

Electroweak and Higgs Physics 1

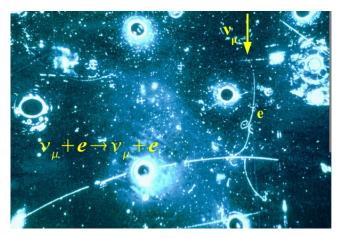
Kerstin Tackmann (DESY)

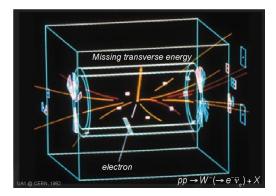

Kerstin Tackmann (DESY)

- Theory already covered last week by Jürgen Reuter
- Here: focus on those things not covered before and experimental aspects, with a few reminders
- Today's lecture: Mostly electroweak physics
- Tomorrow's lecture: Mostly Higgs physics

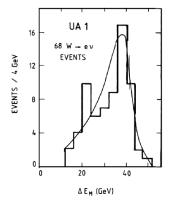
Many thanks to Marcel Stanitzki and Andreas Höcker!

Weak currents

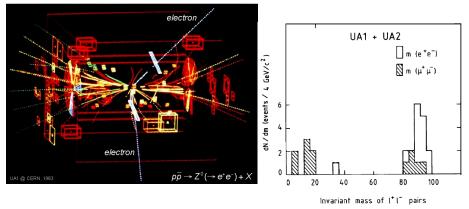

- To decribe β decay $n \rightarrow pe^- \bar{\nu_e}$: Fermi introduced 4point interaction
- Coupling constant G_F well-measured from μ lifetime: $G_F = 1.6637 \times 10^{-5} \, {\rm GeV}^{-2}$
- Ultraviolett divergences → Fermi theory only valid at low energies
- Solved by introduction of spin-1 boson: W^{\pm}
- 1967: Unification of electromagnetic and weak interaction: electroweak interaction with 3 massive (W[±], Z) and one massless (γ) bosons



Discovery of the neutral current


Neutral current discovered in 1973 with Gargamelle at CERN by observing $\nu_{\mu}e \rightarrow \nu_{\mu}e$

W and Z discoveries at SppS in 1983


Missing transverse energy in events with $E_e > 15$ GeV

 $m_W = (80.9 \pm 1.5 \pm 2.4)\,{
m GeV}$

C. Rubbia, Nobel Lecture, 1984

W and Z discoveries at SppS in 1983

 $m_Z = (95.1 \pm 2.5) \, {
m GeV}$

C. Rubbia, Nobel Lecture, 1984

Electroweak interactions

Remember from particle physics theory lecture

- Glashow, Salam and Weinberg unified electromagnetic and weak interactions to electroweak interaction
- Gauge fields are linear combinations of B^0 (U(1)_Y weak hypercharge with coupling g'), and $W^{1,2,3}$ (SU(2)_L weak isospin with coupling g)

$$egin{aligned} W^{\pm} &= rac{1}{\sqrt{2}} (m{W}^1 \mp i m{W}^2) \ Z &= \cos heta_W m{W}^3 - \sin heta_W B^0 \ A &= \sin heta_W m{W}^3 + \cos heta_W B^0 \end{aligned}$$

• with the masses related (at tree level): $m_W = m_Z \cos \theta_W$ and θ_W the weak mixing angle with

$$\sin\theta_W = \frac{g'}{\sqrt{g'^2 + g^2}}$$

Electroweak interactions

f

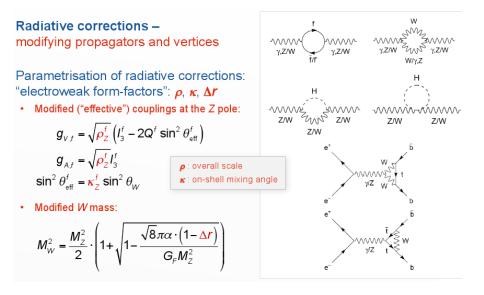
 Z_{μ}

$$\begin{aligned} &-i \frac{g}{2\cos\theta_W} \gamma_\mu \left[(I_f^3 - 2\sin^2\theta_W Q_f) - \gamma^5 I_f^3 \right] = \\ &-i \frac{g}{2\cos\theta_W} \gamma_\mu \left[g_{V,f}^{(0)} - \gamma^5 g_{A,f}^{(0)} \right] \end{aligned}$$

with g coupling of $SU(2)_L$, I_f^3 third component of weak isospin, $Q_f f$ charge

Vector and axial-vector couplings for $Z \to f\bar{f}$ $g_{V,f}^{(0)} = g_{L,f}^{(0)} + g_{R,f}^{(0)} = I_f^3 - 2\sin^2\theta_W Q_f$ $g_{A,f}^{(0)} = g_{L,f}^{(0)} - g_{R,f}^{(0)} = I_f^3$ Remember projection operators $P_L = \frac{1}{2}(1 - \gamma^5)$ and $P_R = \frac{1}{2}(1 + \gamma^5)$

Electroweak unification: relation between weak and electromagnetic couplings:

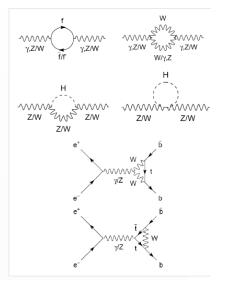

$$G_F = \frac{\pi \alpha(0)}{\sqrt{2}(M_W^{(0)})^2 (1 - (M_W^{(0)})^2) / M_Z^2)}$$

Often choose as 3 free parameters (tree level): α, M_Z, G_F and then

$$M_W^2 = rac{M_Z^2}{2} \left(1 + \sqrt{1 - rac{\sqrt{8}\pilpha}{G_F M_Z^2}}
ight)$$

Kerstin Tackmann (DESY)

Radiative corrections


Radiative corrections

Radiative corrections – modifying propagators and vertices

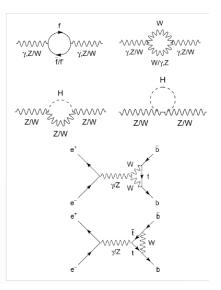
Important consequences

- → All other SM parameters enter the calculations
- In particular corrections are ~m²_{top} and ~ln(M_H)
- Loop correction of the order ~1%.
- Precision observables measured at LEP/SLC to much better precision !

→ Can test the SM and constraint the unknown SM Parameters

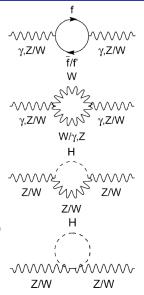
Radiative corrections

Radiative corrections – modifying propagators and vertices


Leading order terms ($M_{H} \ll M_{W}$)

*ρ*_Z and *κ*_Z can be split into sum of universal contributions from propagator self-energies:

$$\Delta \rho_{Z} = \frac{3G_{F}M_{W}^{2}}{8\sqrt{2}\pi^{2}} \left[\frac{m_{t}^{2}}{M_{W}^{2}} - \tan^{2}\theta_{W} \left(\ln \frac{M_{H}^{2}}{M_{W}^{2}} - \frac{5}{6} \right) + \dots \right]$$
$$\Delta \kappa_{Z} = \frac{3G_{F}M_{W}^{2}}{8\sqrt{2}\pi^{2}} \left[\frac{m_{t}^{2}}{M_{W}^{2}} \cot^{2}\theta_{W} - \frac{10}{9} \left(\ln \frac{M_{H}^{2}}{M_{W}^{2}} - \frac{5}{6} \right) + \dots \right]$$


 and flavour-specific vertex corrections, which are very small, except for top quarks, due to large |V_{tb}| CKM element

$$\Delta \rho^{f} = -2\Delta \kappa^{f} = -\frac{G_{F}m_{t}^{2}}{2\sqrt{2}\pi^{2}} + \dots$$

Electroweak precision physics

- Electroweak theory makes very distinct predictions, which can be tested by precision measurements performed by LEP, the Tevatron and also the LHC
- This also needs theoretical predictions with small and well-understood uncertainties → include higher-order corrections
- Sensitivity to top quark and Higgs via radiative corrections
- Most important experimental input to a global fit
 - * $e^+e^- \rightarrow f\bar{f}$ measured at the Z-pole: Z mass and (partial) width(s), asymmetries (LEP and SLC)
 - \star W mass and width (LEP and Tevatron)
 - ★ top mass (Tevatron)
- ightarrow This is the menu for today

SLC (1989-1998) $\sqrt{s} = 91.2 \, { m GeV}$

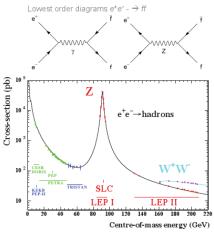
LEP-II (1996-2000)
$$\sqrt{s} = 160 - 209 \,\text{GeV}$$

13/46

 $\begin{array}{l} \mathsf{LEP-I} \ (1989\text{-}1995) \\ \sqrt{s} = 91.2 \, \mathrm{GeV} \end{array}$

LEP and SLC

Important experimental input to the fit: electroweak precision data measured at the Z⁰-resonance


Process under study: $e^+e^- \rightarrow f\bar{f}$

 f = all fermions (quarks, charged leptons, neutrinos) light enough to be pair produced

Hadronic cross-section:

- s⁻¹ fall-off due to virtual photon exchange
- Resonance at $\sqrt{s} = M_Z$
- For √s > 2M_W: pair-production of W's kinematically allowed
- Measurements around M_Z: SLC, LEP I

Combined paper LEP + SLC: Phys. Rept. 427, 257 (2006)

Z-to-fermion vertex has vector and axialvector components ightarrow parity violation

Example - electroweak cross-section formula for unpolarised beams (LEP)

Neglects photon ISR & FSR, gluon FSR, fermion masses

The \propto (1 + cos² θ) terms contribute to total cross-sections

• Measure cross-sections around M_Z via corrected event counts: $\sigma = (N_{sel} - N_{bq})/\epsilon_{sel}L$

The $\propto \cos\theta$ terms contribute only to asymmetries

 Measure Forward–Backward asymmetries in angular distributions final-state fermions: A_{FB} = (N_F - N_B)/(N_F + N_B)

Other asymmetries (not in above cross section formula)

- Dependence of Z⁰ production on helicities of initial state fermions (SLC) → Left–Right asymmetries
- Polarisation of final state fermions (can be measured in tau decays)

Total hadronic cross section - measurement and prediction

Total cross-section (from cos *θ* symmetric terms) expressed in Breit-Wigner form:

$$\sigma_{f\bar{f}}^{Z} = \sigma_{f\bar{f}}^{0} \cdot \frac{s \cdot \Gamma_{Z}^{2}}{\left(s - M_{Z}^{2}\right)^{2} + s^{2} \Gamma_{Z}^{2} / M_{Z}^{2}} \cdot \frac{1}{R_{\text{QED}}} \qquad \sigma_{f\bar{f}}^{0} = \frac{12\pi}{M_{Z}^{2}} \frac{\Gamma_{ee} \Gamma_{f\bar{f}}}{\Gamma_{Z}^{2}} \qquad \text{Corrected for QED radiation}$$

Partial widths add up to full width: $\Gamma_Z = \Gamma_{ee} + \Gamma_{\mu\mu} + \Gamma_{\tau\tau} + \Gamma_{hadronic} + \Gamma_{invisible}$

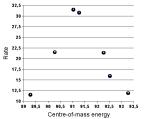
- Measured cross sections depend on products of partial and total widths
- Highly correlated set of parameters !

Instead: use less correlated set of six measurements

- Z mass and width: M_Z , Γ_Z
- Hadronic pole cross section: σ^{0}_{had}

• Three leptonic ratios (use lepton-univ.):
$$R_{\ell}^{0} = R_{e}^{0} = \Gamma_{had} / \Gamma_{ee} = R_{\mu}^{0} = R_{\tau}^{0}$$

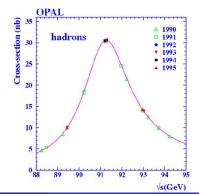
Hadronic width ratios: R⁰_b, R⁰_c


Taken from LEP: • precise √s • high statistics

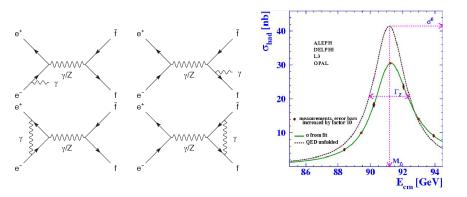
Include also SLD:

 higher effi./purity for heavy quarks

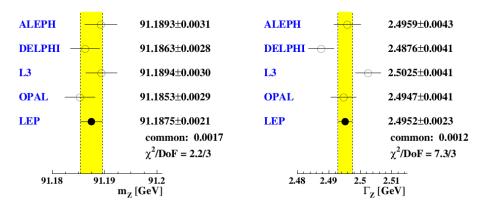
Z mass and width: measurement


Peak scan (from OPAL data)

- Perform energy scan around Z peak
- Measure hadronic and leptonic Z decays

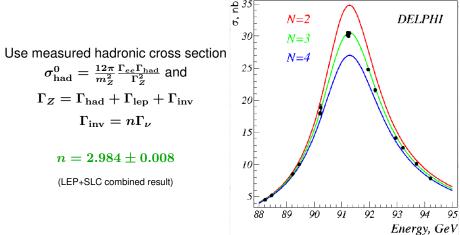

Obtain hadronic cross section as $\sigma_{had} = \frac{1}{L} \frac{1}{\epsilon} (N_{had} - N_{bkgd})$ with ϵ and N_{bkgd} from simulation Trigger efficiency > 99%

$$\sigma^{Z}_{far{f}}(s) = \sigma^{0}_{far{f}} rac{s\Gamma^{2}_{Z}}{(s-m^{2}_{Z})^{2}+rac{s^{2}}{m^{2}_{Z}}\Gamma^{2}_{Z}}$$



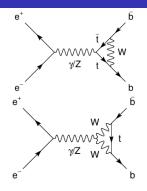
Z mass and width: radiative corrections

- Measured cross section is modified by initial and final state radiation
- Corrections can be large: QED corrections can be 30%
- Effects are corrected for by the experiments



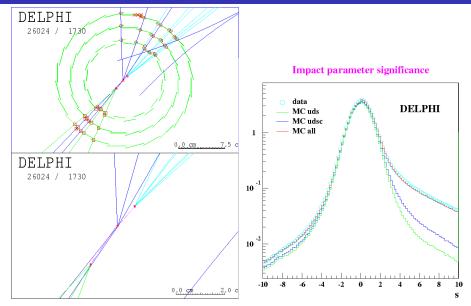
\boldsymbol{Z} mass and width as measured by the LEP experiments

Z and the neutrinos


Number of light $(m_{
u} < rac{1}{2}m_Z)$ neutrinos can be determined from the Z width

Limit before LEP: 4-16 types of neutrinos allowed

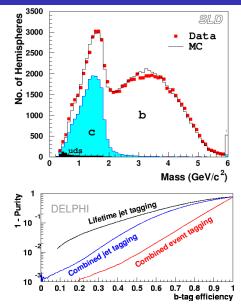
Hadronic width into *b*-quarks: $R_b = \Gamma_b / \Gamma_{had}$


- Significant enhancement of R_b from large mass of top quark m_t
- *m_t* unknown at the time of this measurement! top had not yet been seen in any experiment
- If there was no top quark, Γ_b would be small

How to identify *b*-jets?

- b quark decays weakly, with long lifetime ($au_b = 1.6 \, \mathrm{ps}$) due to V_{cb} being small
- ightarrow Measureable decay length ($\sim 3\,\mathrm{mm}$ for production at the Z peak)
- ightarrow Tracks appear to miss the reconstructed primary vertex
 - Impact parameter significance measures significance of distance of closest approach of reconstructed track to interaction point

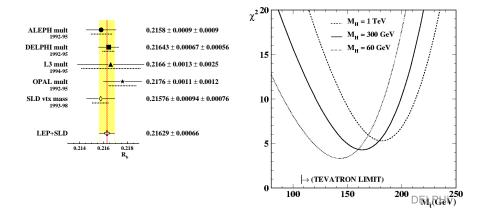
Identification of *b*-jets at DELPHI



Improved **b**-jet identification

One can do better: Combine information

- Impact parameter
- Secondary vertex mass
- Presence of lepton
 - * Lepton charge carries information about b vs \overline{b}
- Secondary vertex charge
- Secondary vertex p_T


Best *b*-tagging performance at SLD due to highly granular Si Pixel detector

R_b results

Results from LEP and SLD

Can already learn top is heavy before direct evidence for top from Tevatron

Asymmetry and polarisation – quantify parity violation

Distinguish vector and axial-vector couplings of the Z (*i.e.*, $\sin^2 \theta_{eff}^i$) Convenient to use "asymmetry parameters":

$$\boldsymbol{A}_{r} = \frac{\boldsymbol{g}_{Lf}^{2} - \boldsymbol{g}_{R,f}^{2}}{\boldsymbol{g}_{Lf}^{2} + \boldsymbol{g}_{R,f}^{2}} = 2 \frac{\boldsymbol{g}_{V,f} / \boldsymbol{g}_{A,f}}{1 + \left(\boldsymbol{g}_{V,f} / \boldsymbol{g}_{A,f}\right)^{2}} \quad \text{dependent on } \sin^{2} \theta_{\text{eff}}^{f} : \frac{\operatorname{Re}(\boldsymbol{g}_{V,f})}{\operatorname{Re}(\boldsymbol{g}_{A,f})} = 1 - 4 \left| \mathbf{Q}_{f} \right| \sin^{2} \theta_{\text{eff}}^{f}$$

Via final state (FS) angular distribution in unpolarised scattering (LEP)

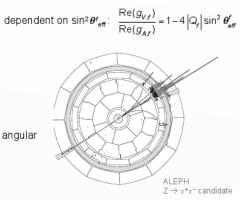
- Forward-backward asymmetries: $A_{FB}^{f} = \frac{N_{F} N_{B}}{N_{F} + N_{B}}$, $A_{FB}^{0,f} = \frac{3}{4}A_{e}A_{f}$
- LEP measurements: A^{0,J}_{FB}, A^{0,c}_{FB}, A^{0,b}_{FB}

Via IS polarisation (SLC): $A_{LR} = \frac{N_L - N_R}{N_L + N_R} \frac{1}{\left\langle \left| P \right|_e \right\rangle}, \quad A_{LRFB} = \frac{\left(N_F - N_B\right)_L - \left(N_F - N_B\right)_R}{\left(N_F + N_B\right)_L + \left(N_F + N_B\right)_R} \frac{1}{\left\langle \left| P_e \right| \right\rangle}$

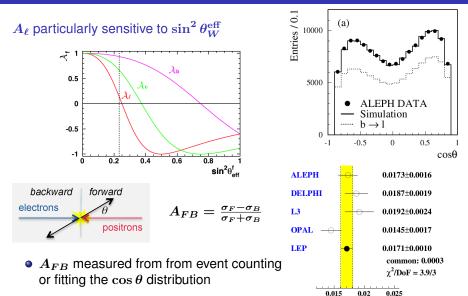
• Left-right, and left-right forward-backward asymmetries: $A_{LR}^0 = A_e$, $A_{LRFB}^{0,f} = \frac{3}{4}A_f$

Asymmetry and polarisation – quantify parity violation

Distinguish vector and axial-vector couplings of the Z (*i.e.*, $\sin^2 \theta_{eff}^i$) Convenient to use "asymmetry parameters":


$$A_{f} = \frac{g_{Lf}^{2} - g_{Rf}^{2}}{g_{Lf}^{2} + g_{Rf}^{2}} = 2\frac{g_{Vf}/g_{Af}}{1 + (g_{Vf}/g_{Af})^{2}}$$

Via final state polarisation (LEP):


Tau polarisation:

$$P_{r}(\cos\theta) = -\frac{A_{r}(1+\cos^{2}\theta)+2A_{e}\cos\theta}{1+\cos^{2}\theta+2A_{r}A_{e}\cos\theta}$$

- Measure r spin versus from energy and angular correlations in r decays
- Fit at LEP determines: A_r, A_e

Forward-backward asymmetries

 $A_{fb}^{0,1}$

Left-right asymmetries at SLC

$$A_{LR} = \frac{N_L - N_R}{N_L + N_R} \frac{1}{\left\langle \left| P \right|_e \right\rangle}$$

 e^- -beam polarization at SLC $\sim 75\%$

Z Count

92 ± 0.044 ± 0.004 0.100 Beam Polarization SLD 1992-1998 Data 0.1656 ± 0.0071 ± 0.0028 93 Strained Lattice Cat for 1994 SLD Run Strained Lattice C for 1997 SLD Run 94-95 0.1512 + 0.0042 + 0.001196 0.1593 + 0.0057 + 0.001097-98 \pm 0.0024 \pm 0.0010 Strained Lattice Cathod for 1993 SLD Run 0.1491 + 0.0019 + 0.0011Average 0.1514 y²/DOF=7.4/4 Prob.=11.4% 5000 1000 2000 3000 4000

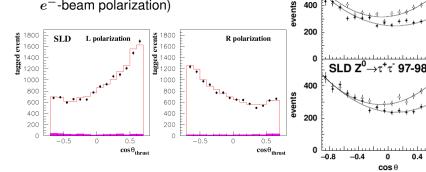
0.10 0.12 0.14 0.16

A⁰LB

- Single most sensitive to $\sin^2 heta_W^{ ext{eff}}$
- Do not use electron final state to eliminate t-channel process

 $\sin^2 heta_W^{ ext{eff}} = 0.23097 \pm 0.00027$

x 10²


Polarization of Electron Beam (%)

0

Left-right forward-backward asymmetries at SLC

$$A_{LRFB} = \frac{(\sigma_F - \sigma_B)_L - (\sigma_F - \sigma_B)_R}{(\sigma_F + \sigma_B)_L + (\sigma_F + \sigma_B)_R} \frac{1}{\langle \mathcal{P}_e \rangle}$$

 A_f determined with statistical precision equivalent to unpolarized forward-backward asymmetry with a 25 times larger data sample (with 75% e^{-} -beam polarization)

0.8

SLD e⁺e⁻→e⁺e⁻ 97-98

ս**՝ 97-98**

left polarised e beam right polarised e beam

2000 1500 events

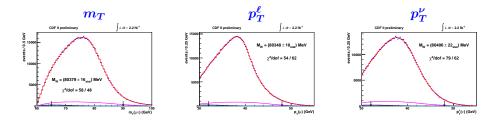
1000

500

600

400

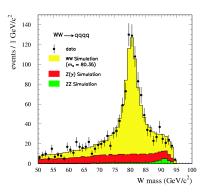
SLD

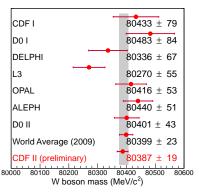

W mass at Tevatron

W mass measured at Tevatron with high precision

- Leptonic decays of $W: W \to e
 u, W \to \mu
 u$
- Template fits to transverse mass m_T , lepton p_T^ℓ and neutrino p_T^ν (from transverse energy) distributions with

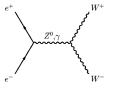
$$m_T = \sqrt{2p_T^\ell p_T^
u (1 - \cos(\phi^\ell - \phi^
u))}$$


- \star Templates for 1600 between $m_W=80$ and $81\,{
 m GeV}$
- ★ Uncertainties dominated by knowledge of lepton and recoil energy scale and parton distribution functions



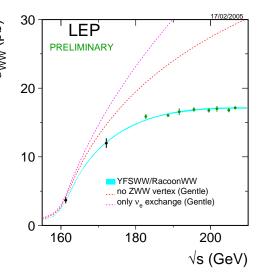
W mass at LEP-II (and Tevatron)

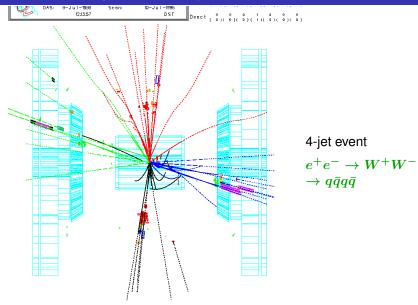
W mass also measured by LEP-II in $e^+e^-
ightarrow W^+W^-$

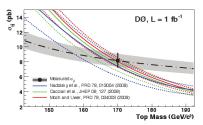

- $e^+e^-
 ightarrow W^+W^-
 ightarrow q ar q q ar q$ events above threshold
 - \star Kinematic contraints: all momenta sum up to 0 and two $q ar{q}$ pairs should have equal mass
- Threshold scan using about 10 pb^{-1} per experiment recorded around the WW threshold

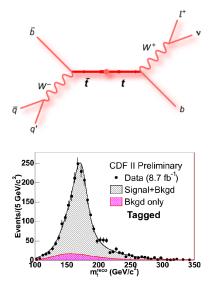


$e^+e^- ightarrow W^+W^-$


e irilinear gauge couplings, e.y. ZWW vertex predicted by rashow-Salam-Weinberg... (a) روابه های محمد (c) روابه های محمد (c) روابه های محمد (c) روابه های محمد (c) روابه (c) روابه محمد (c) رواب محمد (


... in addition to other WW production...


First WW pair seen by DELPHI



top mass at Tevatron

top almost always decays as t ightarrow Wb

- Mass measured in top decays to dilepton (4%), lepton+jets (30%) and fully hadronic (46%)
- Analysis heavily relies on identification of *b*-jets (*b*-tagging)
- Template analysis finding m_t and jet-energy-scale simultaneously
- Complementary method: Extract m_t from measured $t\bar{t}$ cross section

Many different quanities measured

- Z pole, cross sections and branching ratios $M_Z, \Gamma_Z, \sigma_{\rm had}^0, R_\ell^0, R_b^0, R_c^0$
- Asymmetries at the Z pole $A_{FB}^{0,\ell}, A_{FB}^{0,b}, A_{FB}^{0,c}, A_{\ell}, A_b, A_c, sin^2 \theta_W^{\text{eff}}$
- And additional observables $M_W,\,\Gamma_W,\,m_t$

...some measurements were briefly described here.

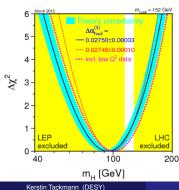
These (and a few others) are combined in a global fit

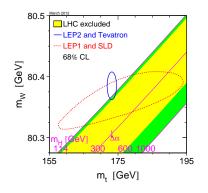
- Global fits to electroweak measurements have a long history:
 - ★ ZFITTER (D. Bardinet et. al.)
 - ⋆ TOPAZ0 (G. Passarino et et. al.)
 - * LEP Electroweak Working Group (M. Grünewald et. al.)
 - ★ Gfitter (M. Baak et. al.)
 - ★ GAPP (J. Erler)

Global electroweak fit

Inspect pulls $(\frac{|O^{\text{meas}} - 0^{\text{fit}}|}{\sigma^{\text{meas}}})$ to judge goodness-of-fit

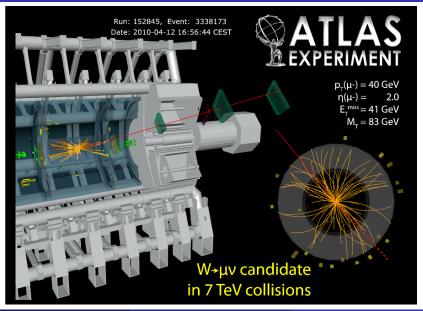
- No pull exceeds 3σ
 - * 0.8 measurements outside of 2σ expected
- A^{0,b}_{FB} shows largest pull value

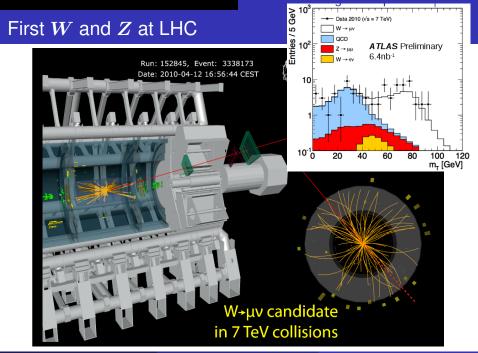

		Measurement	Fit	$ O^{\text{meas}} - O^{\text{fit}} / \sigma^{\text{meas}}$ 0 1 2 3	
	$\Delta \alpha_{had}^{(5)}(m_Z)$	0.02750 ± 0.00033	0.02759		
	m _z [GeV]	91.1875 ± 0.0021	91.1874		
l	Г _z [GeV]	2.4952 ± 0.0023	2.4959		
	$\sigma_{\sf had}^0$ [nb]	41.540 ± 0.037	41.478		
	R _I	20.767 ± 0.025	20.742		
	A ^{0,I} _{fb}	$\begin{array}{c} 20.767 \pm 0.025 \\ 0.01714 \pm 0.00095 \end{array}$	0.01645		
		0.1465 ± 0.0032		-	
	R _b	0.21629 ± 0.00066	0.21579		
	R _c	0.1721 ± 0.0030	0.1723		
	A ^{0,b} _{fb}	0.0992 ± 0.0016	0.1038		
	A ^{0,c} _{fb}	0.0707 ± 0.0035	0.0742		
	A _b	0.923 ± 0.020	0.935		
	A _c	0.670 ± 0.027	0.668		
	A _I (SLD)	0.1513 ± 0.0021	0.1481		
	$sin^2 \theta_{eff}^{lept}(Q_{fb})$	0.2324 ± 0.0012	0.2314		
	m _w [GeV]	80.385 ± 0.015	80.377		
	Г _w [GeV]	2.085 ± 0.042	2.092		
	m _t [GeV]	173.20 ± 0.90	173.26		


March 2012

2 3

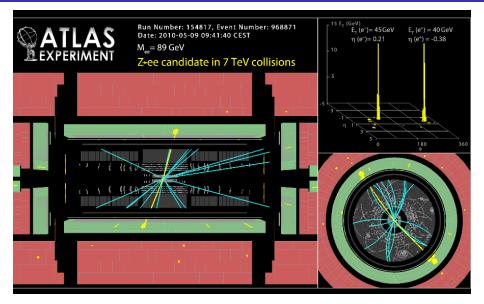
Constraining the Higgs mass

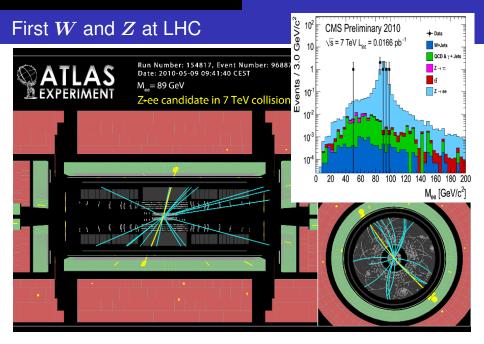

- m_W and m_t constrained from measurements at the Z pole
- Good agreement between indirect and direct measurements of m_W and m_t
- Direct measurements agree well with light Higgs



- Indirect contraints on Higgs mass $m_H < 152 \, {
 m GeV}$
- → Direct searches: tomorrow's lecture

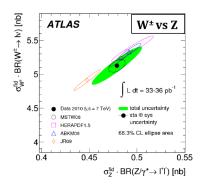
First W and Z at LHC

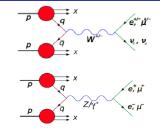



Kerstin Tackmann (DESY)

Kerstin Tackmann (DESY)

First W and Z at LHC

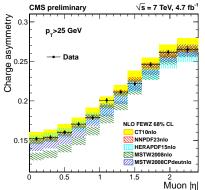




W and Z at LHC

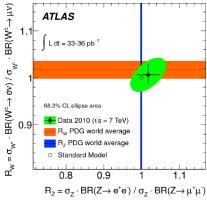
W and Z produced copiously at LHC

- Leptonic decays have clean signatures, good tool for understanding the detectors
- Precision test of the SM
- Important backgrounds for Higgs and New Physics searches


- Inclusive production cross sections for W and Z
- Test of higher-order QCD calculations...
- ...and of parton density functions

Kerstin Tackmann (DESY)

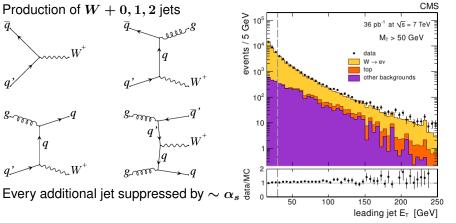
W and Z at LHC


Many more aspects can be tested...

...charge asymmetry in W production (\rightarrow PDFs)...

Protons have uud as valence quarks and prefer W^+ production

...lepton universality in decays to electrons and muons...

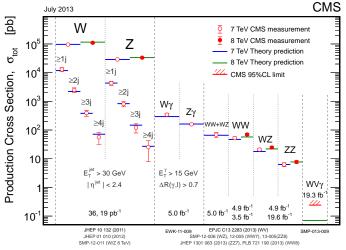


Good agreement with (more precise) world average

W/Z+jets

W+jets is important background to many new physics searches

Higgs searches are one of them


Precision tests for perturbative QCD (pQCD)

Kerstin Tackmann (DESY)

Highest- E_T jet spectrum in $W \rightarrow e\nu$

Electroweak measurements at LHC

Understanding many aspects of electroweak physics, and also important background processes for Higgs (and other) searches at LHC

Good agreement between measurements and predictions!

Kerstin Tackmann (DESY)

- Electroweak precision measurements at the *Z* pole by LEP and SLC offer stringent test of SM and constrain other SM parameters
 - ⋆ Masses of W, top, Higgs
 - ★ They also tell us there are 3 generations of (light) neutrinos
- Very good agreement with SM predictions observed
- Tomorrow we will turn to direct searches for the Higgs at LEP, Tevatron and the LHC
- W and Z will also play an important role there...