Quantum Chromodynamics

Overview

Part I-Setting the Stage
The Static Quark Model
Deep-Inelastic Scattering
Discovery of quarks and colour
The QCD Lagrangian
Discovery of gluons

Part 2 - Working with QCD

Renormalisation
Perturbative QCD
Jets
Factorisation and Parton Distribution Functions

Part 2

QCD

Non-abelian gauge theory with $S U(3)$ symmetry, describes the interaction between coloured particles (quarks and gluons).

The Feynman rules can be derived from the QCD Lagrangian

$$
\mathcal{L}=\sum_{f}^{n_{f}} \bar{q}_{f}\left(i \gamma^{\mu} \mathcal{D}_{\mu}-m_{f}\right) q_{f}-\frac{1}{4} G_{\mu \nu}^{a} G_{a}^{\mu \nu}+\mathcal{L}_{\text {gauge }}+\mathcal{L}_{\text {ghost }}
$$

Very similar to the QED Lagrangian, except for the additional summation over a, which are the 8 colour degree of freedoms $(S U(3)$ instead of $U(1))$
Covariant derivative: $\mathcal{D}_{\mu}=\partial_{\mu}-i g_{s} t_{a} A_{\mu}^{a}$
Field strength tensor for spin-I gluons:

$$
G_{\mu \nu}^{a}=\partial_{\mu} A_{\nu}^{a}-\partial_{\nu} A_{\mu}^{a}-\underline{g_{s} f_{a b c} A_{\mu}^{b} A_{\nu}^{c}}
$$

Non-abelian term, different from QED. Leads to gluon self-interaction.

The QCD Lagrangian

Let's plug the expressions for \mathcal{D}_{μ} and $G_{\mu \nu}^{a}$ into the Lagrangian:

$$
\left.\begin{array}{rlr}
\mathcal{L} & =\sum_{f}^{n_{f}} \bar{q}_{f}\left(i \gamma^{\mu} \partial_{\mu}-m_{f}\right) q_{f} & \\
& -\frac{1}{4}\left(\partial^{\mu} A_{a}^{\nu}-\partial^{\nu} A_{a}^{\mu}\right)\left(\partial_{\mu} A_{\nu}^{a}-\partial_{\nu} A_{\mu}^{a}\right) & 00000 \\
& +g_{s} A_{\mu}^{a} \sum_{f}^{n_{f}} \bar{q}_{f} \gamma^{\mu} t_{a} q_{f} & \\
& -\frac{g_{s}}{2} f^{a b c}\left(\partial^{\mu} A_{a}^{\nu}-\partial^{\nu} A_{a}^{\mu}\right) A_{\mu}^{b} A_{\nu}^{c} & \begin{array}{c}
\text { known } \\
\text { from } \\
\text { QED }
\end{array} \\
& -\frac{g_{s}^{2}}{4} f^{a b c} f_{a d e} A_{b}^{\mu} A_{c}^{\nu} A_{\mu}^{d} A_{\nu}^{e} &
\end{array}\right]
$$

These terms can then be used to obtain the Feynman rules for QCD

Feynman Rules For QCD

$$
\begin{gathered}
i \delta_{i j} \frac{(\not k+m)}{k^{2}-m^{2}+i \epsilon} \\
\frac{-i \delta_{a b}}{k^{2}+i \epsilon}\left[g_{\mu \nu}-(1-\eta) \frac{k_{\mu} k_{\nu}}{k^{2}}\right] \quad \eta= \begin{cases}1, & \text { Feynman gauge } \\
0, & \text { Landau gauge }\end{cases} \\
i g_{s} \gamma_{\mu} T_{j i}^{a} \\
-g_{s} f^{a b c}\left[(p-q)_{\nu} g_{\rho \mu}+(q-r)_{\rho} g_{\mu \nu}+(r-p)_{\mu} g_{\nu \rho}\right] \\
-i g_{s}^{2} f^{a b e} f^{c d e}\left(g_{\rho \nu} g_{\mu \sigma}-g_{\rho \sigma} g_{\mu \nu}\right) \\
-i g_{s}^{2} f^{a c e} f^{b d e}\left(g_{\rho \mu} g_{\nu \sigma}-g_{\rho \sigma} g_{\mu \nu}\right) \\
-i g_{s}^{2} f^{a d e} f^{c b e}\left(g_{\rho \nu} g_{\mu \sigma}-g_{\rho \mu} g_{\sigma \nu}\right)
\end{gathered}
$$

Using QCD

We would like to predict what happens at particle collisions at high energies

BUT

QCD is full of divergencies (and other difficulties)!

collinear splittings: ∞

Singularities in QCD

Divergencies appear when constructing the first-order corrections to the quark-gluon interaction

leading order

vacuum polarisation graphs
finite (?)
Integrals are infinite, due to unconstraint loop momenta: ultra-violet (UV) divergencies

Known from QED: redefinition of fields and masses will remove the vertex-correction and self energy divergencies (to all orders)

Renormalisation

Ultra-violet (UV) divergencies can be interpreted as virtual fluctuations on very small time scales (high energies)

Renormalisation: absorb virtual fluctuations in the definition of the bare coupling, this introduces a new scale parameter μ_{R}

μ_{R} has the dimension of energy (mass) and defines the point where the subtraction is performed (ultraviolet cut-off scheme)

More often used but less intuitive: dimensional regularisation, perform integration in 4-2 ε dimensions

Renormalisation Group Equation

The dimensional parameter μ_{R} is arbitrary - no general observable $\Gamma\left(p_{i}, \alpha_{s}\right)$ should depend on it. (strong coupling: $\alpha_{s}=g_{s}^{2} / 4 \pi$)

Require: $\left(\mu_{R} \frac{\partial}{\partial \mu_{R}}+\mu_{R} \frac{\partial \alpha_{s}}{\partial \mu_{R}} \frac{\partial}{\partial \alpha_{s}}+\gamma_{\Gamma}\left(\alpha_{s}\right)\right) \Gamma\left(p_{i}, \alpha_{s}\right)=0$
Renormalisation Group Equation (RGE)
\Rightarrow a change in μ_{R} has to be compensated by a change in α_{s}

$$
\text { Running coupling: } \alpha_{s}=\alpha_{s}\left(\mu_{R}\right)
$$

The quantity $\beta\left(\alpha_{s}\right)=\mu_{R} \frac{\partial \alpha_{s}}{\partial \mu_{R}}$ is known as the QCD beta-function which can be computed.

QCD cannot predict the absolute value of $\alpha_{s}\left(\mu_{R}\right)$, but its scale dependence.

The Running Coupling

Expansion of the β-function: $\beta\left(\alpha_{s}\right)=-\alpha_{s} \sum_{n=0}^{\infty} \beta_{n}\left(\frac{\alpha_{s}}{4 \pi}\right)^{(n+1)}$
Where the terms β_{n} are known up to four loops:

$$
\begin{aligned}
\beta_{0} & =11-\frac{2}{3} n_{f} \\
\beta_{1} & =102-\frac{38}{3} n_{f} \\
\beta_{2} & =\frac{2857}{2}-\frac{5033}{18} n_{f}+\frac{325}{54} n_{f}^{2} \\
\beta_{3} & =\frac{149753}{6}+3564 \zeta_{3}-\left(\frac{1078361}{162}+\frac{6508}{27} \zeta_{3}\right) n_{f} \\
& +\left(\frac{50065}{162}+\frac{6472}{81} \zeta_{3}\right) n_{f}^{2}+\frac{1093}{729} n_{f}^{3}
\end{aligned}
$$

In Fact...

$$
\begin{array}{rlr}
\frac{\partial a_{s}}{\partial \ln \mu_{R}}=-\beta_{0} a_{s}^{2}-\beta_{1} a_{s}^{3}-\beta_{2} a_{s}^{4}-\beta_{3} a_{s}^{5}+\mathcal{O}\left(a_{s}^{6}\right) \quad\left(a_{s}=\alpha_{s} / 4 \pi\right) \\
\beta_{0}= & \frac{11}{3} C_{A}-\frac{4}{3} T_{F} n_{f}, \beta_{1}=\frac{34}{3} C_{A}^{2}-4 C_{F} T_{F} n_{f}-\frac{20}{3} C_{A} T_{F} n_{f} & \\
\beta_{2}= & \frac{2857}{54} C_{A}^{3}+2 C_{F}^{2} T_{F} n_{f}-\frac{205}{9} C_{F} C_{A} T_{F} n_{f} \\
& -\frac{1415}{27} C_{A}^{2} T_{F} n_{f}+\frac{44}{9} C_{F} T_{F}^{2} n_{f}^{2}+\frac{158}{27} C_{A} T_{F}^{2} n_{f}^{2} & \\
\beta_{3}= & C_{A}^{4}\left(\frac{150653}{486}-\frac{44}{9} \zeta_{3}\right)+C_{A}^{3} T_{F} n_{f}\left(-\frac{39143}{81}+\frac{136}{3} \zeta_{3}\right) & \\
& +C_{A}^{2} C_{F} T_{F} n_{f}\left(\frac{7073}{243}-\frac{656}{9} \zeta_{3}\right)+C_{A} C_{F}^{2} T_{F} n_{f}\left(-\frac{4204}{27}+\frac{352}{9} \zeta_{3}\right) & \sim 50 \text { evaluation of diagrams } \\
& +46 C_{F}^{3} T_{F} n_{f}+C_{A}^{2} T_{F}^{2} n_{f}^{2}\left(\frac{7930}{81}+\frac{224}{9} \zeta_{3}\right)+C_{F}^{2} T_{F}^{2} n_{f}^{2}\left(\frac{1352}{27}-\frac{704}{9} \zeta_{3}\right) & \\
& +C_{A} C_{F} T_{F}^{2} n_{f}^{2}\left(\frac{17152}{243}+\frac{448}{9} \zeta_{3}\right)+\frac{424}{243} C_{A} T_{F}^{3} n_{f}^{3}+\frac{1232}{243} C_{F} T_{F}^{3} n_{f}^{3} \\
& +\frac{d_{A}^{a b c d} d_{A}^{a b c d}}{N_{A}}\left(-\frac{80}{9}+\frac{704}{3} \zeta_{3}\right)+n_{f} \frac{d_{F}^{a b c d} d_{A}^{a b c d}}{N_{A}}\left(\frac{512}{9}-\frac{1664}{3} \zeta_{3}\right) & \\
& +n_{f}^{2} \frac{d_{F}^{\text {abcd }} d_{F}^{a b c d}}{N_{A}}\left(-\frac{704}{9}+\frac{512}{3} \zeta_{3}\right)
\end{array}
$$

T. van Ritbergen, et al., Phys. Lett. B400, 379 (I997)

The Running Coupling in QCD

Asymptotically free for $\mu_{R} \rightarrow \infty$
Confinement for $\mu_{R} \rightarrow 0$

Good convergence (expansion parameter $a_{s} \approx 0.01$)

No visible difference between 3-loop and 4-loop solution

The scale dependence $\alpha_{s}\left(\mu_{R}\right)$ of is one of the best known quantities in QCD
\Rightarrow Possibility for stringent tests of QCD!

Perturbation Theory

Smallness of $\alpha_{s}\left(\mu_{R}\right)$ at large scales allows for a series expansion in terms of α_{s} Some observable O can be expressed as $O=\sum_{n=0}^{\infty} \alpha_{s}\left(\mu_{r}\right)^{n} C_{n}\left(\mu_{r}\right)$
Relies on the idea $O=\alpha_{s} c_{1}+\underbrace{\alpha_{s}^{2}} c_{2}+\underbrace{\alpha_{2}^{3}} c_{3}+\underbrace{\ldots}$
small smaller negligible?
Coefficients c_{n} become very complex very quickly, so you don't want to deal with too many powers of α_{s}
$e^{+} e^{-} \rightarrow \mathrm{had}:$

$|\mathcal{M}|^{2} \propto \quad \alpha_{s}^{0}$
α_{s}^{1}

α_{2}^{2}

α_{s}^{3}

Example Calculation

$e^{e^{+} e^{-} \rightarrow \mathrm{had}}$
Start with $\gamma^{*} \rightarrow q \bar{q}$

$$
\begin{aligned}
& \mathcal{M}_{q \bar{q}}=-\bar{u}\left(p_{1}\right) i e_{q} \gamma_{\mu} v\left(p_{2}\right) \\
& \text { Remember: } \sigma_{q \bar{q}}=\frac{4 \pi N_{c}}{3} \frac{\alpha^{2} e_{q}^{2}}{s}
\end{aligned}
$$

Emit a gluon

$$
\begin{aligned}
\mathcal{M}_{q \bar{q} g} & =\bar{u}\left(p_{1}\right) i g_{s} \notin t^{a} \frac{i}{\not p_{1}+\not k} i e_{q} \gamma_{\mu} v\left(p_{2}\right) \\
& +\bar{u}\left(p_{1}\right) i e_{q} \gamma_{\mu} \frac{i}{p_{2}+\not k} i g_{s} \notin t^{a} v\left(p_{2}\right)
\end{aligned}
$$

For each piece, add the lepton current:

$$
\frac{\bar{u}\left(e^{+}\right)\left(-i e \gamma_{\mu}\right) u\left(e^{-}\right)}{s}
$$

Example Calculation

$e^{+} e^{-} \rightarrow$ had
and we get $\quad|\mathcal{M}|^{2}=\frac{4 e^{4} e_{q}^{2} g_{s}^{2}}{s^{2}} L^{\mu \nu} Q_{\mu \nu}$
with

$$
L^{\mu \nu}=\left|\bar{u}\left(e^{+}\right) \gamma^{\mu} u\left(e^{-}\right)\right|^{2}=4\left(p_{+}^{\mu} p_{-}^{\nu}+p_{-}^{\mu} p_{+}^{\nu}-g^{\mu \nu} p_{+} \cdot p_{-}\right)
$$

$$
Q_{\mu \nu}=\left|\bar{u}\left(p_{1}\right)\left[\frac{\notin\left(\not p_{1}+\not k\right) \gamma^{\mu}}{\left(p_{1}+k\right)^{2}}+\frac{\gamma^{\mu}\left(\not p_{2}+\not k\right) \notin}{\left(p_{2}+k\right)^{2}}\right] v\left(p_{2}\right)\right|^{2}
$$

simplify it by using energy fractions
$x_{i}=\frac{2 E_{i}}{\sqrt{s}} \quad$ which satisfy $p_{i} \cdot p_{j}=\frac{s\left(1-x_{k}\right)}{2}$ and $x_{1}+x_{2}+x_{3}=2$
and we find $|\mathcal{M}|^{2}=\frac{32 e^{4} e_{q}^{2} g_{s}^{2}}{s^{2}} \frac{x_{1}^{2}+x_{2}^{2}}{\left(1-x_{1}\right)\left(1-x_{2}\right)}$
This needs to be integrated over the full three-particle phase space (together with phase space factors and δ-functions for momentum conservation).

More Divergencies!

$\underline{e^{+} e^{-} \rightarrow \mathrm{had}}$
$|\mathcal{M}|^{2}=\frac{32 e^{4} e_{q}^{2} g_{s}^{2}}{s^{2}} \frac{x_{1}^{2}+x_{2}^{2}}{\left(1-x_{1}\right)\left(1-x_{2}\right)}$
This expression diverges for $x_{1} \rightarrow 1$ and $x_{2} \rightarrow 1$
Since $s\left(1-x_{1}\right)=2 p_{2} \cdot k=2 E_{2} E_{k}\left(1-\cos \theta_{2, k}\right)$

The divergencies appear for

- $E \rightarrow 0$: infrared (or soft) divergence
- $\theta \rightarrow 0$ and $\theta \rightarrow \pi$: collinear divergence

The divergencies here appeared in the context of $e^{+} e^{-} \rightarrow \mathrm{q} \overline{\mathrm{q}}$ But they are a very general property of QCD!

Real-Virtual Cancellations

$e^{+} e^{-} \rightarrow$ had: total cross section
Total cross section: sum of all real and virtual diagrams

Real part given by $\mathcal{R}(E, \theta)$ and virtual corrections $\mathcal{V}(E, \theta)$
So the total cross section is

$$
\sigma_{t o t}=\sigma_{q \bar{q}}\left(1+\frac{2 \alpha_{s} C_{F}}{\pi} \int \frac{d E}{E} \int \frac{d \theta}{\sin \theta}(\mathcal{R}(E, \theta)-\mathcal{V}(E, \theta))\right)
$$

Doing the calculation, we find

$$
\lim _{E \rightarrow 0}(\mathcal{R}(E, \theta)-\mathcal{V}(E, \theta))=0 \quad \text { and } \quad \lim _{\theta \rightarrow 0, \pi}(\mathcal{R}(E, \theta)-\mathcal{V}(E, \theta))=0
$$

Total Cross Section

$e^{+} e^{-} \rightarrow$ had: total cross section

Finally, including all real and virual corrections:

What does this mean?

What's the reason for

$$
\lim _{E \rightarrow 0}(\mathcal{R}(E, \theta)-\mathcal{V}(E, \theta))=0 \quad \text { and } \quad \lim _{\theta \rightarrow 0, \pi}(\mathcal{R}(E, \theta)-\mathcal{V}(E, \theta))=0 \text { ? }
$$

Total cross section must be finite so the divergencies have to cancel

- Essence of the Kinoshita-Lee-Nauenberg and Bloch-Nordsiek theorems
- Generalises for an arbitrary number of gluons (and photons)

In other words:
Corrections to leading order result only come from hard gluon emission Soft gluons do not matter:

- they are emitted on a long timescale $\sim 1 /(E \theta)$ relative to collision $\sim 1 / Q$
\rightarrow cannot influence the total cross section
- transition to hadrons also occurs on long timescale $\sim 1 / \Lambda$ - can also be ignored (in this case)

What can we calculate?

Does the previous result mean we can only calculate total cross sections?

No, it just means we have to be careful how we define our observables
Consider a measurement \mathcal{I}, which is determined by the function \mathcal{S}_{n}

$$
\begin{aligned}
\mathcal{I}= & \frac{1}{2!} \int \mathrm{d} \Omega_{2} \frac{\mathrm{~d} \sigma[2]}{\mathrm{d} \Omega_{2}} \mathcal{S}_{2}\left(p_{1}^{\mu}, p_{2}^{\mu}\right) \\
& +\frac{1}{3!} \int \mathrm{d} \Omega_{2} \mathrm{~d} E_{3} \mathrm{~d} \Omega_{3} \frac{\mathrm{~d} \sigma[3]}{\mathrm{d} \Omega_{2} \mathrm{~d} E_{3} \mathrm{~d} \Omega_{3}} \mathcal{S}_{3}\left(p_{1}^{\mu}, p_{2}^{\mu}, p_{3}^{\mu}\right) \\
& +\frac{1}{4!} \int \mathrm{d} \Omega_{2} \mathrm{~d} E_{3} \mathrm{~d} \Omega_{3} \mathrm{~d} E_{4} \mathrm{~d} \Omega_{4} \frac{\mathrm{~d} \sigma[4]}{\mathrm{d} \Omega_{2} \mathrm{~d} E_{3} d \Omega_{3} \mathrm{~d} E_{4} \mathrm{~d} \Omega_{4}} \mathcal{S}_{4}\left(p_{1}^{\mu}, p_{2}^{\mu}, p_{3}^{\mu}, p_{4}^{\mu}\right) \\
& +\cdots .
\end{aligned}
$$

If \mathcal{S}_{n} is collinear and infrared safe, the divergencies will cancel through the KLN theorem

In general:

$$
\mathcal{S}_{n+1}\left(p_{1}^{\mu}, \ldots,(1-\lambda) p_{n}^{\mu}, \lambda p_{n}^{\mu}\right)=\mathcal{S}_{n}\left(p_{1}^{\mu}, \ldots, p_{n}^{\mu}\right)
$$

Infrared and Collinear Safety

The requirement $\mathcal{S}_{n+1}\left(p_{1}^{\mu}, \ldots,(1-\lambda) p_{n}^{\mu}, \lambda p_{n}^{\mu}\right)=\mathcal{S}_{n}\left(p_{1}^{\mu}, \ldots, p_{n}^{\mu}\right)$ means:
The measurement should not distinguish between a final state which contains:
two collinear particles; or one with the sum of the momenta of the two

- a soft particle; or the same final state without it

Examples: total cross sections ($S_{n}=1$), Thrust, Sphericity, Energy flows, jets...

Jets

A jet algorithm combines objects (partons, hadrons, detector deposits) which are "close" together
Different choices for infrared and collinear (IRC) safe jet algorithms exist, with different distance definitions, but the working principle is:

parton shower

Projection to jets should be resilient to QCD and detector effects
Jets help us to study the underlying parton dynamics

What Can We Measure?

After the hadronisation and the detector effects it is virtually impossible to reconstruct all particles which originated from a single quark or gluon

The total deposited energy can be well measured

Jets

How many jets do you see?

A jet algorithm provides exact rules on how to combine particles to form a jet, mainly two approaches:

Cone

- top-down: centred around the idea of energy flow

Sequential recombination

- bottom-up: successively undoes QCD branching

Cone Algorithms

Basic principle of cone algorithms:

- Cones are circles in rapidity y and azimuth ϕ
- A particle i is within the cone of radius R around the axis a if

$$
\left(y_{i}-y_{a}\right)^{2}+\left(\phi_{i}-\phi_{a}\right)^{2}<R^{2}
$$

- Choice of R depends on the use-case
- Cone jet algorithms try to find the axis a which maximises the energy within the cone - easy?

Cone Algorithms

An example for an IRC unsafe algorithm: Iterative Cone algorithm

Next-simplest of the cones
e.g. CMS iterative cone

- Take hardest particle as seed for cone axis
- Draw cone around seed
- Sum the momenta use as new seed direction, iterate until stable
- Convert contents into a "jet" and remove from event

Notes

- "Hardest particle" is collinear unsafe more right away...
(courtesy of Gavin Salam)

Cone Algorithms

Why is it IRC unsafe?

Collinear splitting can modify the hard jets: ICPR algorithms are collinear unsafe \Longrightarrow perturbative calculations give ∞

An IRC Safe Cone Algorithm

"Hardest particle" is collinear unsafe: only seedless cone algorithms can be IRC safe: development of SISCone algorithm

(courtesy of Gavin Salam)

Sequential Recombination Algorithms

Try to undo the QCD branching:

- Take pair of particles with strongest divergence between them and combine them
- Calculate distance $d_{i j}$ between all particles and distance to beam $d_{i B}$

$$
\begin{aligned}
d_{i j} & =\min \left(p_{t, i}, p_{t, j}\right) \frac{\Delta R^{2}}{R^{2}} \text { with } \Delta R^{2}=\left(y_{i}-y_{j}\right)^{2}+\left(\phi_{i}-\phi_{j}\right)^{2} \\
d_{i B} & =p_{t, i}^{2}
\end{aligned}
$$

I. Find smallest of $d_{i j}$ and $d_{i B}$
2. If smallest is $d_{i j}$, combine particles i with j
3. If smallest is $d_{i B}$, call i a jet and remove from list of particles
4. Repeat from step I until no particles left
= longitudinally invariant inclusive $\mathbf{k}_{\mathbf{t}}$-algorithm

The \mathbf{k}_{t} Algorithm

k_{t} alg.: Find smallest of
$d_{i j}=\min \left(k_{t i}^{2}, k_{t j}^{2}\right) \Delta R_{i j}^{2} / R^{2}, \quad d_{i B}=k_{t i}^{2}$
If $d_{i j}$ recombine; if $d_{i B}, i$ is a jet
Example clustering with k_{t} algorithm, $R=0.7$
ϕ assumed 0 for all towers

Sequential Recombination Algorithms

Different classes of jet algorithms

- Generalisation of the kt-algorithm:

$$
\begin{aligned}
d_{i j} & =\min \left(p_{t, i}^{2 k}, p_{t, j}^{2 k}\right) \frac{\Delta R^{2}}{R^{2}} \text { with } \Delta R^{2}=\left(y_{i}-y_{j}\right)^{2}+\left(\phi_{i}-\phi_{j}\right)^{2} \\
d_{i B} & =p_{t, i}^{2 k}
\end{aligned}
$$

I. $\mathrm{k}=\mathrm{I}: \mathrm{k}_{\mathrm{T} \text {-algorithm, combines softest particles first, very flexible jet }}$ boundaries
2. $\mathrm{k}=0$: Cambridge-Aachen algorithm: purely geometrical, combines closest particles first
3. $\mathrm{k}=-\mathrm{I}$: anti-kT algorithm: combines hardest particles first, very spherical jets if no other hard particles are closer than R

- Different recombinations of particles possible to calculate the jet axis:
- E-scheme: massive jets
- PT scheme: massless jets

The Shape of Jets

How Does a Jet Look Like?

Rough approximation: particle content in a jet: $\pi^{+}: \pi^{-}: \pi^{0}=1: I: I$
(+10\% Kaons, Protons...)
Shown here: charged particle spectra ($\pi^{ \pm}$) in jets from $\mathrm{e}^{+} \mathrm{e}^{-}$collisions
$x_{p}=2 P / \sqrt{ } s$
Ejet $\approx \sqrt{ } \mathrm{s} / 2$
More energy \rightarrow higher multiplicity and more soft particles (compared to jet momentum)

Detector Effects On Jets

Change of composition
Radiation and decay inside detector volume
"Randomization" of original particle content
Defocusing changes shape in
lab frame
Charged particles bend in solenoid field
Attenuation changes energy Total loss of soft charged particles in magnetic field
Partial and total energy loss of charged and neutral particles in inactive upstream material
Hadronic and electromagnetic cacades in calorimeters

Distribute energy spatially
Lateral particle shower overlap

Detector Effects On Jets

> By P. Loch
100 MeV

Change of composition
Radiation and decay inside detector volume
"Randomization" of original particle content
Defocusing changes shape in lab frame

Charged particles bend in solenoid field

Attenuation changes energy

 Total loss of soft charged particles in magnetic fieldPartial and total energy loss of charged and neutral particles in inactive upstream material Hadronic and electromagnetic cacades in calorimeters

Distribute energy spatially
Lateral particle shower overlap

Detector Effects On Jets

Change of composition

Radiation and decay inside detector volume
"Randomization" of original particle content
Defocusing changes shape in lab frame

Charged particles bend in solenoid field
Attenuation changes energy
Total loss of soft charged particles in magnetic field Partial and total energy loss of charged and neutral particles in inactive upstream material
Hadronic and electromagnetic
cacades in calorimeters
Distribute energy spatially
Lateral particle shower overlap partie content

Detector Effects On Jets

Change of composition

Radiation and decay inside detector volume
"Randomization" of original particle content
Defocusing changes shape in lab frame

Charged particles bend in solenoid field
Attenuation changes energy
Total loss of soft charged particles in magnetic field Partial and total energy loss of charged and neutral particles in inactive upstream material
Hadronic and electromagnetic
cacades in calorimeters
Distribute energy spatially
Lateral particle shower overlap

Detector Effects On Jets

Change of composition
Radiation and decay inside detector volume
"Randomization" of original particle content
Defocusing changes shape in lab frame

Charged particles bend in solenoid field

Attenuation changes energy

Total loss of soft charged particles in magnetic field Partial and total energy loss of charged and neutral particles in inactive upstream material
Hadronic and electromagnetic cacades in calorimeters

Distribute energy spatially Lateral particle shower overlap

Where Are We?

Where Are We?

Another Challenge

The small values of $\alpha_{s}\left(\mu_{R}\right)$ at large scales allows the application of perturbation theory

But as $\mu_{R} \rightarrow 0, \alpha_{s}\left(\mu_{R}\right)$ becomes large and higher order corrections become increasingly important \Rightarrow diagram techniques fail for bound states in QCD

How can we calculate anything with hadrons in the initial / final state involved?

Factorisation

Absorb long time (small scale) effects in the proton structure

The factorisation scale μ_{F} gives the separation between long and short time physics

- PDFs acquire a scale dependence
- PDFs can not be predicted by QCD

Parton Evolution

Intuitive picture: the number of partons changes with scale $\mu_{F}=Q^{2}$
The virtual photon as probe with resolving power $Q^{2} \sim 1 / \lambda$

Drawing from A. Pich, arXiv:hep-ph/950523I (I995)

Scaling Violations

Large x

With increasing Q^{2}, the valence quarks radiate more and more gluons, so the studied x decreases
F_{2} decreases with increasing Q^{2}

Small \mathbf{x}

Gluons split into sea quarks, which can be resolved with increasing Q^{2}, more quarks become visible
F_{2} increases with increasing Q^{2}

DGLAP Equations

It is possible to calculate the evolution of partons in QCD:
DGLAP equations (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi)

$$
\frac{\partial}{\partial \ln \mu_{F}^{2}}\binom{q_{i}\left(x, \mu_{F}^{2}\right)}{g\left(x, \mu_{F}^{2}\right)}=\frac{\alpha_{s}\left(\mu_{R}\right)}{2 \pi} \sum_{j} \int_{x}^{1} \frac{\mathrm{~d} \xi}{\xi}\left(\begin{array}{cc}
P_{q_{i} q_{j}}\left(\frac{x}{\xi}\right) & P_{q_{i} g}\left(\frac{x}{\xi}\right) \\
P_{g q_{j}}\left(\frac{x}{\xi}\right) & P_{g g}\left(\frac{x}{\xi}\right)
\end{array}\right)\binom{q_{j}\left(\xi, \mu_{F}^{2}\right)}{g\left(\xi, \mu_{F}^{2}\right)}
$$

Splitting functions $P_{a b}(x / \xi)$: meaning (in LO) of an emission probability:

We can predict the scale dependence of the quark $q\left(x, \mu_{F}\right)$ and gluon $g\left(x, \mu_{F}\right)$ distributions!

F2 Revisited

In the QPM we had: $F_{2}(x)=x \sum_{i} e_{i}^{2} q_{i}(x)$
Now we have ($\overline{\mathrm{MS}}$-scheme used) (in DIS use $\mu_{F}=Q^{2}$)

$$
\begin{aligned}
F_{2}\left(x, Q^{2}\right) & =x \sum_{q, \bar{q}} e_{q}^{2} \int_{x}^{1} \frac{\mathrm{~d} \xi}{\xi} q\left(\xi, Q^{2}\right)\left[\delta\left(1-\frac{x}{\xi}\right)+\frac{\alpha_{s}}{2 \pi} C_{q}^{\overline{\mathrm{MS}}}\left(\frac{x}{\xi}\right)+\ldots\right] \\
& +x \sum_{q, \bar{q}} e_{q}^{2} \int_{x}^{1} \frac{\mathrm{~d} \xi}{\xi} g\left(\xi, Q^{2}\right)\left[\frac{\alpha_{s}}{2 \pi} C_{g}^{\overline{\mathrm{MS}}}\left(\frac{x}{\xi}\right)+\ldots\right]
\end{aligned}
$$

($C_{q}^{\overline{\mathrm{MS}}}$ and $C_{g}^{\overline{\mathrm{MS}}}$ are scheme-dependent coefficient functions)

- In leading order (LO) we get back to the QPM
- F_{2} obtained an explicit Q^{2} dependence
- In next-to-leading order (NLO) F_{2} is sensitive to the gluon component

Structure Functions and PDFs

We can obtain the Parton Distribution Functions by measuring structure functions

F2 From HERA

H1 and ZEUS

What Happens At Low x?

K. Nakamura, et al. (PDG), J. Phys. G37, 07502I (2010)

Parton Distribution Functions (PDFs)

Modify the simple QPM picture, where the proton was only made up of two up and one down quark

The up- and down-quark distributions obtain contributions from the valence quarks and the virtual sea quarks
$u(x)=u_{v}(x)+u_{s}(x)$ and $d(x)=d_{v}(x)+d_{s}(x)$

anti-quarks originate only from the sea
$\bar{u}(x)=\bar{u}_{s}(x)$ and $\bar{d}(x)=\bar{d}_{s}(x)$
The proton consists of two up quarks and one down quark:

$$
\int_{0}^{1} u_{v}(x) \mathrm{d} x=2 \quad \text { and } \quad \int_{0}^{1} d_{v}(x) \mathrm{d} x=1 \quad \text { (quark number sum rules) }
$$

No a-priori expectation for the number of sea quarks and gluons.

Constituents Of The Proton

In general we have 10 quark and anti-quark densities and the gluon:

$$
u, \bar{u}, d, \bar{d}, s, \bar{s}, c, \bar{c},(b, \bar{b}), g
$$

Distinguish only between up-type and down-type quarks:

$$
\begin{array}{ll}
U=u(+c), & D=d+s(+b) \\
\bar{U}=\bar{u}(+\bar{c}), & \bar{D}=\bar{d}+\bar{s}(+\bar{b})
\end{array}
$$

Then the valence quark distributions are

$$
u_{v}=U-\bar{U}, \quad d_{v}=D-\bar{D}
$$

The total sea distribution is often expressed as

$$
S=2(\bar{U}+\bar{D})
$$

and the momentum sum rule has to be fulfilled

$$
\int_{0}^{1}\left[\sum_{i}\left(q_{i}(x)+\bar{q}_{i}(x)\right)+g(x)\right] x \mathrm{~d} x=1
$$

From F2 To PDFs

QCD (DGLAP) predicts scale dependence of quark and gluon densities
x-dependence can not be calculated in perturbative QCD (reminder: renormalisation of the bare quark and gluon densities soft, long-range effects are absorbed in the PDF)

Need to obtain the x-dependence from experiment!
, Parametrise $q_{i}(x), g(x)$ at a starting scale Q_{0}
, Use DGLAP to evolve F_{2} to a higher scale (and calculate $\sigma_{\mathrm{r}}\left(x, Q^{2}\right)$)
> Determine the parameters from a fit to data

Note: Q_{0}^{2} has to be smaller than the lowest value of Q^{2} in the data
Only limited number of free parameters possible Use physical constraints for PDFs

Parton Distribution Functions

10 free parameters, about 1000 data points entered the fit, $\chi^{2} /$ n.d.f ≈ 0.94 $u_{v} \approx 2 d_{v}$, gluon starts to dominate around $x \sim 0.2$

Strong Rise Of $\mathbf{F}_{\mathbf{2}}$ Versus \mathbf{x}

H1 and ZEUS
H1 and ZEUS

Strong rise of F_{2} towards small x, becoming steeper with increasing Q^{2} Impressive agreement between calculations (using DGLAP) and data

Formation Of Hadrons

Last missing piece before we can calculate real-life cross sections
Full-scale event generators generate QCD branching according to emission probabilities - the parton shower approach

Once the scale of the emitted partons becomes small, perturbative QCD is not applicable anymore

Model the formation of hadrons with phenomenological approaches

Based on the idea of the QCD potential

$$
V(r) \propto k \cdot r
$$

String Fragmentation
(Pythia and friends)

Cluster Fragmentation (Herwig)
\rightarrow don't forget to model particle decays

Putting The Pieces Together

Testing QCD: Jet Production

$\sigma_{e p}=\sigma_{e q} \otimes q$

Inclusive DIS, this we used for extracting PDFs

$\sigma_{e p \rightarrow 2 j e t s}=\sigma_{q g \rightarrow 2 j e t s} \otimes q$

Test calculation of exclusive observables, PDFs in different processes, ...

$\sigma_{p p \rightarrow 2 j e t s}=\sigma_{q g \rightarrow 2 j e t s} \otimes q_{1} \otimes g_{2}+\cdots$
Test universality of PDFs, how well do we understand QCD at the LHC energies?

Jet Production

Inclusive Jet, Dijet and Trijet Production in DIS at HERA

Inclusive Jet Production at the LHC

Very good agreement between NLO calculations and data - huge success!

Summary

QCD

Beautiful field theory with local gauge invariance, but can it explain:

- quasi-free partons observed in DIS \Rightarrow asymptotic freedom
- non-observation of free quarks and gluons \Rightarrow confinement
- scaling violations in DIS \Rightarrow evolution equations
- formation of jets and production of hadrons in particle collisions

And finally:Who are these guys?

