
DESY Summer Student Lectures
August 5 and 9, 2013

Quantum Chromodynamics

Roman Kogler 
University of Hamburg

roman.kogler@physik-uni.hamburg.de

1Roman Kogler QCD

mailto:roman.kogler@desy.de
mailto:roman.kogler@desy.de


Overview

Part 1 - Setting the Stage
The Static Quark Model
Deep-Inelastic Scattering
Discovery of quarks and colour
The QCD Lagrangian
Discovery of gluons
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Part 2 - Working with QCD
Renormalisation
Perturbative QCD
Jets
Factorisation and Parton Distribution Functions



Part 1



Note On Units
Natural Units

In particle physics, it is customary and convenient to set ħ = c = 1

Implications:

Energy (mc2), momentum (mc) and mass (m): units of GeV

Length (l) and time (t): units of GeV−1

Energy: 1 GeV = 1.609⋅10-10 J

Momentum: 1 GeV/c = 5.36⋅10-19 kg⋅m/s

Mass: 1 GeV/c2 = 1.79⋅10-27 kg

Length: 1 GeV-1 = 1.97⋅10-16 m = 0.197 fm

The Proton:

Mass: ~1GeV/c2

Size:  ~1 fm

Conversion: 

using ħ = 6.582119⋅10-16 eV⋅s
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with # # Q2

4M2 and J0 a cylindrical Bessel function.
A straightforward application of Eq. (11) to the proton

using the parameterizations [16,17] yields the results
shown in the upper panel of Fig. 1. The curves obtained
using the two different parameterizations overlap. Further-
more, there is negligible sensitivity to form factors at very
high values of Q2 that are currently unmeasured. The
density is peaked at low values of b, but has a long positive
tail, suggestive of a long-ranged, positively charged pion
cloud.

The neutron results are shown in the lower panel of
Fig. 1. The curves obtained using the two different param-
eterizations seem to overlap, but see below. The surprising
result is that the central neutron charge density is negative.
If the neutron is sometimes a proton surrounded by a
negatively charged pionic cloud, one would expect to
obtain a positive central density [7]. Another mechanism
involving correlations in the nucleonic wave function in-
duced by one gluon exchange would also lead to a positive
central density because the interaction between two iden-
tical d quarks [6] is repulsive. The values of the integral of
Eq. (11) are somewhat sensitive to the regime 2< #< 4
for whichGE is as yet unmeasured. About 30% of the value
of !!0" arises from this region.

The negative central density deserves further explana-
tion. The upper panel of Fig. 2 shows F1 for the neutron
obtained using the two different parameterizations which
are observably different. However, in both cases F1 is

negative [because of the dominance of the GM term of
Eq. (11)] for all values of Q2. This, along with taking b #
0, J0!Qb" # 1 in Eq. (11), leads immediately to the central
negative result. The long range structure of the charge
density is captured by displaying the quantity b!!b" in
the lower panel of Fig. 2. At very large distances from
the center, again suggesting the existence of the long-
ranged pion cloud.

The present analysis provides detailed information
about the location of charge density within the nucleon,
and also incorporates the lore regarding mean-square-radii
(MSR). It has long been known that the MSR defined by
the form factor GE is dominated by the Foldy term
%1:91=!4M2" # %0:126 fm2 [19,20] arising from the
neutron magnetic moment F2!0". The experimental value
of the GE MSR, cited in [17], is !%0:114& 0:003" fm2, so
the MSR associated with F1 (obtained from the integralR
d2bb2!!b") is small and positive ($ 0:012 fm2). This

result is consistent with Figs. 1 and 2. However, knowing
the MRS of F1 does not, by itself, allow one to conclude
that the central neutron charge density is negative, does not
reveal the critical model-independent feature that at the
very largest distances the charge density is negative and
does not imply the oscillatory behavior displayed in Figs. 1
and 2.

One can gain information about the individual u and d
quark densities by invoking charge symmetry [invariance
under a rotation by " about the z (charge) axis in isospin
space] [21] so that the u, d densities in the proton are the
same as the d, u densities in the neutron. We also neglect
the effects of s!s [22] or heavier pairs of quarks. In this case
!u!b" # !p!b" % !n!b"=2, !d!b" # !p!b" % 2!n!b". The
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FIG. 1 (color online). Upper panel: proton charge density
!!b". Lower panel: neutron charge density. The solid curves
use the parameterization of [17], and the dashed (red) curve uses
[16].
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FIG. 2 (color online). Upper panel: F1. Lower panel: b!!b" in
transverse position space. The solid curves are obtained using
[17] and the dashed curves with [16].
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The Static Quark Model

In 1960s accumulation of data from many new 
baryon and meson resonances: sort them by 
their strangeness S and isospin I3
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Spin-Parity JP =
3
2

+

The Particle Zoo

JP =
1
2

+



The Static Quark Model

6Roman Kogler QCD

Postulating constituents

Flavour B J I I3 S Q

up ⅓ ½ ½ +½ 0 +⅔

down ⅓ ½ ½ −½ 0 −⅓

strange ⅓ ½ 0 0 -1 −⅓

Q =
1
2
(B + S) + I3

The quantum numbers are 
related through

where the hypercharge Y = B + S 

The anti-particles have the signs of B, I3, S and Q reversed

Physical particles: reduce the products 3 x 3 x 3 (baryons) and 
3 x 3 (mesons) and combine with SU(2)spin¯

Masses:  md – mu ≈ 4 MeV and ms – md ≈ 150 MeV

The flavour-states build up a symmetry group: SU(3)flavour



The Static Quark Model
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Spin 1/2 Baryons:

Light Mesons:

(pseudoscalars

 with JP=0−)

I I3 Wavefunction Q
1 +1 ⎥π+〉 = ⎥u,d〉 +1
1 -1 ⎥π−〉 = −⎥u,d〉 -1
1 0 ⎥π0〉 = 1/√2(⎥d,d〉 −⎥u,u〉) 0
0 0 ⎥η0〉 = 1/√2(⎥d,d〉 +⎥u,u〉) 0

¯
¯
¯ ¯
¯ ¯



Colour

Wave function of Δ++:  ⎥Δ++〉 = ⎥u,↑〉 + ⎥u,↑〉 + ⎥u,↑〉

8Roman Kogler QCD

Symmetric in flavour, spin and space (quarks are in ground state: s-wave)

Violates the Pauli Principle!

Solution: one more internal degree of freedom - colour!

⎥Δ++〉 = ⎥u,↑,g〉 + ⎥u,↑,r〉 + ⎥u,↑,b〉

Antisymmetric: ⎥Δ++〉 = Σ εijk⎥u,↑,i〉 + ⎥u,↑,j〉 + ⎥u,↑,k〉

‣With the arguments given, are you convinced that quarks have 
physical reality? Why?

‣Do colour charges exist? 

‣How many colours are there?

‣How can we test these assumptions?

N
$cqc{

cq@
cqr\

N
cqLO

(o
!-

f-vvvv:

$aFi 
-S 

Eb
* 

| 
EÜ

+r 
5d

\l 
ori

I 
()-o

a 
| 

€(r
ri 

E.-()(1
!F

^l 
' 

o
ohYy().=

+ 
I 

?'r 
-BT

\ 
I 

^ 
o.2

a
a 

I 
: 

co 
'3E
(, 

'-i
ol 

(\,Fio-
q 

o 
'^ll 

I 
t 

' 
'q

# 
p-0 

oE
o\aS e--

]8IIpa

jtrlav)V)
\:

-8-.

Itn

0()t4

a.'ä
JAC

)-
0.lä

Xc)
nc)
öoog'rl63
E9a.ltr
tr 

c.)
trgbO

 F-i
U

'
a-t
tv 

"O
lN

Oc€ 
l-r

-cgvq
E). 

9..

sI1:
alllrl-o.II

_1.1

,, 
I

tl"8.I

I3ll&)a\

V):v,

b-lc4
b\

I

I
IIII

Ogo0)oF.i\n

a
rl\@il+l

rlll
cr)N

 
eN

 
o

ltllllll
\. 

\. 
\. 

\'

c{I

FIN

)-re 
C

'.1

)-r 
O

.l

I IN

\ 
C

f,
\

\l
(1 

a
v

.*
-o

g 
_98+.J

)o
-ö1I

\,/\--./

^/
,.w

-t 
v1

€

-iYUiOst=>,
äO

 t-.i
.-- 

(g
lr-O

./ 
v)

./ 
(.)

./ 
v)

JP =
3
2

+



Deep-Inelastic Scattering

Scattering Experiments

Used to probe the structure 
of matter and forces involved

Different high-energy 
scattering experiments: 
e+e−, pp, e±p 

Deep-Inelastic 
Scattering (DIS)

Lepton-nucleus scattering at 
high energies.

Use the lepton as clean probe 
to explore the structure of 
matter - initial state well 
known.

r [fm] � �c

Q
� 0.2

Q [GeV]

where Q is related to the 
transferred four-momentum

Distance scale in DIS:

re
so

lv
ed

 d
is

ta
nc

e 
[m

]

en
er

gy
 [

eV
]

year
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History of DIS



Elastic Electron Scattering

e(k)

target stays intact

e(k’)

θ

Variables

Mott Scattering:

Electron (charge 1) scatters on a nucleon N with charge Z, mass M. 
Take recoil into account (assume point-like particles).
Outgoing electron: k’ = (E’, 0, E’ sinθ, E’ cosθ)

E � E� =
Q2

2M
E� =

E

1 + 2E
M sin2

�
�
2

�⇒

Only one independent variable!

Assume a Dirac particle with spin 1/2:

Q2 = �q2 = 4EE� sin2 (�/2)

d�

dQ2

����
Mott

=
4��2Z2

Q4

E�

E
cos2

�
�

2

�

d�

dQ2
=

4��2Z2

Q4

E�

E

�
cos2

�
�

2

�
� Q2

2M2
sin2

�
�

2

��
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Proton Form Factors

e(k)

e(k’)

So far we have assumed a point-like nucleon with spin 1/2.
Now take a proton with Z=1 and allow for a charge distribution ρ(r).

θ

Potential becomes: V (r) =
�

�(r�)
4�|r � r�|dr� with

�
�(r�)dr� = 1

This introduces two (a priori unknown) 
form factors in the cross section: GE(Q2), GM (Q2)

Rosenbluth Formula

Using the Mott cross section:

with � = Q2/(4M2) > 0 (space-like)

d�

dQ2
=

4��2Z2

Q4

E�

E

�
cos2

�
�

2

�
G2

E + �G2
M

1 + �
+ 2�G2

M sin2

�
�

2

��

�
d�

dQ2

�

ela

=
�

d�

dQ2

�

Mott

�
G2

E + �G2
M

1 + �
+ 2�G2

M tan2

�
�

2

��
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Proton Form Factors

At small          , and hence at small Q2, the electric and magnetic form factors 
are just the Fourier-transforms of the charge and magnetic moment 
distributions of the proton: 

� � 1

GE(Q2) �
�

eiq·r�(r)dr GM (Q2) �
�

eiq·rµ(r)drand

This means that at Q2 ≈ 0 we expect

GE(0) =
�

�(r�)dr� = 1 and

The experimental value of the anomalous magnetic moment of the proton 
μp = 2.79, so we expect  

GM (0) =
�

µ(r�)dr� = �µ

GM (0) = 2.79

12Roman Kogler QCD



Proton Form Factors

J.J.Murphy et al., Phys. Rev. C9, 2125 (1974)

R.C.Walker et al., Phys. Rev. D49, 5671 (1994)

In fact, we find that µpGE(Q2) = GM (Q2)

This means that the charge distribution is the same as the current spatial 
distribution in the proton.

GE(0) = 1

GM (0) = µp⇒

13Roman Kogler QCD



Inelastic Electron Scattering

p(P)

X

W± (q)

νe(k )e(k)

p(P)

X

γ , Z 0(q)

e(k )e(k)
q = k � k�

s = (P + k)2

W 2 = (P + q)2 = M2 + 2q · P �Q2

y =
q · P

k · P

Q2 = �q2 > 0

0 � y � 1

Transferred momentum:

Virtuality of exchanged boson:

Squared centre-of-mass energy:

Squared mass of the hadronic final state:

Inelasticity: with

Scaling variable: x =
Q2

2q · P
0 � x � 1with

Deep: Q2 �M2

Inelastic: W > M

14Roman Kogler QCD



Deep-Inelastic Scattering (DIS)

W � me, W �M

Deep: Q2 �M2

Inelastic: W > M

Neglect rest masses whenever

Squared centre-of-mass energy:  s = 4 Ee Ep

Out of Q2, x, y, W only two are independent at fixed centre-of-mass energy, 
since they are related through Q2 = s x y and W2 = M2 + 2 q⋅P − Q2

Thus, pairs of these variables fully determine the kinematics of the scattering.

Often used: ( Q2, x ) and ( Q2, W2 ) 

y =
q · P

k · P
x =

Q2

2q · P

W 2 = (P + q)2Q2 = �(k � k�)2

15Roman Kogler QCD



Deep-Inelastic Scattering Results

Inelastic: W > M

M. Breidenbach et al., Phys. Rev. Lett. 23, 935 (1969)

Early results from SLAC (1969): 

E = 7 - 17.7 GeV

θ = 10°

Ratio to Mott cross section 
nearly flat in Q2

expected

observed

Q2 dependence becomes weaker for 
increasing W

Proton a composite particle!

Elastic cross section falls off rapidly due 
to the proton not being point-like

16Roman Kogler QCD



Partons

Assume that proton consists of partons, then 
the electron scatters off a parton with 
momentum xP:

X

p(P)

e(k) e(k’)

e, Z0 (q)

xP
pq

pq = q + xP

= (q + xP )2

= �Q2 + 2xq · P + (xP )2

p2
q = (xP )2 = m2

q = 0

x =
Q2

2q · P
so we get

The variable x can be interpreted as the momentum fraction of the 
proton carried by the struck parton

17Roman Kogler QCD



DIS Cross Section

The cross section is proportional to 

The amplitude for the deep inelastic scattering diagram is given by
e(k) e(k′)

p(P) X

(Fermi’s golden rule)

The leptonic tensor Lαβ  is fully determined by QED:

L

W

The hadronic tensor Wαβ(P,q) is unknown, since it involves all the structure 
of the proton

⇒ Absorb our ignorance in structure functions F1(x,Q2) and F2(x,Q2)

A = eū(k�)��u(k)
1
q2

�X|j�(0)|P �

|A|2

d2�

dxdQ2
� |A|2 =

�2

Q4
L�� W��

L�� = 2
�
k�k�

� + k�k�
� � g��k · k��

W��(P, q) =
1
4�

�
d4zeiq·z�P, S

�� �
j†
�(z), j�(0)

� ��P, S
�

18Roman Kogler QCD



DIS Cross Section

Rewrite the Rosenbluth formula in terms of Q2 and y

d2�

dQ2dx
=

4��2

xQ4

�
(1� y)F2(x,Q2) +

y2

2
2xF1(x,Q2)

�
The DIS cross section then becomes

d�

dQ2
=

4��2

Q4

�
(1� y)

G2
E + �G2

M

1 + �
+

1
2
y2G2

M

�

F2(x,Q2) corresponds to the electromagnetic field of the parton

F1(x,Q2) corresponds to the spin of the parton

with y = 1� E�

E
sin2(�/2)

d�

dQ2
=

4��2

Q4

E�

E

�
cos2

�
�

2

�
G2

E + �G2
M

1 + �
+ 2�G2

M sin2

�
�

2

��

we get (elastic scattering):

19Roman Kogler QCD



Early F2 Data

F2(x,Q2)

x = 0.25

J.T. Friedman, H.W. Kendall,  Ann. Rev. Nucl. Sci. 22, 203 (1972)

Independence of the structure functions of Q2: Fi (x,Q2) = Fi (x)

Scaling!

J.D. Bjørken predicted scaling for Q2 → ∞ as x stays fixed. 
Scaling is obtained using Gell-Mann’s current algebra in the quark model. 

Scattering from point-like constituents of the proton!

20Roman Kogler QCD



Callan-Gross Relationship

P. Schmüser, Feynman-Graphen und 
Eichtheorien für Experimentalphysiker, 

Springer Verlag (1988)

F1 and F2 are not independent, but 
satisfy the Callan-Gross relationship:

2xF1 = F2

This means that partons are spin 1/2 
particles! (spin 0, would mean                ) 2xF1 = 0

The cross section now becomes

d�

dQ2dx
=

4��2

xQ4

�
1� y +

y2

2

�
F2(x,Q2)

The electric charge and magnetic moment 
are fixed with respect to each other 

→ scattering from point-like Dirac particles

Clear evidence for Quarks!

21Roman Kogler QCD



Quark Parton Model (QPM)

d�

dQ2dx
=

4��2

xQ4

�
1� y +

y2

2

�
F2(x,Q2)

Elastic electron-quark scattering: e(k) e(k’)

q (p) q (p’)

d�

dQ2
=

4��2e2
q

Q4

�
1� y +

y2

2

� same as e-μ 
scattering with 
charge eq

Assumptions

• Single photon exchange

• incoherent scattering of quarks from the proton

• take qi(x)dx to be the probability to find quark of type i inside the 
proton with momentum fraction between x and x+dx

d�

dQ2dx
=

4��2

Q4

�
1� y +

y2

2

� �

i

e2
i qi(x)

Compare with:

⎫
｜
｜
⎬
｜
｜
⎭

F2(x) = x
�

i

e2
i qi(x)

22Roman Kogler QCD



How Does F2(x) Look?

Single Dirac 
proton

1

Three static 
quarks

1

Three static 
quarks

1

F2(x)

x1⅓

Single Dirac 
proton

1

F2(x)

x1

+higher orders

1

+higher orders

1

F2(x)

x1⅓

Three interacting 
quarks

1

F2(x)

1⅓ x

23Roman Kogler QCD

Three interacting 
quarks

1



Early Experimental Results on F2

A. Bodek, et al.,  Phys. Rev. D20, 1471 (1974)

F2(x)

F2(x,Q2) =
d�

dQ2dx

xQ4

4��2

1
(1� y + y2/2)

F2(x,Q2) =
d�

dQ2dx

xQ4

4��2

1
(1� y + y2/2)

Experimentally accessible!

In the QPM F2(x) is directly 
proportional to the quark 
distributions qi(x) 

24Roman Kogler QCD



The QPM - Mini Summary

Proton consists of 3 partons, which can be 
identified with spin-1/2 quarks

Electron-proton scattering is then a sum of 
incoherent electron-quark scatterings with 
single photon exchange

Proton structure is defined by 
parton distributions

u

u

d

P

xi P

�

i

xi = 1

0 � xi � 1

F2(x) = x
�

i

e2
i qi(x)

F2(x) = x
�

i

e2
i qi(x)

The Structure function is directly proportional 
to the quark content of the proton

25Roman Kogler QCD



What’s Missing?
� 1

0
F2(x)dx =

� 1

0
x

�
4
9
u(x) +

1
9
d(x)

�
dx

=
4
9
fu +

1
9
fd fu =

� 1

0
xu(x)dxwith 

p

proton

� 1

0
F2(x)dx =

1
9
fu +

4
9
fd (assume isospin symmetry)

n
neutron

fu and fd are the fractions of the proton or neutron 
momenta carried by the up or down quarks 

Exp.: 
� 1

0
F2(x)dx � 0.18

p � 1

0
F2(x)dx � 0.12nand

 fu = 0.36  and  fd = 0.18 ⇒

F2

x

Where are 50% of the proton momentum

In the proton up-quark carry twice as much momentum as down-quarks ✓

?
26Roman Kogler QCD

What about colour ?



Discovering Colour

27Roman Kogler QCD

Rate for e+e!!hadrons

• Ignoring differences in the phase space, ratio, 

R between hadron production and muon 

production:

• Nc=3 is the number of quark colours

• eq= +!, "# is the charge of the quark

• The number of available quark flavours 

depends on the available s=q2

• $s > 2 mq for a quark flavour q to be produced.

Gluon self-Interactions and Confinement

Prof. M.A. Thomson Michaelmas 2011 257

! Gluon self-interactions are believed to give 
rise to colour confinement

! Qualitative picture:
•Compare QED with QCD

e+

e-

q

q
•In QCD “gluon self-interactions squeeze 

lines of force into a flux tube”

q q
! What happens when try to separate two coloured objects  e.g. qq

•Form a flux tube of interacting gluons of approximately constant
energy density 

•Require infinite energy to separate coloured objects to infinity
•Coloured quarks and gluons are always confined within colourless states
•In this way QCD provides a plausible explanation of confinement – but

not yet proven (although there has been recent progress with Lattice QCD)
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Hadronisation and Jets
!Consider a quark and anti-quark produced in electron positron annihilation

i) Initially Quarks separate at
high velocity

ii) Colour flux tube forms
between quarks

iii) Energy stored in the
flux tube sufficient to 
produce qq pairs

q q

q q

q qq q

iv) Process continues
until quarks pair
up into jets of
colourless hadrons

! This process is called hadronisation. It is not (yet) calculable.
! The main consequence is that at collider experiments quarks and gluons

observed as jets of particles

e–

e+
!

q

q
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Handout 3 : Interaction by 
Particle Exchange and QED

Recap

Prof. M.A. Thomson Michaelmas 2011 102

e– !–

e+ !"#

! Working towards a proper calculation of decay and scattering processes
lnitially concentrate on: e– e–

qq

• e+e– ! !+!–

• e– q ! e– q

" In Handout 1 covered the relativistic calculation of particle decay rates
and cross sections 

$%%&
|M|2

flux
x (phase space)

" In Handout 2 covered relativistic treatment of spin-half particles
Dirac Equation

" This handout concentrate on the Lorentz Invariant Matrix Element
• Interaction by particle exchange
• Introduction to Feynman diagrams
• The Feynman rules for QED

M(e+e� � qq̄) =
e eq

q2
[v̄(e+)�µu(e�)][v(q̄)�µū(q)]

M(e+e� � µ+µ�) =
e2

q2
[v̄(e+)�µu(e�)][v(µ+)�µū(µ�)]

R =
�(e+e� � hadrons)
�(e+e� � µ+µ�)

= Nc
e2
q

e2

CM energy 

(GeV)

Available 

quark pairs
R

1 < $s < 3 u, d, s 2

4 < $s < 9 u, d, s, c 10/3

$s > 10 u, d, s, c, b 11/3
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6 41. Plots of cross sections and related quantities

σ and R in e+e− Collisions
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Figure 41.6: World data on the total cross section of e+e− → hadrons and the ratio R(s) = σ(e+e− → hadrons, s)/σ(e+e− → µ+µ−, s).
σ(e+e− → hadrons, s) is the experimental cross section corrected for initial state radiation and electron-positron vertex loops, σ(e+e− →
µ+µ−, s) = 4πα2(s)/3s. Data errors are total below 2 GeV and statistical above 2 GeV. The curves are an educative guide: the broken one
(green) is a naive quark-parton model prediction, and the solid one (red) is 3-loop pQCD prediction (see “Quantum Chromodynamics” section of
this Review, Eq. (9.7) or, for more details, K. G. Chetyrkin et al., Nucl. Phys. B586, 56 (2000) (Erratum ibid. B634, 413 (2002)). Breit-Wigner
parameterizations of J/ψ, ψ(2S), and Υ(nS), n = 1, 2, 3, 4 are also shown. The full list of references to the original data and the details of
the R ratio extraction from them can be found in [arXiv:hep-ph/0312114]. Corresponding computer-readable data files are available at
http://pdg.lbl.gov/current/xsect/. (Courtesy of the COMPAS (Protvino) and HEPDATA (Durham) Groups, May 2010.) See full-color
version on color pages at end of book.

Measurement of R

•Consistent with NC=3, this is one of the key pieces of evidence for three 

quark colours.

•At quark thresholds, $s ~ 2mq “resonances” occur as bound states of qq ! 

more easily produced. 

•Steps at ~4 and ~10 GeV due to charm and bottom quark threshold

•At $s ~ 100 GeV, Z-boson exchange takes over. 

•Compendium of measurements from many lepton colliders.

12

Rate for e+e−→hadrons

‣ Ignoring differences in the phase space,

‣ R directly sensitive to NC

‣Number of available flavours depends on 
s = q2, with √s > 2mq for a quark of flavour  
q to be produced

CM energy
[GeV]

available 
quark pairs

R with 
NC = 3

1 < √s < 3 u, d, s 2

4 < √s < 9 u, d, s, c 10/3

√s > 10 u, d, s, c, b 11/3

R =
�(e+e� � hadrons)
�(e+e� � µ+µ�)

= NC
e2
q

e2
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6 46. Plots of cross sections and related quantities

σ and R in e+e− Collisions
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Figure 46.6: World data on the total cross section of e+e− → hadrons and the ratio R(s) = σ(e+e− → hadrons, s)/σ(e+e− → µ+µ−, s).
σ(e+e− → hadrons, s) is the experimental cross section corrected for initial state radiation and electron-positron vertex loops, σ(e+e− →
µ+µ−, s) = 4πα2(s)/3s. Data errors are total below 2 GeV and statistical above 2 GeV. The curves are an educative guide: the broken one
(green) is a naive quark-parton model prediction, and the solid one (red) is 3-loop pQCD prediction (see “Quantum Chromodynamics” section of
this Review, Eq. (9.7) or, for more details, K. G. Chetyrkin et al., Nucl. Phys. B586, 56 (2000) (Erratum ibid. B634, 413 (2002)). Breit-Wigner
parameterizations of J/ψ, ψ(2S), and Υ(nS), n = 1, 2, 3, 4 are also shown. The full list of references to the original data and the details of
the R ratio extraction from them can be found in [arXiv:hep-ph/0312114]. Corresponding computer-readable data files are available at
http://pdg.lbl.gov/current/xsect/. (Courtesy of the COMPAS (Protvino) and HEPDATA (Durham) Groups, May 2010.)

‣Compendium of many measurements from e+e− colliders

‣Consistent with NC = 3 

‣ Resonances at quark production thresholds: qq-bound states

‣At √s > 100 GeV contributions from Z-exchange

¯

J. Beringer, et al.(Particle Data Group),  Phys. Rev. D86, 10001 (2012)

11/310/32
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Also π0 → 2γ is sensitive to number of colours NC

Experimentally, average of several 
measurements: 
Γ(π0 → 2γ) = 7.74 ± 0.37 eV

⇒ NC = 2.99 ± 0.11

�(�0 � 2�) =
�

NC

3

�2 �2m3
�0

64�3f2
�

= 7.76
�

NC

3

�2

eV

Every quark colour 
contributes in the loop

A. Bernstein, A.Holstein,  arXiv:1112.4809 (2011)
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Quark fields: three colours

Instead of SU(3)flavour we use SU(3)colour, theory must be invariant under 
gauge transformations in colour space

�a =

�

�
�1

�2

�3

�

�

6/85 Jürgen Reuter Theoretical Particle Physics DESY, 08/2011

Why Quantum Field Theory?
• Subatomic realm: typical energies and length scales are of order

(�c) ⇤ 200MeV · fm ⌅ use of both special relativity and quantum
mechanics mandatory

• Particles (quantum states) are created and destroyed, hence particle
number not constant: beyond unitary time evolution of a single QM
system

• Schrödinger propagator (time-evolution operator) violates
microcausality

• Scattering on a potential well for relativistic wave equation leads to
unitarity violation

• Use quantized fields: can be viewed as continuos limit of QM
many-body system with many (discrete) degrees of freedom

• Least Action Principle leads to classical equations of motion
(Euler-Lagrange equations)

S =

⇤
dtL =

⇤
dtd3xL =

⇤
d4xL(�, ⇤µ�) ⌅ ⇤µ

�
⇤L

⇤(⇤µ�)

⇥
=

⇤L
⇤�

Euler-Lagrange equations: lead to equations of motion

Theory is fully determined by the Lagrangian

Free Lagrangian: 

2. 2. Local SU(3) Gauge transformations

• Starting point: Quark fields ψ =
(

ψαi

)







α = u, d, s, c, b, t (flavor index) Nf = 6 ←→ SU(Nf )

i = 1, 2, 3 (color index) Nc = 3 ←→ SU(3)c

where ψαi is a 4-component Dirac-spinor.

Consider Quark fields with color degree of freedom and their free Lagrangian:

ψ =








ψ1

ψ2

ψ3








, L0 = ψ̄
[

iγµ∂
µ − m

]

ψ (2.11)

• Local SU(3)c gauge transformations

ψ(x) −→ ψ̃(x) = U ψ(x) (2.12)

with U = exp

[

− i θa(x)
λa

2

]

where θa(x) is a real function with a = 1, 2, · · · , 8.

Hypothesis : Physics of strong interaction of quarks is invariant under gauge

transformation: ψ(x) → U(x) ψ(x).

SU(3)c is a non-abelian gauge group.

• Gauge covariant derivative:

Dµ = ∂µ − i g Aµ(x) (2.13)

where g is a dimensionless coupling strength analogous to e in QED.

Aµ(x) =
8

∑

a=1

ta Aa
µ(x) (2.14)

Introducing Aa
µ(x), SU(3)c gauge fields “gluons”,

L1 = ψ̄(x)
[

iγµD
µ − m

]

ψ(x) (2.15)

Lagrangian L1 becomes gauge invariant.

D̃µψ ≡ ∂µψ̃ − i g Ãµψ̃ = U
(

DµU
)

Ãµ = U
[

Aµ −
i

g
U † ∂µU

]

U †
(2.16)
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• Infinitesimal gauge transformation

U = exp
[

− i θa(x) ta
]

" 1 − i θa(x) ta + · · · (2.17)

transformation of gauge field up to terms linear in θa(x)

Aµ
a(x) → Ãµ

a(x) = Aµ
a(x) −

1

g
∂µθa(x) + fabcθb(x)Aµ

c (x) (2.18)

• Gluons are massless (a mass term mgAµ
aA

a
µ would not be gauge invariant).

• Gluonic field tensors:

If one would take the form analogous to QED,

F a
µν(x) = ∂µAa

ν(x) − ∂νA
a
µ(x), (2.19)

not gauge invariant in QCD.

Introduce additional term to obtain gauge invariant Gluonc field tensor.

Ga
µν(x) = ∂µAa

ν(x) − ∂νA
a
µ(x) + g fabc Ab

µ(x) Ac
ν(x) (2.20)

Gµν ≡ ta Ga
µν =

i

g

[

Dµ , Dν

]

(2.21)

• Gluonic Lagrangian:

Lglue = −
1

4
Ga

µν(x) Gµν
a (x) = −

1

2
tr

{

Gµν Gµν
}

(2.22)

2. 3. QCD Lagrangian

• QCD Lagrangian:

LQCD = ψ̄
(

iγµD
µ − m

)

ψ −
1

2
tr

{

Gµν Gµν
}

(2.23)

with Dµ = ∂µ − igAµ(x).1

1 Remark : frequently Aµ → gAµ

⇒ LQCD = ψ̄
(

iγµ(∂µ − iAµ) − m
)

ψ −
1

2g2
tr

{

Gµν Gµν
}

13
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, ta =
λa

2

Construct the Lagrangian analogous to QED:
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With                                            and θa(x) a real function and a = 1,..,8

Eight generators ta = λa / 2 of SU(3), with the Gell-Mann matrices

Appendix: SU(N)-Group and Lie algebra

Short mathematical appendix about groups:

• Group: G = {g, h, k, · · · }

– For g, h ∈ G, gh ∈ G

– There exists a “unit” element e such that eg = ge = g.

– For each g ∈ G, there exists an inverse g−1 ∈ G ; g−1g = gg−1 = e.

• Linear group:

Elements g, h, · · · (transformations/operators) with the following property:

For each g, h ∈ G exists αg + βh ∈ G with α, β ∈ C

• Representations of a linear group:

Mapping: g ∈ G → (aij) ∈ space of complex valued matrices with aij ∈ C.

• Adjoint operator:

Let g ∈ G (linear), then there exists a unique g† with the representation (aij)† = (a∗
ji).

• Unitary transformations/operators: U ∈ G

U † = U−1 ⇒ U †U = UU † = . (2.35)

Consequently a unitary transformation can be written as follows:

U = exp[ iH ] = + iH +
i 2

2
H2 + · · · (2.36)

with Hermitian operator H , i.e. H† = H .

Example-1. Group U(1) with elements U = exp[iα] where α ∈ R

U † = e−iα , UU † = U †U =

Group of gauge transformation in QED
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Example-2. Group SU(N)

Group of unitary transformations represented by unitary N × N matrices

U = exp

[

i
∑

a

αaXa

]

with | det U |2 = 1

where αa are real parameters with a = 1, · · · , N2 − 1. The hermitian operators Xa

are the generators of the SU(N) group.

Generators form Lie-algebra:

[

Xa , Xb

]

= i fabc Xc (2.37)

where fabc are the structure constants of the group.

! For N = 2, SU(2) generators Xa = σa/2 (a = 1, 2, 3)

Pauil matrices:

σ1 =




0 1

1 0



 , σ2 =




0 −i

i 0



 , σ3 =




1 0

0 −1



 (2.38)

tr{σa} = 0

tr{σa σb} = 2 δab

(2.39)

Structure constants: fabc = εabc.

! For N = 3, SU(3) generators Xa = λa/2 (a = 1, · · · , 8)

Gell-Mann matrices:

λ1 =








0 1 0

1 0 0

0 0 0








, λ2 =








0 −i 0

i 0 0

0 0 0








, λ3 =








1 0 0

0 −1 0

0 0 0








,

λ4 =








0 0 1

0 0 0

1 0 0








, λ5 =








0 0 −i

0 0 0

i 0 0








, λ6 =








0 0 0

0 0 1

0 1 0








,

λ7 =








0 0 0

0 0 −i

0 i 0








, λ8 = 1√
3








1 0 0

0 1 0

0 0 −2








(2.40)
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where ψαi is a 4-component Dirac-spinor.

Consider Quark fields with color degree of freedom and their free Lagrangian:

ψ =
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, L0 = ψ̄
[

iγµ∂
µ − m

]

ψ (2.11)

• Local SU(3)c gauge transformations

ψ(x) −→ ψ̃(x) = U ψ(x) (2.12)

with U = exp

[

− i θa(x)
λa

2

]

where θa(x) is a real function with a = 1, 2, · · · , 8.

Hypothesis : Physics of strong interaction of quarks is invariant under gauge

transformation: ψ(x) → U(x) ψ(x).

SU(3)c is a non-abelian gauge group.

• Gauge covariant derivative:

Dµ = ∂µ − i g Aµ(x) (2.13)

where g is a dimensionless coupling strength analogous to e in QED.

Aµ(x) =
8

∑

a=1

ta Aa
µ(x) (2.14)

Introducing Aa
µ(x), SU(3)c gauge fields “gluons”,

L1 = ψ̄(x)
[

iγµD
µ − m

]

ψ(x) (2.15)

Lagrangian L1 becomes gauge invariant.

D̃µψ ≡ ∂µψ̃ − i g Ãµψ̃ = U
(

DµU
)

Ãµ = U
[

Aµ −
i

g
U † ∂µU

]

U †
(2.16)
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• Infinitesimal gauge transformation

U = exp
[

− i θa(x) ta
]

" 1 − i θa(x) ta + · · · (2.17)

transformation of gauge field up to terms linear in θa(x)

Aµ
a(x) → Ãµ

a(x) = Aµ
a(x) −

1

g
∂µθa(x) + fabcθb(x)Aµ

c (x) (2.18)

• Gluons are massless (a mass term mgAµ
aA

a
µ would not be gauge invariant).

• Gluonic field tensors:

If one would take the form analogous to QED,

F a
µν(x) = ∂µAa

ν(x) − ∂νA
a
µ(x), (2.19)

not gauge invariant in QCD.

Introduce additional term to obtain gauge invariant Gluonc field tensor.

Ga
µν(x) = ∂µAa

ν(x) − ∂νA
a
µ(x) + g fabc Ab

µ(x) Ac
ν(x) (2.20)

Gµν ≡ ta Ga
µν =

i

g

[

Dµ , Dν

]

(2.21)

• Gluonic Lagrangian:

Lglue = −
1

4
Ga

µν(x) Gµν
a (x) = −

1

2
tr

{

Gµν Gµν
}

(2.22)

2. 3. QCD Lagrangian

• QCD Lagrangian:

LQCD = ψ̄
(

iγµD
µ − m

)

ψ −
1

2
tr

{

Gµν Gµν
}

(2.23)

with Dµ = ∂µ − igAµ(x).1

1 Remark : frequently Aµ → gAµ

⇒ LQCD = ψ̄
(

iγµ(∂µ − iAµ) − m
)

ψ −
1

2g2
tr

{

Gµν Gµν
}
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, ta =
λa

2

Require invariance under SU(3)c gauge transformations:

tr{λa} = 0

tr{λa λb} = 2 δab

(2.41)

Lie-algebra:

[

λa , λb

]

= 2 i fabc λc (2.42)

Structure constants:

fabc = −i tr

([

λa

2
,

λb

2

]

λc

)

(2.43)

fabc is totally antisymmetric with nonvanishing members,

f123 = 1

f147 = −f156 = f246 = f257 = f345 = −f367 =
1

2

f458 = f678 =

√

3

2

(2.44)

• Irreducible representations of SU(2):

Xa ≡ Ja =
σa

2
(a = 1, 2, 3)

– Casimir operator of SU(2): J2 = J2
1 + J2

2 + J2
3

which commutes with all generators

[

J2 , Ja

]

= 0 (a = 1, 2, 3). (2.45)

– Ladder (raising and lowering) operators:

J± = J1 ± iJ2

J2 =
1

2

(

J+J− + J−J+

)

+ J2
3

[

J+ , J−
]

= 2 J3 ,
[

J3 , J±
]

= ±J±

(2.46)

– Eigenstates of J2 and J3 :

J2 |λ, M〉 = λ |λ, M〉 , J3 |λ, M〉 = M |λ, M〉 (2.47)

J2 − J2
3 = J2

1 + J2
2 ≥ 0 =⇒ λ − M2 ≥ 0 (2.48)

18

– Let j be the largest M : J+ |λ, j〉 = 0

J−J+ |λ, j〉 =
(

J2 −
1

2

[

J+ , J−
]

− J2
3

)

|λ, j〉

=
(

J2 − J3 − J2
3

)

|λ, j〉

=
(

λ − j2 − j
)

|λ, j〉

= 0.

(2.49)

Therefore

λ = j(j + 1) ≥ 0. (2.50)

– Relabeling the states |λ, M〉 ≡ | j, M〉, Eq. (2.47) becomes

J2 | j, M〉 = j(j + 1) | j, M〉 , J3 | j, M〉 = M | j, M〉. (2.51)

– Let j′ be the smallest M : J− | j, j′〉 = 0

J+J− | j, j′〉 =
(

J2 + J3 − J2
3

)

| j, j′〉

=
(

j2 + j + j′ − j′ 2
)

| j, j′〉

= 0.

(2.52)

Hence

j(j + 1) = j′(j′ − 1) =⇒ j′ = −j. (2.53)

– Basis states:
{

| j, M〉 with M = j, j − 1, · · · , −j, dimension: dj = 2j + 1
}

.

• Product of representations of SU(2):

J = J (1) + J (2) , J3 = J (1)
3 + J (2)

3 (2.54)

J (i)2 | j(i), M (i)〉 = j(i)(j(i) + 1) | j(i), M (i)〉

J (i)
3 | j(i), M (i)〉 = M (i) | j(i), M (i)〉.

(2.55)

To look for | j, M〉 with J2 | j, M〉 = j(j + 1) | j, M〉 and J3 | j, M〉 = M | j, M〉, in

general, we form appropriate linear combinations of product states:

| j, M〉 =
∑

M (1), M (2)



j(1)M (1)j(2)M (2)| jM


 | j(1), M (1)〉 | j(2), M (2)〉 (2.56)

where the quantities


j(1)M (1)j(2)M (2)| jM


 are called Clebsch-Gordan coefficients.
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tr{λa} = 0
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2 + J2
3

which commutes with all generators
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J2 , Ja

]

= 0 (a = 1, 2, 3). (2.45)
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J± = J1 ± iJ2

J2 =
1

2

(

J+J− + J−J+

)

+ J2
3

[

J+ , J−
]

= 2 J3 ,
[

J3 , J±
]
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(2.46)

– Eigenstates of J2 and J3 :

J2 |λ, M〉 = λ |λ, M〉 , J3 |λ, M〉 = M |λ, M〉 (2.47)

J2 − J2
3 = J2

1 + J2
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(
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(
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(2.49)

Therefore

λ = j(j + 1) ≥ 0. (2.50)

– Relabeling the states |λ, M〉 ≡ | j, M〉, Eq. (2.47) becomes

J2 | j, M〉 = j(j + 1) | j, M〉 , J3 | j, M〉 = M | j, M〉. (2.51)

– Let j′ be the smallest M : J− | j, j′〉 = 0

J+J− | j, j′〉 =
(

J2 + J3 − J2
3

)

| j, j′〉

=
(

j2 + j + j′ − j′ 2
)

| j, j′〉

= 0.

(2.52)

Hence

j(j + 1) = j′(j′ − 1) =⇒ j′ = −j. (2.53)

– Basis states:
{

| j, M〉 with M = j, j − 1, · · · , −j, dimension: dj = 2j + 1
}

.

• Product of representations of SU(2):

J = J (1) + J (2) , J3 = J (1)
3 + J (2)

3 (2.54)

J (i)2 | j(i), M (i)〉 = j(i)(j(i) + 1) | j(i), M (i)〉

J (i)
3 | j(i), M (i)〉 = M (i) | j(i), M (i)〉.

(2.55)

To look for | j, M〉 with J2 | j, M〉 = j(j + 1) | j, M〉 and J3 | j, M〉 = M | j, M〉, in

general, we form appropriate linear combinations of product states:

| j, M〉 =
∑

M (1), M (2)



j(1)M (1)j(2)M (2)| jM


 | j(1), M (1)〉 | j(2), M (2)〉 (2.56)

where the quantities


j(1)M (1)j(2)M (2)| jM


 are called Clebsch-Gordan coefficients.
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tr{λa} = 0

tr{λa λb} = 2 δab

(2.41)

Lie-algebra:

[

λa , λb

]

= 2 i fabc λc (2.42)

Structure constants:

fabc = −i tr

([

λa

2
,

λb

2

]

λc

)

(2.43)

fabc is totally antisymmetric with nonvanishing members,

f123 = 1

f147 = −f156 = f246 = f257 = f345 = −f367 =
1

2

f458 = f678 =

√

3

2

(2.44)

• Irreducible representations of SU(2):

Xa ≡ Ja =
σa

2
(a = 1, 2, 3)

– Casimir operator of SU(2): J2 = J2
1 + J2

2 + J2
3

which commutes with all generators

[

J2 , Ja

]

= 0 (a = 1, 2, 3). (2.45)

– Ladder (raising and lowering) operators:

J± = J1 ± iJ2

J2 =
1

2

(

J+J− + J−J+

)

+ J2
3

[

J+ , J−
]

= 2 J3 ,
[

J3 , J±
]

= ±J±

(2.46)

– Eigenstates of J2 and J3 :

J2 |λ, M〉 = λ |λ, M〉 , J3 |λ, M〉 = M |λ, M〉 (2.47)

J2 − J2
3 = J2

1 + J2
2 ≥ 0 =⇒ λ − M2 ≥ 0 (2.48)
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Lie algebra:

U = exp

�
�ig

�

a

�a(x)
�a

2

�

  



Constructing the QCD Lagrangian

32Roman Kogler QCD

Lagrangian has to stay invariant under transformations

Infinitessimal gauge transformation:

Derivative of the transformed field:

U = exp

�
�ig

�

a

�a(x)ta

�
= 1� ig

�

a

�a(x)ta + . . .

��a(x) = �a(x)� ig
�

b

�b(x)tb�a(x)

�µ ��a(x) = �µ�a(x)� ig
�

b

tb�b(x)�µ�a(x)� ig
�

b

tb (�µ�b(x))�a(x)

+ 

+

+

transforms differently than the field → L0 is not gauge-invariant

Solution: Introduction of eight gauge fields: Aa(x)

Gauge transformation

�Aµ
a(x) = Aµ

a(x)� ig
�

b,c

fabc�b(x)Aµ
c (x)� �µ�a(x)+

eAµ = UAµU�1 +
i

g
(@µU)U�1



Constructing the QCD Lagrangian
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Similarly to QED construct the covariant derivative

Dµ = �µ � ig
�

a

Aµ
a(x)ta

Gauge invariance given by �Dµ�a = �µ ��a � ig
�

b

�Aµ
b (x)tb ��a

We find that �Dµ�a = Dµ�a � ig
�

a

�a(x)taDµ�a = U (Dµ�a)

⇒ the derivative transforms similar to the quark fields

We arrive at the Lagrangian

with Fµ�
a = �µA�

a � ��Aµ
a

BUT this Lagrangian is again not invariant under SU(3)c!

L = �̄(i�µDµ �mj)� �
1
4
F a

µ�Fµ�
a

+

+

+

�Aµ
a(x) = Aµ

a(x)� ig
�

b,c

fabc�b(x)Aµ
c (x)� �µ�a(x)

Reason: transformation of field strength tensor

+



Constructing the QCD Lagrangian
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Add an additional term:

Gµ�
a = �µA�

a � ��Aµ
a � g

�
fabcA

µ
b A�

c

And finally we have the full Lagrangian of QCD

L =
�

f

�̄f (i�µDµ �mf )�f �
1
4
Ga

µ�Gµ�
a

Gauge invariance lead to

‣ introduction of 8 gluon fields: {3} × {3} = 8 ⊕ 1 possible fields, but 
only the octet fields carry colour

‣ gluons are massless, since a term                would violate gauge 
invariance

‣ same coupling strength g for quark-gluon and gluon-gluon interaction

‣ renormalisability - a non-Abelian gauge theory is renormalisable if it is 
gauge invariant (t’Hooft)

mgA
µ
aAa

µ

+



The Missing Piece: Gluons
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P. Söding, G.Wolf,  Ann.Rev.Nucl.Part.Sci.31,231 (1981)

Decay of the ϒ(9.46)

If gluons existed, the primary decay would be 
through three gluons

ϒ

b

b̄

g

g

g
Decay width (from DORIS):
�(�� ggg� hadrons)

�(�� e+e�)
=

(10�2 � 90)�3
s

81�e2
q�

2
� 34

�(�� ggg� hadrons)
�(�� e+e�)

=
39+19
�10

1.29± 0.14
= 30+20

�10

(the.)

(exp.)

Event shape: Sphericity

S =
3

�
P 2

T,i

2
�

P 2
i

, 0 < S < 1

S = 0 S = 1



The Missing Piece: Gluons
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Three-Jet Events in e+e−

Radiation of a gluon leads to 3-jet 
structure

First observed at PETRA (higher CMS 
energy than at DORIS)

Oblateness:  O = Fmajor − Fminor

JADE

O is small for 2-jet events and becomes 
larger for 3-jet events, proportional to the 
PT of the radiated gluon

D. P. Barber (Mark-J),  Phys.Lett.B89, 139(1979)



Summary of Part 1
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Quarks - 6 flavours, massive spin-1/2 particles

Gluons - massless spin 1 particles

3 colours

Beautiful field theory with local gauge invariance, but can it explain

‣ quasi-free partons observed in DIS

‣ non-observation of free quarks and gluons

‣ formation of jets and production of hadrons in particle collisions

✓
✓

✓
Hadrons: composite particles made of
quarks and gluons ✓

... and found QCD

We saw that...

?
?

?


