Quantum Chromodynamics

Overview

Part I-Setting the Stage
The Static Quark Model
Deep-Inelastic Scattering
Discovery of quarks and colour
The QCD Lagrangian
Discovery of gluons

Part 2 - Working with QCD

Renormalisation
Perturbative QCD
Jets
Factorisation and Parton Distribution Functions

Part 1

Note On Units

Natural Units

In particle physics, it is customary and convenient to set $\hbar=c=1$
Implications:
Energy ($m c^{2}$), momentum ($m c$) and mass (m): units of GeV Length (l) and time (t) : units of GeV^{-1}

Conversion:
using $\hbar=6.582 \mathrm{II} \cdot 10^{-16} \mathrm{eV} \cdot \mathrm{s}$
Energy: $\mathrm{I} \mathrm{GeV}=1.609 \cdot 10^{-10} \mathrm{~J}$

The Proton:
Mass: $\sim 1 \mathrm{GeV} / \mathrm{c}^{2}$
Size: ~1 fm

Momentum: $\mathrm{I} \mathrm{GeV} / \mathrm{c}=5.36 \cdot 10^{-19} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$
Mass: $\mathrm{I} \mathrm{GeV} / \mathrm{c}^{2}=1.79 \cdot 10^{-27} \mathrm{~kg}$
Length: $I \mathrm{GeV}^{-1}=1.97 \cdot 10^{-16} \mathrm{~m}=0.197 \mathrm{fm}$

The Static Quark Model

The Particle Zoo

In 1960s accumulation of data from many new baryon and meson resonances: sort them by their strangeness S and isospin I_{3}

Spin-Parity $\quad J^{P}=\frac{1}{2}^{+}$

$$
J^{P}=\frac{3}{2}^{+}
$$

The Static Quark Model

Postulating constituents

The flavour-states build up a symmetry group: $\mathrm{SU}(3)$ flavour
Physical particles: reduce the products $3 \times 3 \times 3$ (baryons) and $3 \times \overline{3}$ (mesons) and combine with $\mathrm{SU}(2)_{\text {spin }}$

Flavour	B	J	I	I_{3}	S	Q
up	$1 / 3$	$1 / 2$	$1 / 2$	$+1 / 2$	0	$+2 / 3$
down	$1 / 3$	$1 / 2$	$1 / 2$	$-1 / 2$	0	$-1 / 3$
strange	$1 / 3$	$1 / 2$	0	0	-1	$-1 / 3$

The quantum numbers are related through

$$
Q=\frac{1}{2}(B+S)+I_{3}
$$

where the hypercharge $Y=B+S$
The anti-particles have the signs of B, I_{3}, S and Q reversed
Masses: $m_{d}-m_{u} \approx 4 \mathrm{MeV}$ and $m_{s}-m_{d} \approx 150 \mathrm{MeV}$

The Static Quark Model

Spin I/2 Baryons:

Light Mesons: (pseudoscalars with $J^{P}=0^{-}$)

I	I_{3}	Wavefunction	Q
1	+1	$\left\|\pi^{+}\right\rangle=\|u, \bar{d}\rangle$	+1
1	-1	$\left\|\pi^{-}\right\rangle=-\|\bar{u}, d\rangle$	-1
1	0	$\left\|\pi^{0}\right\rangle=1 / \sqrt{ } 2(\|d, \bar{d}\rangle-\|u, \bar{u}\rangle)$	0
0	0	$\left\|\eta^{0}\right\rangle=1 / \sqrt{ } 2(\|d, \bar{d}\rangle+\|u, \bar{u}\rangle)$	0

Wave function of $\Delta^{++}:\left|\Delta^{++}\right\rangle=|u, \uparrow\rangle+|u, \uparrow\rangle+|u, \uparrow\rangle$
Symmetric in flavour, spin and space (quarks are in ground state: s-wave)
Violates the Pauli Principle!
Solution: one more internal degree of freedom - colour!

$$
\left|\Delta^{++}\right\rangle=|u, \uparrow, g\rangle+|u, \uparrow, r\rangle+|u, \uparrow, b\rangle
$$

Antisymmetric: $\left|\Delta^{++}\right\rangle=\Sigma \varepsilon_{\mathrm{ijk}}|u, \uparrow, i\rangle+|u, \uparrow, j\rangle+|u, \uparrow, k\rangle$

- With the arguments given, are you convinced that quarks have physical reality? Why?
- Do colour charges exist?
- How many colours are there?
- How can we test these assumptions?

Deep-Inelastic Scattering

Scattering Experiments

Used to probe the structure of matter and forces involved
Different high-energy
scattering experiments:
$\mathrm{e}^{+} \mathrm{e}^{-}, \mathrm{pp}, \mathrm{e}^{ \pm} \mathrm{p}$

Deep-Inelastic Scattering (DIS)

Lepton-nucleus scattering at high energies.
Use the lepton as clean probe to explore the structure of matter - initial state well known.

Distance scale in DIS:

$r[\mathrm{fm}] \approx \frac{\hbar c}{Q} \approx \frac{0.2}{Q[\mathrm{GeV}]}$
where Q is related to the transferred four-momentum

Elastic Electron Scattering

Electron (charge 1) scatters on a nucleon N with charge Z, mass M.
Take recoil into account (assume point-like particles).
Outgoing electron: $k^{\prime}=\left(E^{\prime}, 0, E^{\prime} \sin \theta, E^{\prime} \cos \theta\right)$
Variables
$Q^{2}=-q^{2}=4 E E^{\prime} \sin ^{2}(\theta / 2)$
$E-E^{\prime}=\frac{Q^{2}}{2 M} \Rightarrow E^{\prime}=\frac{E}{1+\frac{2 E}{M} \sin ^{2}\left(\frac{\theta}{2}\right)}$

target stays intact

Only one independent variable!
Mott Scattering: $\left.\frac{\mathrm{d} \sigma}{\mathrm{d} Q^{2}}\right|_{\mathrm{Mott}}=\frac{4 \pi \alpha^{2} Z^{2}}{Q^{4}} \frac{E^{\prime}}{E} \cos ^{2}\left(\frac{\theta}{2}\right)$
Assume a Dirac particle with spin I/2:

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} Q^{2}}=\frac{4 \pi \alpha^{2} Z^{2}}{Q^{4}} \frac{E^{\prime}}{E}\left[\cos ^{2}\left(\frac{\theta}{2}\right)-\frac{Q^{2}}{2 M^{2}} \sin ^{2}\left(\frac{\theta}{2}\right)\right]
$$

Proton Form Factors

So far we have assumed a point-like nucleon with spin I/2.
Now take a proton with $Z=1$ and allow for a charge distribution $\varrho(r)$.
Potential becomes: $V(\boldsymbol{r})=\int \frac{\rho\left(\boldsymbol{r}^{\prime}\right)}{4 \pi\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|} \mathrm{d} \boldsymbol{r}^{\prime} \quad$ with $\int \rho\left(\boldsymbol{r}^{\prime}\right) \mathrm{d} \boldsymbol{r}^{\prime}=1$
This introduces two (a priori unknown) form factors in the cross section: $G_{E}\left(Q^{2}\right), G_{M}\left(Q^{2}\right) \quad e(k)$

Rosenbluth Formula

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} Q^{2}}=\frac{4 \pi \alpha^{2} Z^{2}}{Q^{4}} \frac{E^{\prime}}{E}\left[\cos ^{2}\left(\frac{\theta}{2}\right) \frac{G_{E}^{2}+\tau G_{M}^{2}}{1+\tau}+2 \tau G_{M}^{2} \sin ^{2}\left(\frac{\theta}{2}\right)\right]
$$

with $\tau=Q^{2} /\left(4 M^{2}\right)>0$ (space-like)
Using the Mott cross section:

$$
\left(\frac{\mathrm{d} \sigma}{\mathrm{~d} Q^{2}}\right)_{\text {ela }}=\left(\frac{\mathrm{d} \sigma}{\mathrm{~d} Q^{2}}\right)_{\text {Mott }}\left[\frac{G_{E}^{2}+\tau G_{M}^{2}}{1+\tau}+2 \tau G_{M}^{2} \tan ^{2}\left(\frac{\theta}{2}\right)\right]
$$

Proton Form Factors

At small $\tau \ll 1$, and hence at small Q^{2}, the electric and magnetic form factors are just the Fourier-transforms of the charge and magnetic moment distributions of the proton:

$$
G_{E}\left(Q^{2}\right) \approx \int e^{i \boldsymbol{q} \cdot \boldsymbol{r}} \rho(\boldsymbol{r}) \mathrm{d} \boldsymbol{r} \quad \text { and } \quad G_{M}\left(Q^{2}\right) \approx \int e^{i \boldsymbol{q} \cdot \boldsymbol{r}} \mu(\boldsymbol{r}) \mathrm{d} \boldsymbol{r}
$$

This means that at $Q^{2} \approx 0$ we expect

$$
\underline{G_{E}(0)}=\int \rho\left(\boldsymbol{r}^{\prime}\right) \mathrm{d} \boldsymbol{r}^{\prime}=\underline{1} \text { and } G_{M}(0)=\int \mu\left(\boldsymbol{r}^{\prime}\right) \mathrm{d} \boldsymbol{r}^{\prime}=\vec{\mu}
$$

The experimental value of the anomalous magnetic moment of the proton $\mu_{p}=2.79$, so we expect $\underline{G_{M}(0)=2.79}$

Proton Form Factors

J.J.Murphy et al., Phys. Rev. C9, 2 I25 (I974)

In fact, we find that $\mu_{p} G_{E}\left(Q^{2}\right)=G_{M}\left(Q^{2}\right) \Rightarrow G_{M}(0)=\mu_{p}$
This means that the charge distribution is the same as the current spatial distribution in the proton.

Inelastic Electron Scattering

Transferred momentum:
$q=k-k^{\prime}$
Virtuality of exchanged boson:
$Q^{2}=-q^{2}>0$
Squared centre-of-mass energy:

$$
s=(P+k)^{2}
$$

Squared mass of the hadronic final state:

$$
W^{2}=(P+q)^{2}=M^{2}+2 q \cdot P-Q^{2}
$$

Inelasticity: $y=\frac{q \cdot P}{k \cdot P}$ with $0 \leq y \leq 1$
Scaling variable: $x=\frac{Q^{2}}{2 q \cdot P}$ with $0 \leq x \leq 1$

Deep: $Q^{2} \gg M^{2}$
Inelastic: $W>M$

Deep-Inelastic Scattering (DIS)

Deep: $Q^{2} \gg M^{2}$
Inelastic: $W>M$
Neglect rest masses whenever $W \gg m_{e}, W \gg M$

$$
\begin{aligned}
Q^{2} & =-\left(k-k^{\prime}\right)^{2} & W^{2} & =(P+q)^{2} \\
x & =\frac{Q^{2}}{2 q \cdot P} & y & =\frac{q \cdot P}{k \cdot P}
\end{aligned}
$$

Squared centre-of-mass energy: $s=4 E_{e} E_{p}$
Out of Q^{2}, x, y, W only two are independent at fixed centre-of-mass energy, since they are related through $Q^{2}=s x y$ and $W^{2}=M^{2}+2 q \cdot P-Q^{2}$

Thus, pairs of these variables fully determine the kinematics of the scattering.
Often used: (Q^{2}, x) and (Q^{2}, W^{2})

Deep-Inelastic Scattering Results

Early results from SLAC (1969):
$E=7-17.7 \mathrm{GeV}$
$\theta=10^{\circ}$
Elastic cross section falls off rapidly due to the proton not being point-like Inelastic: $W>M$

Ratio to Mott cross section nearly flat in Q^{2}
Q^{2} dependence becomes weaker for increasing W

Proton a composite particle!
M. Breidenbach et al., Phys. Rev. Lett. 23, 935 (1969)

Partons

Assume that proton consists of partons, then the electron scatters off a parton with momentum $x P$:

$$
\begin{aligned}
p_{q} & =q+x P \\
p_{q}^{2} & =(x P)^{2}=m_{q}^{2}=0 \\
& =(q+x P)^{2} \\
& =-Q^{2}+2 x q \cdot P+(x P)^{2}
\end{aligned}
$$

so we get $x=\frac{Q^{2}}{2 q \cdot P}$

The variable x can be interpreted as the momentum fraction of the proton carried by the struck parton

DIS Cross Section

The amplitude for the deep inelastic scattering diagram is given by
$\mathcal{A}=\underline{e \bar{u}\left(k^{\prime}\right) \gamma^{\alpha} u(k)} \frac{1}{q^{2}} \underline{\langle X| j_{\alpha}(0)|P\rangle}$
The cross section is proportional to $|\mathcal{A}|^{2}$ (Fermi's golden rule)

$$
\frac{\mathrm{d}^{2} \sigma}{\mathrm{~d} x \mathrm{~d} Q^{2}} \propto|\mathcal{A}|^{2}=\frac{\alpha^{2}}{Q^{4}} \underline{L_{\alpha \beta}} \underline{W^{\alpha \beta}}
$$

The leptonic tensor $L_{\alpha \beta}$ is fully determined by QED:
$\underline{L_{\alpha \beta}}=2\left(k_{\alpha} k_{\beta}^{\prime}+k_{\beta} k_{\alpha}^{\prime}-g_{\alpha \beta} k \cdot k^{\prime}\right)$
The hadronic tensor $W_{\alpha \beta}(P, q)$ is unknown, since it involves all the structure of the proton
$\underline{W_{\alpha \beta}(P, q)}=\frac{1}{4 \pi} \int \mathrm{~d}^{4} z e^{i q \cdot z}\langle P, S|\left[j_{\alpha}^{\dagger}(z), j_{\beta}(0)\right]|P, S\rangle$
\Rightarrow Absorb our ignorance in structure functions $F_{1}\left(x, Q^{2}\right)$ and $F_{2}\left(x, Q^{2}\right)$

DIS Cross Section

The DIS cross section then becomes

$$
\frac{\mathrm{d}^{2} \sigma}{\mathrm{~d} Q^{2} \mathrm{~d} x}=\frac{4 \pi \alpha^{2}}{x Q^{4}}\left[(1-y) \underline{F_{2}\left(x, Q^{2}\right)}+\frac{y^{2}}{2} 2 \underline{x F_{1}\left(x, Q^{2}\right)}\right]
$$

Rewrite the Rosenbluth formula in terms of Q^{2} and y

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} Q^{2}}=\frac{4 \pi \alpha^{2}}{Q^{4}} \frac{E^{\prime}}{E}\left[\cos ^{2}\left(\frac{\theta}{2}\right) \frac{G_{E}^{2}+\tau G_{M}^{2}}{1+\tau}+2 \tau G_{M}^{2} \sin ^{2}\left(\frac{\theta}{2}\right)\right]
$$

with $y=1-\frac{E^{\prime}}{E} \sin ^{2}(\theta / 2)$
we get (elastic scattering):

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} Q^{2}}=\frac{4 \pi \alpha^{2}}{Q^{4}}\left[(1-y) \frac{G_{E}^{2}+\tau G_{M}^{2}}{1+\tau}+\frac{1}{2} y^{2} \underline{G_{M}^{2}}\right]
$$

$F_{2}\left(x, Q^{2}\right)$ corresponds to the electromagnetic field of the parton $F_{1}\left(x, Q^{2}\right)$ corresponds to the spin of the parton

Early $\mathrm{F}_{\mathbf{2}}$ Data

Independence of the structure functions of $Q^{2}: F_{i}\left(x, Q^{2}\right)=F_{i}(x)$
J.D. Bjørken predicted scaling for $Q^{2} \rightarrow \infty$ as x stays fixed.

Scaling is obtained using Gell-Mann's current algebra in the quark model.
Scattering from point-like constituents of the proton!

Callan-Gross Relationship

F_{1} and F_{2} are not independent, but satisfy the Callan-Gross relationship:

$$
2 x F_{1}=F_{2}
$$

This means that partons are spin I/2 particles! (spin 0 , would mean $2 x F_{1}=0$)

The cross section now becomes

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} Q^{2} \mathrm{~d} x}=\frac{4 \pi \alpha^{2}}{x Q^{4}}\left(1-y+\frac{y^{2}}{2}\right) F_{2}\left(x, Q^{2}\right)
$$

The electric charge and magnetic moment are fixed with respect to each other
\rightarrow scattering from point-like Dirac particles

P. Schmüser, Feynman-Graphen und Eichtheorien für Experimentalphysiker, Springer Verlag (1988)

Clear evidence for Quarks!

Quark Parton Model (QPM)

Elastic electron-quark scattering:

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} Q^{2}}=\frac{4 \pi \alpha^{2} e_{q}^{2}}{Q^{4}}\left(1-y+\frac{y^{2}}{2}\right)
$$

Assumptions

same as $e-\mu$
scattering with charge e_{q}

- Single photon exchange
- incoherent scattering of quarks from the proton
- take $q_{i}(x) \mathrm{d} x$ to be the probability to find quark of type i inside the proton with momentum fraction between x and $x+\mathrm{d} x$

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} Q^{2} \mathrm{~d} x}=\frac{4 \pi \alpha^{2}}{Q^{4}}\left(1-y+\frac{y^{2}}{2}\right) \sum_{i} e_{i}^{2} q_{i}(x)
$$

Compare with:

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} Q^{2} \mathrm{~d} x}=\frac{4 \pi \alpha^{2}}{x Q^{4}}\left(1-y+\frac{y^{2}}{2}\right) F_{2}\left(x, Q^{2}\right)
$$

$$
F_{2}(x)=x \sum_{i} e_{i}^{2} q_{i}(x)
$$

How Does $\mathrm{F}_{2}(\mathrm{x})$ Look?

Early Experimental Results on F $_{2}$

$$
\begin{aligned}
& F_{2}\left(x, Q^{2}\right)= \\
& =\frac{\mathrm{d} \sigma}{\mathrm{~d} Q^{2} \mathrm{~d} x} \frac{x Q^{4}}{4 \pi \alpha^{2}} \frac{1}{\left(1-y+y^{2} / 2\right)}
\end{aligned}
$$

Experimentally accessible!
In the QPM $F_{2}(x)$ is directly proportional to the quark distributions $q_{i}(x)$
A. Bodek, et al., Phys. Rev. D20, I47I (1974)

FIG. 38. Values of νW_{2}^{p}, against x. The errors shown are purely random.

The QPM - Mini Summary

Proton consists of 3 partons, which can be identified with spin-I/2 quarks

Electron-proton scattering is then a sum of incoherent electron-quark scatterings with single photon exchange

Proton structure is defined by parton distributions $q_{i}(x)$

The Structure function is directly proportional to the quark content of the proton

$$
F_{2}(x)=x \sum_{i} e_{i}^{2} q_{i}(x)
$$

What's Missing?

$$
\begin{aligned}
\int_{0}^{1} F_{2}^{p}(x) \mathrm{d} x & =\int_{0}^{1} x\left(\frac{4}{9} u(x)+\frac{1}{9} d(x)\right) \mathrm{d} x \\
& =\frac{4}{9} f_{u}+\frac{1}{9} f_{d} \quad \text { with } \quad f_{u}=\int_{0}^{1} x u(x) \mathrm{d} x
\end{aligned}
$$

$$
\int_{0}^{1} F_{2}^{n}(x) \mathrm{d} x=\frac{1}{9} f_{u}+\frac{4}{9} f_{d} \quad \text { (assume isospin symmetry) }
$$

f_{u} and f_{d} are the fractions of the proton or neutron momenta carried by the up or down quarks

$$
\begin{aligned}
\text { Exp.: } \int_{0}^{1} F_{2}^{p}(x) \mathrm{d} x & \approx 0.18 \text { and } \int_{0}^{1} F_{2}^{n}(x) \mathrm{d} x \approx 0.12 \\
& \Rightarrow f_{u}=0.36 \text { and } f_{d}=0.18
\end{aligned}
$$

In the proton up-quark carry twice as much momentum as down-quarks What about colour ?
Where are 50% of the proton momentum ?

Discovering Colour

Rate for $\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow$ hadrons

$$
\mathcal{M}\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)=
$$

$$
\mathcal{M}\left(e^{+} e^{-} \rightarrow \mathrm{q} \overline{\mathrm{q}}\right)=
$$

$$
\frac{e^{2}}{q^{2}}\left[\bar{v}\left(e^{+}\right) \gamma^{\mu} u\left(e^{-}\right)\right]\left[v\left(\mu^{+}\right) \gamma^{\mu} \bar{u}\left(\mu^{-}\right)\right]
$$

$$
\frac{e e_{q}}{q^{2}}\left[\bar{v}\left(e^{+}\right) \gamma^{\mu} u\left(e^{-}\right)\right]\left[v(\overline{\mathrm{q}}) \gamma^{\mu} \bar{u}(\mathrm{q})\right]
$$

- Ignoring differences in the phase space,

$$
R=\frac{\sigma\left(e^{+} e^{-} \rightarrow \text { hadrons }\right)}{\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)}=N_{C} \frac{e_{q}^{2}}{e^{2}}
$$

- R directly sensitive to N_{C}
- Number of available flavours depends on $s=q^{2}$, with $V_{s}>2 m_{q}$ for a quark of flavour

CM energy $[\mathrm{GeV}]$	available quark pairs	R with $N_{C}=3$
$1<V_{s}<3$	$\mathrm{u}, \mathrm{d}, \mathrm{s}$	2
$4<V_{s}<9$	$\mathrm{u}, \mathrm{d}, \mathrm{s}, \mathrm{c}$	$10 / 3$
$V_{s}>10$	$\mathrm{u}, \mathrm{d}, \mathrm{s}, \mathrm{c}, \mathrm{b}$	$11 / 3$

Discovering Colour

- Compendium of many measurements from $\mathrm{e}^{+} \mathrm{e}^{-}$colliders
- Consistent with $N_{C}=3$
- Resonances at quark production thresholds: $q \bar{q}$-bound states
- At $\sqrt{S}>100 \mathrm{GeV}$ contributions from Z-exchange

More Evidence

Also $\pi^{0} \rightarrow 2 \gamma$ is sensitive to number of colours N_{C}

Every quark colour contributes in the loop

$$
\Gamma\left(\pi^{0} \rightarrow 2 \gamma\right)=\left(\frac{N_{C}}{3}\right)^{2} \frac{\alpha^{2} m_{\pi^{0}}^{3}}{64 \pi^{3} f_{\pi}^{2}}=7.76\left(\frac{N_{C}}{3}\right)^{2} \mathrm{eV}
$$

Experimentally, average of several measurements:
$\Gamma\left(\pi^{0} \rightarrow 2 \gamma\right)=7.74 \pm 0.37 \mathrm{eV}$

$$
\Rightarrow N_{C}=2.99 \pm 0.11
$$

A. Bernstein, A.Holstein, arXiv:III2.4809 (201I)

Constructing the QCD Lagrangian

Instead of $\operatorname{SU}(3)_{\text {flavour }}$ we use $\mathrm{SU}(3)_{\text {colour, }}$, theory must be invariant under gauge transformations in colour space
Theory is fully determined by the Lagrangian

$$
S=\int d t L=\int d t d^{3} x \mathcal{L}=\int d^{4} x \mathcal{L}\left(\phi, \partial_{\mu} \phi\right) \quad \Rightarrow \quad \partial_{\mu}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi\right)}\right)=\frac{\partial \mathcal{L}}{\partial \phi}
$$

Euler-Lagrange equations: lead to equations of motion
Quark fields: three colours $\psi_{a}=\left(\begin{array}{l}\psi_{1} \\ \psi_{2} \\ \psi_{3}\end{array}\right)$
Construct the Lagrangian analogous to QED:
Free Lagrangian: $\mathcal{L}_{0}=\bar{\psi}\left[i \gamma_{\mu} \partial^{\mu}-m\right] \psi$

Constructing the QCD Lagrangian

Require invariance under $\mathrm{SU}(3)_{\mathrm{c}}$ gauge transformations:

$$
\psi(x) \longrightarrow \tilde{\psi}(x)=U \psi(x)
$$

With $U=\exp \left[i g \sum_{a} \theta_{a}(x) \frac{\lambda_{a}}{2}\right]$ and $\theta_{a}(x)$ a real function and $a=1, . ., 8$
Eight generators $t_{a}=\lambda_{a} / 2$ of $\operatorname{SU}(3)$, with the Gell-Mann matrices

$$
\begin{aligned}
& \lambda_{1}=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \lambda_{2}=\left(\begin{array}{rrr}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad \lambda_{3}=\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right), \\
& \lambda_{4}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right), \lambda_{5}=\left(\begin{array}{ccc}
0 & 0 & -i \\
0 & 0 & 0 \\
i & 0 & 0
\end{array}\right), \quad \lambda_{6}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), \\
& \lambda_{7}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -i \\
0 & i & 0
\end{array}\right), \lambda_{8}=\frac{1}{\sqrt{3}}\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -2
\end{array}\right)
\end{aligned}
$$

Lie algebra:

$$
\begin{gathered}
\operatorname{tr}\left\{\lambda_{a}\right\}=0 \\
\operatorname{tr}\left\{\lambda_{a} \lambda_{b}\right\}=2 \delta_{a b} \\
{\left[\lambda_{a}, \lambda_{b}\right]=2 i f_{a b c} \lambda_{c}}
\end{gathered}
$$

structure constants:

$$
\begin{aligned}
f_{123} & =1 \\
f_{147} & =-f_{156}=f_{246}=f_{257}= \\
& =f_{345}=-f_{367}=\frac{1}{2} \\
f_{458} & =f_{678}=\sqrt{\frac{3}{2}}
\end{aligned}
$$

Constructing the QCD Lagrangian

Lagrangian has to stay invariant under transformations
Infinitessimal gauge transformation:

$$
\begin{aligned}
& U=\exp \left[i g \sum_{a} \theta_{a}(x) t_{a}\right]=1+i g \sum_{a} \theta_{a}(x) t_{a}+\ldots \\
& \widetilde{\psi}_{a}(x)=\psi_{a}(x)+i g \sum_{b} \theta_{b}(x) t^{b} \psi_{a}(x)
\end{aligned}
$$

Derivative of the transformed field:

$$
\partial^{\mu} \widetilde{\psi}_{a}(x)=\partial^{\mu} \psi_{a}(x)+i g \sum_{b} t^{b} \theta_{b}(x) \partial^{\mu} \psi_{a}(x)-i g \sum_{b} t^{b}\left(\partial^{\mu} \theta_{b}(x)\right) \psi_{a}(x)
$$

transforms differently than the field $\rightarrow \mathcal{L}_{0}$ is not gauge-invariant
Solution: Introduction of eight gauge fields: $A_{a}(x)$
Gauge transformation $\widetilde{A}^{\mu}=U A^{\mu} U^{-1}+\frac{i}{g}\left(\partial^{\mu} U\right) U^{-1}$
$\widetilde{A}_{a}^{\mu}(x)=A_{a}^{\mu}(x)+i g \sum_{b, c} f_{a b c} \theta_{b}(x) A_{c}^{\mu}(x)-\partial^{\mu} \theta_{a}(x)$

Constructing the QCD Lagrangian

Similarly to QED construct the covariant derivative
$D^{\mu}=\partial^{\mu}+i g \sum_{a} A_{a}^{\mu}(x) t^{a}$
Gauge invariance given by $\widetilde{D^{\mu} \psi_{a}}=\partial^{\mu} \widetilde{\psi}_{a}+i g \sum_{b} \widetilde{A}_{b}^{\mu}(x) t^{b} \widetilde{\psi}_{a}$
We find that $\widetilde{D^{\mu} \psi_{a}}=D^{\mu} \psi_{a}+i g \sum_{a} \theta_{a}(x) t^{a} D^{\mu} \psi_{a}=U\left(D^{\mu} \psi_{a}\right)$
\Rightarrow the derivative transforms similar to the quark fields
We arrive at the Lagrangian $\mathcal{L}=\bar{\psi}\left(i \gamma^{\mu} \mathcal{D}_{\mu}-m_{j}\right) \psi-\frac{1}{4} F_{\mu \nu}^{a} F_{a}^{\mu \nu}$
with $F_{a}^{\mu \nu}=\partial^{\mu} A_{a}^{\nu}-\partial^{\nu} A_{a}^{\mu}$
BUT this Lagrangian is again not invariant under $\operatorname{SU}(3) \mathrm{c}$!
Reason: transformation of field strength tensor
$\widetilde{A}_{a}^{\mu}(x)=A_{a}^{\mu}(x)+i g \sum_{b, c} \underline{f_{a b c} \theta_{b}(x) A_{c}^{\mu}(x)}-\partial^{\mu} \theta_{a}(x)$

Constructing the QCD Lagrangian

Add an additional term:

$$
G_{a}^{\mu \nu}=\partial^{\mu} A_{a}^{\nu}-\partial^{\nu} A_{a}^{\mu}+g \sum f_{a b c} A_{b}^{\mu} A_{c}^{\nu}
$$

And finally we have the full Lagrangian of QCD

$$
\mathcal{L}=\sum_{f} \bar{\psi}_{f}\left(i \gamma^{\mu} \mathcal{D}_{\mu}-m_{f}\right) \psi_{f}-\frac{1}{4} G_{\mu \nu}^{a} G_{a}^{\mu \nu}
$$

Gauge invariance lead to

- introduction of 8 gluon fields: $\{3\} \times\{3\}=8 \oplus 1$ possible fields, but only the octet fields carry colour
- gluons are massless, since a term $m_{g} A_{a}^{\mu} A_{\mu}^{a}$ would violate gauge invariance
- same coupling strength g for quark-gluon and gluon-gluon interaction
- renormalisability - a non-Abelian gauge theory is renormalisable if it is gauge invariant (t ’Hooft)

The Missing Piece: Gluons

Decay of the $\Upsilon(9.46)$

If gluons existed, the primary decay would be through three gluons

Decay width (from DORIS):

$\frac{\Gamma(\Upsilon \rightarrow \operatorname{ggg} \rightarrow \text { hadrons })}{\Gamma\left(\Upsilon \rightarrow e^{+} e^{-}\right)}=\frac{\left(10 \pi^{2}-90\right) \alpha_{s}^{3}}{81 \pi e_{q}^{2} \alpha^{2}} \approx 34$ (the.)
$\frac{\Gamma(\Upsilon \rightarrow \operatorname{ggg} \rightarrow \text { hadrons })}{\Gamma\left(\Upsilon \rightarrow e^{+} e^{-}\right)}=\frac{39_{-10}^{+19}}{1.29 \pm 0.14}=30_{-10}^{+20}$ (exp.)
Event shape: Sphericity

$$
S=\frac{3 \sum P_{T, i}^{2}}{2 \sum P_{i}^{2}}, 0<S<1
$$

$S=0$

P. Söding, G.Wolf, Ann.Rev.Nucl.Part.Sci.3I,23I (198I)

The Missing Piece: Gluons

Three-Jet Events in $\mathbf{e}^{+} \mathbf{e}^{-}$

Radiation of a gluon leads to 3-jet structure

First observed at PETRA (higher CMS energy than at DORIS)

Oblateness: $O=F_{\text {major }}-F_{\text {minor }}$
O is small for 2-jet events and becomes larger for 3-jet events, proportional to the P_{T} of the radiated gluon

D. P. Barber (Mark-J), Phys.Lett.B89, I39(I979)

Summary of Part I

We saw that...

Quarks - 6 flavours, massive spin-I/2 particles
Gluons - massless spin I particles
3 colours
Hadrons: composite particles made of quarks and gluons

... and found OCD

Beautiful field theory with local gauge invariance, but can it explain

- quasi-free partons observed in DIS ?
- non-observation of free quarks and gluons ?
- formation of jets and production of hadrons in particle collisions ?

