow and maximises the physics performance
- > Physics studies:
 - Understand and optimise the analysis strategies
 - Optimise detector requirements

> Detector System R&D:

- Tracking system with high efficiency:
 - Time Projection Chamber
- Calorimetry for particle flow:
 - HCAL with high granularity
- Vertexing, Very Forward Calorimetry (hermeticity), Polarimetry
- Concept definition:
 - Simulation and reconstruction software for particle flow
 - Detector engineering and integration
- New detector technologies:
 - Sensor studies: pixel and pad sensors, SiPM
 - Electronic studies: integrated readout systems

Particle Flow Reconstruction

ILD Performance

Vertex Detector R&D: PLUME

- Pixelated Ladder with Ultra-low Material Embedding PLUME
- Goal: double-sided ladder prototype for ILD vertex detector with material budget < 0.3% X₀
- First full-scale ladders fabricated in 2011(0.6% X₀)
 - 12 MIMOSA26 thinned to 50µm
 - One ladder at DESY for power pulsing studies
 - Silicon carbide foam stiffener
- Beam tests at CERN proved good electrical performance
- Beam tests at DESY planned for this summer
- Power pulsing study at DESY ongoing:
 - MIMOSA26 full operational 4-5ms after full turn on

TPC Large Prototype: DESY GridGEM Module

Light weight, self-supporting GEM structure with minimal dead zones

Measured single point resolution

Test beam 2012/13: Operated successfully three modules in large prototype with 1T B-field

TPC Large Prototype: 7 MICROMEGAS Modules

Carleton, NIKHEF, UL Brussels, CEA

Scintillator Hadronic Calorimeter

- Addressing the high granularity challenge for particle flow algorithms
- Integrated readout, trigger, digitisation, LED calibration
- DESY-led international effort within CALICE:
 - Hamburg, Heidelberg, Mainz, Wuppertal, MPI, CERN, ITEP, Dubna, LAL, Prague, Bergen, NIU, Matsumoto
 - Cooperation with Japanese groups: same design used in scintillator ECAL
- DESY active in mechanics, electronics, system integration, test beam support, software, analysis

HCAL Analysis Highlights

- Analysis of 1st generation scintillator HCAL data nearly complete
- Precise validation of Geant 4 models
- First data from SPS test beam (11/2012) with 2nd generation layer available

integrated electronics

neter for

Forward Calorimeters

- LumiCal: precise luminosity measurement (Bhabha scattering)
 - fast, high precision
- > BeamCal: luminosity optimisation and hermeticity (θ > 5.8 mrad)
 - fast, radiation hardness

Fully assembled plane in DESY test beam

AGH-UST, DESY, Tel Aviv

ILC Global Integration

- Central integration facility at DESY
 - ILC EDMS System
- Incorporating 3D models from worldwide collaborating institutes
- Integration of sub-systems for accelerator and detectors
- Exploit XFEL mass production and construction experience
- "ILC Project Office"

ILC Status

- Technical Design Report is being published now
 - Worldwide Linear Collider Event: June 12th 2013
 - Putting the TDR/DBD together was a major effort at DESY....
- > Worldwide HEP strategies are under review
 - ILC top priority for Japanese community after discovery of "a Higgs" at LHC
 - ILC in Japan on the priority list of CERN Council strategy update 2013
 - "(...) The initiative from the Japanese particle physics community to host the ILC in Japan is most welcome, and European groups are eager to participate. Europe looks forward to a proposal from Japan to discuss a possible participation."
 - US strategy is just being updated ("Snowmass process")
- Japanese government expressed interest to start discussions about hosting the ILC as a global project in Japan

Technical Design Report Signatories (Supporters)

10.04.2013: 2285 Signatories www-flc.desy.de/dbd

DESY

Karsten Buesser | International Linear Collider | 11.04.2013 | Page 24

Linear Collider Collaboration

ILC@DESY Towards an International LC

ECFA LC2013

- > European Linear Collider Workshop
- > May 27-31 2013, DESY, Hamburg

Ic2013.desy.de

ECFA LC2013

European Linear Collider Workshop 27 – 31 May 2013 DESY, Hamburg

ILC Outlook

- The discovery of the new Higgs-like boson sets the first definitive energy scale for new physics, in time with major developments:
 - HEP strategy updates in Europe, Japan, USA
 - ILC Technical Design Report to be published now
- > Japan shows a strong interest to host a staged Linear Collider
 - Start with a E_{cm}~250 GeV Higgs Factory
 - Evolve in energy over time
- DESY has a strong in-house ILC programme and is in a excellent position to support such a project as a joint European effort
 - XFEL experience
 - Test facilities
 - Detector R&D excellence centre

Backup

Detector Concept

- > ILD: International Large Detector
- Optimised for Particle Flow Reconstruction
- > Performance goals:
 - Jet energy resolution < 3-4% over relevant energy range
 - Track momentum resolution $\delta(1/p_T) \approx 2 \ x \ 10^{\text{-5}} \ /GeV \ /c$
 - Excellent vertexing for b & c identification
 - Hermeticity
- Main requirements and challenges:
 - High granular calorimeters
 - Low material budget before calorimeters
 - Efficient tracking
 - Highly integrated electronics
 - Low power consumption
 - Triggerless readout

HCAL Future Plans

Proceed in parallel on

- Sensor technology frontier
- Integration and industrialisation frontier
- Possible thanks to versatile electronics
- > Goals for 2nd generation prototype
 - Re-establish performance
 - Demonstrate scalability in al steps
 - Production, QC, calibration
 - Remaining integration tasks
 - Data concentrator, power, cooling
- Next test beam campaigns:
 - 2013: e.m. stack at DESY, 1k chn.
 - 2014: hadron beam tests, 3k chn.
 - 2016: full hadron stack, 20k chn.

Gradient Limit Understanding and Control

2nd pass processing: 100% yield at 39 MV/m average gradient

Coherent Integration Effort

