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Overview

Part 1 - Setting the Stage
The Static Quark Model
Deep-Inelastic Scattering
Discovery of quarks and colour
The QCD Lagrangian
Discovery of gluons

Part 2 - Working with QCD
Renormalisation
Perturbative QCD
Jets
Factorisation and Parton Distribution Functions
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Part 2



QCD

Non-abelian gauge theory with SU(3) symmetry, describes the interaction 
between coloured particles (quarks and gluons).

The Feynman rules can be derived from the QCD Lagrangian

Covariant derivative:

Field strength tensor for spin-1 gluons:

Very similar to the QED Lagrangian, except for the additional summation 
over a, which are the 8 colour degree of freedoms (SU(3) instead of U(1))

Non-abelian term, different from QED. Leads to gluon self-interaction.

4Roman Kogler QCD

L =
nf�

f

q̄f (i�µDµ �mf )qf �
1
4
Ga

µ�Gµ�
a + Lgauge + Lghost

Ga
µ� = �µAa

� � ��Aa
µ � gsfabcA

b
µAc

�

Dµ = �µ � igstaAa
µ



The QCD Lagrangian

Let’s plug the expressions for       and        into the Lagrangian:Dµ

known
from 
QED

no QED
equivalent

These terms can then be used to obtain the Feynman rules for QCD
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Feynman Rules For QCD
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Feynman Rules for QCD

Propagators:

k
i j i ⇥ij

(/k + m)

k2 �m2 + i⇤

�

k
a
µ

b
⌃

�i ⇥ab

k2 + i⇤

�
gµ⇥ � (1� ⌅)

kµk⇥

k2

⇥

k
a b �i ⇥ab

k2 + i⇤
,

⌅ fixes the gauge: ⌅ =

⇤
1, Feynman gauge
0, Landau gauge

Vertices:

i

j

a
µ igs�µT

a
ji

c
⌃

b
µ

a
⌥

p

q

r
�gsf

abc [(p�q)⇥ g⇤µ+(q�r)⇤ gµ⇥+(r�p)µ g⇥⇤]

a

c

b
µ

p

gs fabcpµ (pµ outgoing)

a
⌥

b
µ

d
�

c
⌃

�ig2
sf

abef cde (g⇤⇥gµ⌅ � g⇤⌅gµ⇥)

�ig2
sf

acef bde (g⇤µg⇥⌅ � g⇤⌅gµ⇥)

�ig2
sf

adef cbe (g⇤⇥gµ⌅ � g⇤µg⌅⇥)

Four-momentum conservation is fulfilled at each vertex.
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Using QCD
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We would like to predict 
what happens at particle 
collisions at high 
energies

BUT

QCD is full
of divergencies 
(and other 
difficulties)!

initial state: 
bound states not 
calculable from 
first principles

collinear 
splittings: ∞ 

soft 
radiation: ∞ 

propagators 
and qg 

vertex: ∞ 

formation of 
hadrons: 
coupling 

large 



Singularities in QCD

Divergencies appear when constructing the first-order corrections to the 
quark-gluon interaction

leading order
vacuum polarisation

graphs
vertex-correction and 

self energies

Known from QED: redefinition of fields and masses will remove the 
vertex-correction and self energy divergencies (to all orders)

Integrals are infinite, due to unconstraint loop momenta:
ultra-violet (UV) divergencies

finite (?)
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Renormalisation

Ultra-violet (UV) divergencies can be interpreted as virtual fluctuations 
on very small time scales (high energies)

Renormalisation: absorb virtual fluctuations in the definition of the bare 
coupling, this introduces a new scale parameter μR

μR  has the dimension of energy (mass) and defines the point where the 
subtraction is performed (ultraviolet cut-off scheme)

energy (1/time)

More often used but less intuitive: dimensional regularisation, perform 
integration in 4-2ε dimensions
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Renormalisation Group Equation 
The dimensional parameter μR  is arbitrary - no general observable Γ(pi, αs) 
should depend on it. (strong coupling:                    )

Require:

�s = g2
s/4�

�
µR

�

�µR
+ µR

��s

�µR

�

��s
+ ��(�s)

�
�(pi,�s) = 0

⇒ a change in μR  has to be compensated by a change in αs

Renormalisation Group Equation (RGE)

Running coupling:  αs = αs (μR) 

�(�s) = µR
��s

�µR
The quantity is known as the QCD beta-function

which can be computed.

QCD cannot predict the absolute value of αs (μR), but its scale dependence.
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The Running Coupling

Expansion of the β-function: �(�s) = ��s

��

n=0

�n

��s

4�

�(n+1)

Where the terms βn are known up to four loops:

�0 = 11� 2
3
nf

�1 = 102� 38
3

nf

�2 =
2857

2
� 5033

18
nf +

325
54

n2
f

�3 =
149753

6
+ 3564�3 �

�
1078361

162
+

6508
27

�3

�
nf

+
�

50065
162

+
6472
81

�3

�
n2

f +
1093
729

n3
f

11Roman Kogler QCD



In Fact...
�as

� lnµR
= ��0a

2
s � �1a

3
s � �2a

4
s � �3a

5
s +O(a6

s) (as = �s/4�)

T. van Ritbergen, et al.,  Phys. Lett. B400, 379 (1997)

 evaluation of 
~ 50 000 diagrams
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The Running Coupling in QCD

1-loop
2-loop
3-loop

0 20 40 60 80 1000.10

0.15

0.20

0.25

0.30

0.35

0.40

mR @GeVD

a
sHn-

lo
op
L

The scale dependence αs (μR) of is one of the best known quantities in QCD

Good convergence 
(expansion parameter 
 as ≈ 0.01)

No visible difference 
between 3-loop and 
4-loop solution

⇒ Possibility for stringent tests of QCD!

Asymptotically free 
for μR → ∞

4-loop
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Confinement for 
μR → 0



Perturbation Theory
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Smallness of αs (μR) at large scales allows for a series expansion in terms of αs 

O =
��

n=0

�s(µr)nCn(µr)Some observable O can be expressed as

Relies on the idea O = �sc1 + �2
sc2 + �3

2c3 + . . .

small smaller negligible?

} } }
Coefficients cn become very complex very quickly, so you don’t want to deal 
with too many powers of αs

|M|2 � �0
s �1

s �2
2 �3

s

e+e− → had :



Example Calculation
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Start with γ*→ qq̄

Mqq̄ = �ū(p1)ieq�µv(p2)

e+e− → had
QCD lecture 1 (p. 19)

e+e− → qq̄

Soft-collinear emission
Soft gluon amplitude

Start with γ∗ → qq̄:

Mqq̄ = −ū(p1)ieqγµv(p2)
−ie γ µ

p1

p2

Emit a gluon:

Mqq̄g = ū(p1)igs ε/t
A i

p/1 + /k
ieqγµv(p2)

− ū(p1)ieqγµ
i

p/2 + /k
igs ε/tAv(p2)

k ,ε
−ie γ µ

p1

p2

k ,ε

−ie γ µ

p1

p2

Make gluon soft ≡ k $ p1,2; ignore terms suppressed by powers of k:

Mqq̄g % ū(p1)ieqγµtAv(p2) gs

(
p1.ε

p1.k
−

p2.ε

p2.k

)

p/v(p) = 0,
p//k + /kp/ = 2p.k

�qq̄ =
4�Nc

3
�2e2

q

s
Remember:

Emit a gluon

For each piece, add the lepton current:

QCD lecture 1 (p. 19)
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Mqq̄g = ū(p1)igs ε/t
A i

p/1 + /k
ieqγµv(p2)
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p2.ε
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p/v(p) = 0,
p//k + /kp/ = 2p.k

e−

e+

−ieγµ

ū(e+)(�ie�µ)u(e�)
s

Mqq̄g = ū(p1)igs �� ta
i

�p1 + �k ieq�µv(p2)

+ū(p1)ieq�µ
i

�p2 + �k igs �� tav(p2)



Example Calculation
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e+e− → had
and we get

with

|M|2 =
4e4e2

qg
2
s

s2
Lµ�Qµ�

Lµ� = |ū(e+)�µu(e�)|2 = 4
�
pµ
+p�
� + pµ

�p�
+ � gµ�p+ · p�

�

Qµ� =
����ū(p1)

�
�� (�p1 + �k )�µ

(p1 + k)2
+

�µ(�p2 + �k ) ��
(p2 + k)2

�
v(p2)

����
2

simplify it by using energy fractions

xi =
2Ei�

s pi · pj =
s(1� xk)

2
x1 + x2 + x3 = 2andwhich satisfy

|M|2 =
32e4e2

qg
2
s

s2

x2
1 + x2

2

(1� x1)(1� x2)
and we find

This needs to be integrated over the full three-particle phase space 
(together with phase space factors and δ-functions for momentum 
conservation). 



More Divergencies!
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e+e− → had

|M|2 =
32e4e2

qg
2
s

s2

x2
1 + x2

2

(1� x1)(1� x2)

This expression diverges for x1 → 1 and x2 → 1

Since 

QCD lecture 1 (p. 19)

e+e− → qq̄

Soft-collinear emission
Soft gluon amplitude

Start with γ∗ → qq̄:

Mqq̄ = −ū(p1)ieqγµv(p2)
−ie γ µ

p1

p2

Emit a gluon:
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p/2 + /k
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Mqq̄g % ū(p1)ieqγµtAv(p2) gs

(
p1.ε

p1.k
−

p2.ε

p2.k

)

p/v(p) = 0,
p//k + /kp/ = 2p.k

s(1� x1) = 2p2 · k = 2E2Ek(1� cos �2,k)

The divergencies appear for

‣ E → 0: infrared (or soft) divergence

‣ θ → 0 and θ → π: collinear divergence

The divergencies here appeared in the context of e+e− → qq ¯

But they are a very general property of QCD!



Real-Virtual Cancellations
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e+e− → had: total cross section

Total cross section: sum of all real and virtual diagrams

QCD lecture 1 (p. 22)

e+e− → qq̄

Total X-sct
Real-virtual cancellations: total X-sctn

Total cross section: sum of all real and virtual diagrams

p1

p2

−ie γ µ −ie γ µ ie γµk ,ε

2

+ x

Total cross section must be finite. If real part has divergent integration, so
must virtual part. (Unitarity, conservation of probability)

σtot = σqq̄

(

1 +
2αsCF

π

∫
dE

E

∫
dθ

sin θ
R(E/Q, θ)

−
2αsCF

π

∫
dE

E

∫
dθ

sin θ
V (E/Q, θ)

)

! R(E/Q, θ) parametrises real matrix element for hard emissions, E ∼ Q.
! V (E/Q, θ) parametrises virtual corrections for all momenta.

Real part given by             and virtual corrections R(E, �) V(E, �)

So the total cross section is

Doing the calculation, we find

lim
E�0

(R(E, �)� V(E, �)) = 0 and lim
��0,�

(R(E, �)� V(E, �)) = 0

�tot = �qq̄

�
1 +

2�sCF

�

�
dE

E

�
d�

sin �
(R(E, �)� V(E, �))

�



Total Cross Section
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e+e− → had: total cross section

Finally, including all real and virual corrections:

�tot = �qq̄

�
1 + 1.045

�s(µr)
�

+ 0.94
�

�s(µr)
�

�2

� 15
�

�s(µr)
�

�3

+ . . .

�

(numbers given for nf  = 5)(we only looked at this piece)

6 46. Plots of cross sections and related quantities

σ and R in e+e− Collisions
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Figure 46.6: World data on the total cross section of e+e− → hadrons and the ratio R(s) = σ(e+e− → hadrons, s)/σ(e+e− → µ+µ−, s).
σ(e+e− → hadrons, s) is the experimental cross section corrected for initial state radiation and electron-positron vertex loops, σ(e+e− →
µ+µ−, s) = 4πα2(s)/3s. Data errors are total below 2 GeV and statistical above 2 GeV. The curves are an educative guide: the broken one
(green) is a naive quark-parton model prediction, and the solid one (red) is 3-loop pQCD prediction (see “Quantum Chromodynamics” section of
this Review, Eq. (9.7) or, for more details, K. G. Chetyrkin et al., Nucl. Phys. B586, 56 (2000) (Erratum ibid. B634, 413 (2002)). Breit-Wigner
parameterizations of J/ψ, ψ(2S), and Υ(nS), n = 1, 2, 3, 4 are also shown. The full list of references to the original data and the details of
the R ratio extraction from them can be found in [arXiv:hep-ph/0312114]. Corresponding computer-readable data files are available at
http://pdg.lbl.gov/current/xsect/. (Courtesy of the COMPAS (Protvino) and HEPDATA (Durham) Groups, May 2010.)
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σ(e+e− → hadrons, s) is the experimental cross section corrected for initial state radiation and electron-positron vertex loops, σ(e+e− →
µ+µ−, s) = 4πα2(s)/3s. Data errors are total below 2 GeV and statistical above 2 GeV. The curves are an educative guide: the broken one
(green) is a naive quark-parton model prediction, and the solid one (red) is 3-loop pQCD prediction (see “Quantum Chromodynamics” section of
this Review, Eq. (9.7) or, for more details, K. G. Chetyrkin et al., Nucl. Phys. B586, 56 (2000) (Erratum ibid. B634, 413 (2002)). Breit-Wigner
parameterizations of J/ψ, ψ(2S), and Υ(nS), n = 1, 2, 3, 4 are also shown. The full list of references to the original data and the details of
the R ratio extraction from them can be found in [arXiv:hep-ph/0312114]. Corresponding computer-readable data files are available at
http://pdg.lbl.gov/current/xsect/. (Courtesy of the COMPAS (Protvino) and HEPDATA (Durham) Groups, May 2010.)

Perfect 
agreement 
with the 
data!



What does this mean?
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What’s the reason for

lim
E�0

(R(E, �)� V(E, �)) = 0 and lim
��0,�

(R(E, �)� V(E, �)) = 0 ?

In other words:

Corrections to leading order result only come from hard gluon emission

Soft gluons do not matter:

‣ they are emitted on a long timescale ∼1/(Eθ) relative to collision ∼1/Q
→ cannot influence the total cross section

‣ transition to hadrons also occurs on long timescale ∼1/Λ - can also be 
ignored (in this case)

Total cross section must be finite so the divergencies have to cancel

‣ Essence of the Kinoshita-Lee-Nauenberg and Bloch-Nordsiek theorems

‣Generalises for an arbitrary number of gluons (and photons)
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Does the previous result mean we can only calculate total cross sections ?

can be thought of as a product of probabilities, one for quark pair creation (Born diagram plus

calculable corrections), the other for the evolution of quarks to hadrons. In the fully inclusive cross

section, we sum over all final states. Then, because of the absence of interference between short-

and long-distance e⇥ects, the probabilities for hadrons to be produced from quarks sum to unity,

since, without further electroweak corrections, o⇥-shell quarks always produce on-shell hadrons.

This will happen in perturbation theory (where the role of hadrons is played by on-shell quarks and

gluons), as well as in the real world (where hadrons are the physically observed particles). Thus,

any infrared sensitivity which may be present in perturbation theory should cancel after the sum

over final states, leaving only the short-distance cross section for producing the pair in the first

place.

2. Other infrared safe quantities in e+e� annihilation

The infrared safety of �tot can be extended to a large class of cross sections measured in e+e�

annihilation. To understand what quantities are infrared safe and why, one should consider a

perturbative calculation in which the quarks as well as the gluons are massless. Then any sensitivity

to long distance e⇥ects will show up as an infrared divergence in the calculation.

How would such a divergence arise? A detailed analysis given in Sterman, 1978 yields a simple

answer: the potential divergences are all related to soft or collinear momentum configurations.

First, a massless on-shell particle with momentum pµ can emit a massless particle with momentum

qµ = 0 and remain on-shell. Integration over momenta qµ near to qµ = 0 produces soft divergences

in cross sections. Second, a massless on-shell particle with momentum pµ can emit a massless

particle with momentum qµ = zpµ, 0 ⇥ z ⇥ 1, and remain on-shell. Integration over momenta qµ
near to qµ = zpµ produces collinear divergences in cross sections.

When the total cross section for e+e� annihilation is calculated perturbatively, individual terms
are infinite, but the infinities cancel for reasons based on unitarity, as discussed in the previous

subsection. There are other quantities for which a similar cancellation occurs. Consider a quantity

I that is defined in the style of Kunszt and Soper, 1992 in terms of parton cross sections and
functions Sn by

I = 1

2!

�
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d�2
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+
1
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d�2dE3d�3
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3
, pµ

4
)

+ · · · . (4.7)

The functions Sn specify the measurement to be made. An example of I is the total cross section,
for which all of the Sn equal 1. Another example is the thrust distribution d�/dT where, for an
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No, it just means we have to be careful how we define our observables

Consider a measurement   , which is determined by the functionI Sn

If      is collinear and infrared safe, the divergencies will cancel through the 
KLN theorem
Sn

event containing n particles, the thrust T is (Farhi, 1977)

Tn(pµ1, . . . , pµn) = max
⌅u

⇤n
i=1 |⌅pi · ⌅u|⇤n
i=1 |⌅pi|

. (4.8)

Here the ⌅u is a unit vector defining the “thrust axis,” which is chosen to maximize the thrust. To
calculate d⇤/dT , one uses Eq. (4.7) with

Sn(pµ1, . . . , pµn) = �
�
T � Tn(pµ1, . . . , pµn)

⇥
. (4.9)

Perhaps the most important examples of I are the various jet cross sections, to be discussed in
Sects. V. and VIII..

Under what conditions will the cancellation of infrared infinities that occurred for the total

cross section also occur for the quantity I? Without loss of generality, we may assume that the
Sn are invariant under interchange of their n arguments pµn. Then the discussion above of collinear
and soft divergences should make it clear that one needs

Sn+1(pµ1, . . . , (1 � ⇥)pµn, ⇥pµn) = Sn(p
µ
1
, . . . , pµn) (4.10)

for 0 ⇥ ⇥ ⇥ 1. That is to say, the measurement should not distinguish between a final state in
which two particles are collinear and the final state in which these two particles are replaced by one

particle carrying the sum of the momenta of these collinear particles. Similarly, the measurement

should not distinguish between a final state in which one particle has zero momentum and the final

state in which this particle is omitted entirely.

The argument that a cross section specified by functions S with this property does not have
infrared divergences may be understood as an extension of the KLN theorem (Kinoshita, 1962; Lee

and Nauenberg, 1964). The heuristic arguments given above for the total cross section apply in this

case as well. We need only observe that long-distance interactions (and hence infrared sensitivity)

arise from interactions that occur over a long time period. These are just the interactions involving

parallel-moving particles or very low momentum particles. As long as the measured quantity is not

sensitive to whether such a long-time interaction has occurred, one can still cancel the divergences

in perturbation theory using unitarity: the sum of the probabilities that the interaction does or does

not occur is unity.

On the level of QCD calculations, infrared safety means that a quantity can be calculated in

perturbation theory without obtaining infinity. Since the infrared infinities come from long distance

physics, the physical interpretation is that infrared safe quantities are insensitive to long distance

physics.

B. Factorization Theorems in Deeply Inelastic Scattering

In this subsection, we introduce two of the basic ideas of perturbative QCD, f actorization,

which enables us to derive and generalize the parton model, and evolution, which enables us to

compute scale-breaking e�ects systematically.
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In general:
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event containing n particles, the thrust T is (Farhi, 1977)

Tn(pµ1, . . . , pµn) = max
⌅u

⇤n
i=1 |⌅pi · ⌅u|⇤n
i=1 |⌅pi|

. (4.8)

Here the ⌅u is a unit vector defining the “thrust axis,” which is chosen to maximize the thrust. To
calculate d⇤/dT , one uses Eq. (4.7) with

Sn(pµ1, . . . , pµn) = �
�
T � Tn(pµ1, . . . , pµn)

⇥
. (4.9)

Perhaps the most important examples of I are the various jet cross sections, to be discussed in
Sects. V. and VIII..

Under what conditions will the cancellation of infrared infinities that occurred for the total

cross section also occur for the quantity I? Without loss of generality, we may assume that the
Sn are invariant under interchange of their n arguments pµn. Then the discussion above of collinear
and soft divergences should make it clear that one needs

Sn+1(pµ1, . . . , (1 � ⇥)pµn, ⇥pµn) = Sn(p
µ
1
, . . . , pµn) (4.10)

for 0 ⇥ ⇥ ⇥ 1. That is to say, the measurement should not distinguish between a final state in
which two particles are collinear and the final state in which these two particles are replaced by one

particle carrying the sum of the momenta of these collinear particles. Similarly, the measurement

should not distinguish between a final state in which one particle has zero momentum and the final

state in which this particle is omitted entirely.

The argument that a cross section specified by functions S with this property does not have
infrared divergences may be understood as an extension of the KLN theorem (Kinoshita, 1962; Lee

and Nauenberg, 1964). The heuristic arguments given above for the total cross section apply in this

case as well. We need only observe that long-distance interactions (and hence infrared sensitivity)

arise from interactions that occur over a long time period. These are just the interactions involving

parallel-moving particles or very low momentum particles. As long as the measured quantity is not

sensitive to whether such a long-time interaction has occurred, one can still cancel the divergences

in perturbation theory using unitarity: the sum of the probabilities that the interaction does or does

not occur is unity.

On the level of QCD calculations, infrared safety means that a quantity can be calculated in

perturbation theory without obtaining infinity. Since the infrared infinities come from long distance

physics, the physical interpretation is that infrared safe quantities are insensitive to long distance

physics.

B. Factorization Theorems in Deeply Inelastic Scattering

In this subsection, we introduce two of the basic ideas of perturbative QCD, f actorization,

which enables us to derive and generalize the parton model, and evolution, which enables us to

compute scale-breaking e�ects systematically.
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The requirement

The measurement should not distinguish between a final state which 
contains:

‣two collinear particles; or one with the sum of the momenta of the two

‣a soft particle; or the same final state without it

means: 

=

Examples: total cross sections (Sn=1), Thrust, Sphericity, Energy flows, jets...



Jets (p. 8)

Introduction

Background Knowledge
Jets as projections

jet 1 jet 2

LO partons

Jet Def n

jet 1 jet 2

Jet Def n

NLO partons

jet 1 jet 2

Jet Def n

parton shower

jet 1 jet 2

Jet Def n

hadron level

π π

K

p φ

Projection to jets should be resilient to QCD effects

Jets
A jet algorithm combines objects (partons, hadrons, detector deposits) 
which are “close” together

Different choices for infrared and collinear (IRC) safe jet algorithms exist, 
with different distance definitions, but the working principle is:

Projection to jets should be resilient to QCD and detector effects

Jets help us to study the underlying parton dynamics
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(courtesy of 
 Gavin Salam)



What Can We Measure?

q, g
π0 2γ

2γ
n0

π0

π −

KS
0

π +

π +

π −

p
K−

Hadronisation Particle decays
Track

Detector
EM

Calo
HAD
Calo

Muon
Chambers

After the hadronisation and the detector effects it is virtually impossible to 
reconstruct all particles which originated from a single quark or gluon

The total deposited energy can be well measured
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How many jets do you see?
Jets (p. 6)

Introduction

Background Knowledge
Seeing v. defining jets

Jets are what we see.
Clearly(?) 2 jets here

How many jets do you see?
Do you really want to ask yourself
this question for 108 events?

A jet algorithm provides exact rules on how to combine particles to 
form a jet, mainly two approaches:

Sequential recombination

‣ bottom-up: successively undoes QCD branching

Cone

‣ top-down: centred around the idea of energy flow
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Basic principle of cone algorithms:

‣Cones are circles in rapidity y and azimuth φ
‣A particle i is within the cone of radius R around the axis a if

(yi � ya)2 + (�i � �a)2 < R2

‣Choice of R depends on the use-case

‣Cone jet algorithms try to find the axis a which maximises the energy 
within the cone - easy?

φ

y

Many different 
variants have 
been thought of
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An example for an IRC unsafe algorithm: Iterative Cone algorithm
Jets (p. 32)
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(courtesy of 
 Gavin Salam)
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Why is it IRC unsafe?

(courtesy of  
 Gavin Salam)
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“Hardest particle” is collinear unsafe: only seedless cone algorithms 
can be IRC safe: development of SISCone algorithm

(courtesy of  
 Gavin Salam)
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Try to undo the QCD branching:

‣ Take pair of particles with strongest divergence between them and 
combine them

‣Calculate distance dij between all particles and distance to beam diB

dij = min(pt,i, pt,j)
�R2

R2 �R2 = (yi � yj)2 + (�i � �j)2with
diB = p2

t,i

1. Find smallest of dij and diB

2. If smallest is dij, combine particles i with j
3. If smallest is diB, call i a jet and remove from list of particles

4. Repeat from step 1 until no particles left

= longitudinally invariant inclusive kt-algorithm
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Sequential Recombination Algorithms
Different classes of jet algorithms

‣Generalisation of the kt-algorithm:

�R2 = (yi � yj)2 + (�i � �j)2with

1. k = 1: kT-algorithm, combines softest particles first, very flexible jet 
boundaries

2. k = 0: Cambridge-Aachen algorithm: purely geometrical, combines closest 
particles first

3. k = −1: anti-kT algorithm: combines hardest particles first, very spherical 
jets if no other hard particles are closer than R

32

dij = min(p2kt,i, p
2k
t,j)

�R2

R2

diB = p2kt,i

‣Different recombinations of particles possible to calculate the jet axis: 
• E-scheme: massive jets
• pT scheme: massless jets
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The Shape of Jets

33

JHEP04(2008)063

Figure 1: A sample parton-level event (generated with Herwig [8]), together with many random
soft “ghosts”, clustered with four different jets algorithms, illustrating the “active” catchment areas
of the resulting hard jets. For kt and Cam/Aachen the detailed shapes are in part determined by
the specific set of ghosts used, and change when the ghosts are modified.

have more varied shapes. Finally with the anti-kt algorithm, the hard jets are all circular

with a radius R, and only the softer jets have more complex shapes. The pair of jets near

φ = 5 and y = 2 provides an interesting example in this respect. The left-hand one is much

softer than the right-hand one. SISCone (and Cam/Aachen) place the boundary between

the jets roughly midway between them. Anti-kt instead generates a circular hard jet, which

clips a lens-shaped region out of the soft one, leaving behind a crescent.

The above properties of the anti-kt algorithm translate into concrete results for various

quantitative properties of jets, as we outline below.

2.2 Area-related properties

The most concrete context in which to quantitatively discuss the properties of jet bound-

aries for different algorithms is in the calculation of jet areas.

Two definitions were given for jet areas in [4]: the passive area (a) which measures

a jet’s susceptibility to point-like radiation, and the active area (A) which measures its

susceptibility to diffuse radiation. The simplest place to observe the impact of soft resilience

is in the passive area for a jet consisting of a hard particle p1 and a soft one p2, separated

– 4 –

area obtained with ‘ghost particles’
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How Does a Jet Look Like?
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Con t ra ry  to the case of the limiting distr ibution,  one 
observes here some deviat ion at the left wing of the 

Rough approximation: 
particle content in a jet: 
π+ : π− :  π0 = 1 : 1 : 1
(+10% Kaons, Protons...)

Shown here: charged 
particle spectra (π±) in 
jets from e+e− collisions

xp = 2P / √s

Ejet ≈ √s / 2

More energy → higher 
multiplicity and more soft 
particles (compared to 
jet momentum)

0.36⋅Ejet 0.018⋅Ejet

90 GeV
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Detector�Effects�On�Jets
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Another Challenge
The small values of αs (μR) at large scales allows the application of 
perturbation theory

But as μR → 0, αs (μR) becomes large and higher order corrections become 
increasingly important ⇒ diagram techniques fail for bound states in QCD

How can we calculate anything with hadrons in the 
initial / final state involved?

42Roman Kogler QCD

Answer: different time / length scales!

Timescale of proton fluctuation: 

Timescale of interaction: � =
1

E�
=

2xP

Q2

proton is ‘frozen’ during the interaction

t =
1

�E
� 2xP

k2
T

t

�
� Q2

k2
T

� 1



Factorisation
Absorb long time (small scale) effects in the proton structure

e(k) e(k′)

p(P) X

σ̂i

fi

µfμF

Hard scattering, calculable in 
perturbative QCD

Parton density function (PDF), 
Soft interactions

The factorisation scale μF  gives the separation between long and 
short time physics 

• PDFs acquire a scale dependence

• PDFs can not be predicted by QCD
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Parton Evolution

q

P

small Q 2 large Q 2

Drawing from A. Pich, arXiv:hep-ph/9505231 (1995)

Intuitive picture: the number of partons changes with scale μF = Q2

The virtual photon as probe with resolving power Q2 ~ 1 / λ 

many partons with large x we ‘see’ parton radiation, branchings

⇒ many partons with small x
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Scaling Violations

Large x Small x

With increasing Q2, the valence 
quarks radiate more and more 
gluons, so the studied x decreases

F2 decreases with increasing Q2

Gluons split into sea quarks, which 
can be resolved with increasing Q2, 
more quarks become visible

F2 increases with increasing Q2
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DGLAP Equations
It is possible to calculate the evolution of partons in QCD: 
DGLAP equations (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi)

�

� lnµ2
F

�
qi(x, µ2

F )
g(x, µ2

F )

�
=

�s(µR)
2�

�

j

1�

x

d�

�

�
Pqiqj (

x
� ) Pqig(

x
� )

Pgqj (
x
� ) Pgg(x

� )

��
qj(�, µ2

F )
g(�, µ2

F )

�

Splitting functions Pab(x/ξ): meaning (in LO) of an emission probability:

ξ
x

a

g
ξ

x
a

b
ξ

x
g

b

ξ
x

g

g

P
(0)

ab
x
ξ P

(0)

ag
x
ξ P

(0)
gb

x
ξ P

(0)
gg

x
ξ

We can predict the scale dependence of the quark q(x, μF) and 
gluon g(x, μF) distributions!

46Roman Kogler QCD



F2 Revisited

In the QPM we had: F2(x) = x
�

i

e2
i qi(x)

Now we have (MS-scheme used)

F2(x,Q2) = x
�

q,q̄

e2
q

1�

x

d�

�
q(�, Q2)

�
�

�
1� x

�

�
+

�s

2�
CMS

q

�
x

�

�
+ . . .

�

+ x
�

q,q̄

e2
q

1�

x

d�

�
g(�, Q2)

�
�s

2�
CMS

g

�
x

�

�
+ . . .

�

• In leading order (LO) we get back to the QPM

• F2 obtained an explicit Q2 dependence

• In next-to-leading order (NLO) F2 is sensitive to the gluon component 

(Cq    and Cg   are scheme-dependent coefficient functions)MS MS

µF = Q2(in DIS use               )
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Structure Functions and PDFs

We can obtain the Parton Distribution Functions by 
measuring structure functions

Universal PDFs

Convolution 
integral

e(k) e(k′)

p(P) X

σ̂i

fi

µf

fi p

σ̂

Hard partonic 
cross sections 

(matrix elements)
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F2 From HERA
H1 and ZEUS
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HERA data cover 5 orders 
in Q2 and 4 orders in x

Clear scaling violations at 
small and large x

Approximate scaling at 
intermediate x

DGLAP works!

Huge success of QCD

� F2(x,Q2)

�+
r,NC(x,Q2) =

d2�e+p
NC

dQ2dx

xQ4

2��2Y+
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What Happens At Low x?
K. Nakamura, et al. (PDG), J. Phys. G37, 075021 (2010)

Early HERA data 
compared to fixed-target 
experiments

Strong rise of F2 towards 
small x, becoming steeper 
with increasing Q2

x

F 2
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Parton Distribution Functions (PDFs)

Modify the simple QPM picture, where the proton was only made up of 
two up and one down quark

The up- and down-quark distributions obtain 
contributions from the valence quarks and the 
virtual sea quarks

u(x) = uv(x) + us(x) d(x) = dv(x) + ds(x)and

ū(x) = ūs(x)
anti-quarks originate only from the sea

d̄(x) = d̄s(x)and

The proton consists of two up quarks and one down quark:
� 1

0
uv(x)dx = 2

� 1

0
dv(x)dx = 1and

No a-priori expectation for the number of sea quarks and gluons.

(quark number sum rules)
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Constituents Of The Proton

In general we have 10 quark and anti-quark densities and the gluon:

Distinguish only between up-type and down-type quarks:

U = u (+ c),   D = d + s (+b)
U = u (+ c),   D = d + s (+b)

Then the valence quark distributions are 

uv = U − U,   dv = D − D

u, u, d, d, s, s, c, c, (b, b) , g

The total sea distribution is often expressed as

S = 2(U + D)

� 1

0

��

i

(qi(x) + q̄i(x)) + g(x)
�
xdx = 1

and the momentum sum rule has to be fulfilled
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From F2 To PDFs
QCD (DGLAP) predicts scale dependence of quark and gluon densities

x-dependence can not be calculated in perturbative QCD 
(reminder: renormalisation of the bare quark and gluon densities - 
 soft, long-range effects are absorbed in the PDF)

› Parametrise qi(x), g(x) at a starting scale Q0

› Use DGLAP to evolve F2 to a higher scale ( and calculate σr(x,Q2) )
› Determine the parameters from a fit to data

Need to obtain the x-dependence from experiment!

Note:  Q2 has to be smaller than the lowest value of Q2 in the data0

Only limited number of free parameters possible

Use physical constraints for PDFs
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10 free parameters, about 1000 data points entered the fit, χ2/n.d.f ≈ 0.94

DGLAP

 uv ≈ 2dv , gluon starts to dominate around x ~ 0.2
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Strong Rise Of F2 Versus x

55Roman Kogler Physics at HERA
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Strong rise of F2 towards small x, becoming steeper with increasing Q2

Impressive agreement between calculations (using DGLAP) and data
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QCD lecture 3 (p. 28)

Parton showers Hadronisation Models

String Fragmentation
(Pythia and friends)

Cluster Fragmentation
(Herwig)

Pictures from ESW book

Last missing piece before we can calculate real-life cross sections

Full-scale event generators generate QCD branching according to 
emission probabilities - the parton shower approach

Once the scale of the emitted partons becomes small, perturbative 
QCD is not applicable anymore

Model the formation of hadrons 
with phenomenological 
approaches

Based on the idea of the QCD 
potential

V (r) � k · r

→ don’t forget to model particle decays
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initial state: 
bound states not 
calculable from 
first principles

collinear 
splittings: ∞ 

soft 
radiation: ∞ 

propagators 
and qg 

vertex: ∞ 

formation of 
hadrons: 
coupling 

large 

✓

✓

use IRC safe 
observables

renormalisation

✓
Parton 

Distribution 
Functions

✓
fragmentation 

models

✓
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QCD lecture 2 (p. 28)

Determining full PDFs

Back to factorization
Crucial check: other processes

Factorization of QCD cross-sections into convolution of:

! hard (perturbative) process-dependent partonic subprocess

! non-perturbative, process-independent parton distribution functions

e+

Q2

x1 x2

q(x, Q2) q1(x1, Q2) g2(x2, Q2)

proton proton 1 proton 2

qg −> 2 jetse+q −> e+ + jet

x

σep = σeq ⊗ q σpp→2 jets = σqg→2 jets ⊗ q1 ⊗ g2 + · · ·
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QCD lecture 2 (p. 28)

Determining full PDFs

Back to factorization
Crucial check: other processes

Factorization of QCD cross-sections into convolution of:

! hard (perturbative) process-dependent partonic subprocess

! non-perturbative, process-independent parton distribution functions

e+

Q2

x1 x2

q(x, Q2) q1(x1, Q2) g2(x2, Q2)

proton proton 1 proton 2

qg −> 2 jetse+q −> e+ + jet

x

σep = σeq ⊗ q σpp→2 jets = σqg→2 jets ⊗ q1 ⊗ g2 + · · ·

Inclusive DIS, 
this we used 
for extracting 
PDFs

Test calculation of 
exclusive observables, 
PDFs in different 
processes, ...

Test universality of 
PDFs, how well do we 
understand QCD at the 
LHC energies?
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fragmentation and estimated to be within 4% at 1100 GeV
[14]). With those considerations, the total uncertainty in
the jet transverse momentum scale is determined to be
between 3% and 4% in the ranges 18< pT < 1100 GeV
and j!j< 3:0. The jet momentum resolutions for different
y bins are known to within 10% at jyj< 1:5, increasing to
15% for 1:5< jyj< 2:0, 25% for 2:0< jyj< 2:5, and 30%
for 2:5< jyj< 3:0 [13]. The integrated luminosity of the
proton-proton collisions is known with a precision of 4%
[20] and directly translates into a 4% normalization uncer-
tainty on the inclusive jet cross section.

The next-to-leading-order perturbative QCD theoretical
predictions are derived using NLOJET++ 2.0.1 [21,22] within
the framework of FASTNLO 1.4 [23]. Other NLO calcula-
tions are available in Refs. [24–26]. The FASTNLO frame-
work is used for propagating uncertainties due to different
parton distribution function (PDF) sets, "s values, and
scale choices. Nonperturbative (NP) corrections for hadro-
nization and multiple parton interactions are estimated
using PYTHIA 6.422 [27] and HERWIG++ 2.4.2 [28], which
are applied to the NLO pQCD prediction. The correction is
defined as the average of the models, and the associated
theoretical uncertainty is assumed to be half of the differ-
ence between the two predictions. For low-pT jets, the NP
correction can be as large as 30%, with a relative uncer-
tainty of 100%. Uncertainties from any residual depen-
dence on the choice of renormalization scale #r and
factorization scale#f are determined by varying the scales
according to the following combinations [29]: ð12#r;

1
2#fÞ,

ð12#r;#fÞ, ð#r;
1
2#fÞ, ð#r; 2#fÞ, ð2#r;#fÞ, and ð2#r;

2#fÞ. The default choice is #r ¼ #f ¼ pT . These scale
variations modify the prediction of the inclusive jet cross
section by about 5%–10%. Following the PDF4LHC
Working Group recommendation [30], PDF uncertainties
are evaluated via a prescribed envelope, defined as the
maximum variation between different NLO PDF sets con-
structed from CT10 [31], MSTW2008NLO [32], and
NNPDF2.0 [33], including their respective uncertainties
and using their respective default values of the strong
coupling constant "sðmZÞ ¼ 0:1180, 0.1190, and 0.1202.
The middle of the envelope is taken as the central predic-
tion. The uncertainties are on the order of 10% up to a pT

of 800 GeV, except when approaching the kinematic limit
where they can be as large as 40%. More detailed com-
parisons with individual NLO PDF sets are reported sepa-
rately in Ref. [34]. Finally, an additional uncertainty from
the current knowledge of the strong coupling constant is
calculated from the CT10as PDF set [31] with values of
"sðmZÞ varied conservatively by $0:002 and added in
quadrature to the PDF uncertainty. The uncertainties due
to these variations in "sðmZÞ are between 2.5% and 5.0%.
The PDF uncertainties are dominated by differences be-
tween PDF sets in the PDF4LHC recommendation for
50<pT < 500 GeV, and by uncertainties within a single
PDF set for pT > 500 GeV.

The fully corrected inclusive jet cross section is shown
in Figs. 1 and 2. Figure 1 shows the jet pT spectra between
18 and 1100 GeV, falling over 10 orders of magnitude in
rate, and for six different rapidity bins. The comparison
with the theoretical NLO prediction, corrected for NP
effects, is more easily discerned in Fig. 2, which provides
the ratio of the jet pT spectra from data to the theoretical
prediction for each of the six rapidity bins. The total
theoretical systematic uncertainty from the prediction is
superimposed as solid lines above and below unity, and the
total systematic uncertainty due to experimental effects is
centered on the data points as a shaded band. The central
predictions for the CT10, MSTW2008NLO, and
NNPDF2.0 PDF sets are also overlayed. The PDF uncer-
tainties are large and asymmetric at high jet pT , dominat-
ing the theoretical uncertainty band. Nevertheless,
compared to the PDF4LHC recommendation, similar
trends between data and the central prediction of each
PDF set are observed. Within the experimental and theo-
retical uncertainties, the predictions are seen to be consis-
tent with the data across a wide range of jet pT and
rapidities, although the predictions are systematically
above the data.
In conclusion, using a data sample corresponding to

34 pb%1 of integrated luminosity from pp collisions re-
corded by the CMS detector at the LHC with a center-of-
mass energy of 7 TeV, the jet transverse momentum spec-
trum has been measured for 18< pT < 1100 GeV and for
six rapidity bins up to jyj ¼ 3:0. The dominant systematic
uncertainties arise from the absolute jet momentum scale
and resolution, as well as the integrated luminosity

FIG. 1 (color online). Fully corrected inclusive jet differential
cross section as a function of pT for six different rapidity
intervals, scaled by the factors shown in the legend for easier
viewing. The next-to-leading-order (NLO) theoretical predic-
tions, corrected for nonperturbative (NP) effects via multiplica-
tive factors, are superimposed. The statistical uncertainties are
smaller than the symbol used to represent each data point.

PRL 107, 132001 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

23 SEPTEMBER 2011

132001-3

Inclusive Jet, Dijet and Trijet 
Production in DIS at HERA

Inclusive Jet Production at the LHC

Very good agreement between NLO 
calculations and data - huge success!
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Beautiful field theory with local gauge invariance, but can it explain:

‣ quasi-free partons observed in DIS

‣ non-observation of free quarks and gluons

‣ scaling violations in DIS

‣ formation of jets and production of 
hadrons in particle collisions

QCD

And finally: Who are these guys?

✓⇒ asymptotic freedom

✓⇒ confinement

✓⇒ evolution equations

⇒ success of perturbative QCD✓

up-quarks

gluons

down-quark

(http://www.particlezoo.net)

http://www.particlezoo.net
http://www.particlezoo.net

