Quantum Chromodynamics

Overview

Part I - Setting the Stage

The Static Quark Model Deep-Inelastic Scattering Discovery of quarks and colour The QCD Lagrangian Discovery of gluons

Part 2 - Working with QCD

Renormalisation

Perturbative QCD

Jets

Factorisation and Parton Distribution Functions

Note On Units

Natural Units

In particle physics, it is customary and convenient to set $\hbar = c = 1$

Implications:

Energy (mc^2), momentum (mc) and mass (m): units of GeV Length (l) and time (t): units of GeV⁻¹

<u>Conversion:</u> The Proton: using $\hbar = 6.582119 \cdot 10^{-16} \text{ eV} \cdot \text{s}$ Mass: ~ $I GeV/c^2$ Size: ~I fm Energy: | GeV = $1.609 \cdot 10^{-10}$] Momentum: | GeV/c = $5.36 \cdot 10^{-19} \text{ kg} \cdot \text{m/s}$ 1.5 $\mathcal{Q}(b) \ [fm^{-2}]$ proton Mass: | GeV/ c^2 = 1.79 · 10⁻²⁷ kg 0.5 0.5 1 1.5 2 0 Length: $I \text{ GeV}^{-1} = 1.97 \cdot 10^{-16} \text{ m} = 0.197 \text{ fm}$ **b** [**fm**]

The Static Quark Model

The Particle Zoo

In 1960s accumulation of data from many new baryon and meson resonances: sort them by their strangeness S and isospin I_3

υн

曲

The Static Quark Model

Postulating constituents

The flavour-states build up a symmetry group: $SU(3)_{flavour}$

Physical particles: reduce the products $3 \times 3 \times 3$ (baryons) and $3 \times \overline{3}$ (mesons) and combine with SU(2)_{spin}

Flavour	В	J	Ι	I_3	S	Q
up	1/3	1/2	1/2	$+\frac{1}{2}$	0	$+^{2}/_{3}$
down	1/3	1/2	1/2	-1/2	0	- ¹ / ₃
strange	1/3	1/2	0	0	-1	- ¹ / ₃

The quantum numbers are related through

$$Q = \frac{1}{2}(B+S) + I_3$$

where the hypercharge Y = B + S

The anti-particles have the signs of B, I_3 , S and Q reversed

Masses: $m_d - m_u \approx 4$ MeV and $m_s - m_d \approx 150$ MeV

The Static Quark Model

Light Mesons: (pseudoscalars with $J^P=0^-$)

Ι	I3	Wavefunction	Q
1	+1	$\left \pi^{+} \right\rangle = \left u, \overline{d} \right\rangle$	+1
1	-1	$ \pi^{-}\rangle = - \overline{u,d}\rangle$	-1
1	0	$\left \pi^{0} \right\rangle = 1/\sqrt{2} \left(\left d, \overline{d} \right\rangle - \left u, \overline{u} \right\rangle \right)$	0
0	0	$\left \eta^{0} \right\rangle = 1/\sqrt{2}(\left d, \overline{d} \right\rangle + \left u, \overline{u} \right\rangle)$	0

$$Vave \text{ function of } \Delta^{++}: |\Delta^{++}\rangle = |u,\uparrow\rangle + |u,\uparrow\rangle + |u,\uparrow\rangle = \int_{-\otimes}^{S^{+}} \int_{-\otimes}^{S^{+}}$$

Symmetric in flavour, spin and space (quarks are in ground state: s-wave) Violates the Pauli Principle!

Solution: one more internal degree of freedom - colour!

$$\left|\Delta^{++}\right\rangle = \left|u,\uparrow,g\right\rangle + \left|u,\uparrow,r\right\rangle + \left|u,\uparrow,b\right\rangle$$

Antisymmetric: $|\Delta^{++}\rangle = \sum \epsilon_{ijk} |u,\uparrow,i\rangle + |u,\uparrow,j\rangle + |u,\uparrow,k\rangle$

- With the arguments given, are you convinced that quarks have physical reality? Why?
- Do colour charges exist?
- How many colours are there?
- How can we test these assumptions?

Deep-Inelastic Scattering

Scattering Experiments

Used to probe the structure of matter and forces involved Different high-energy

scattering experiments: e⁺e⁻, pp, e[±]p

Distance scale in DIS:

$$r \,[\mathrm{fm}] \approx \frac{\hbar c}{Q} \approx \frac{0.2}{Q \,[\mathrm{GeV}]}$$

where Q is related to the transferred four-momentum

Deep-Inelastic Scattering (DIS)

Lepton-nucleus scattering at high energies.

Use the lepton as clean probe to explore the structure of matter - initial state well known.

Elastic Electron Scattering

Electron (charge 1) scatters on a nucleon N with charge Z, mass M. Take recoil into account (assume point-like particles). Outgoing electron: $k' = (E', 0, E' \sin\theta, E' \cos\theta)$

Variables

$$Q^{2} = -q^{2} = 4EE'\sin^{2}\left(\frac{\theta}{2}\right)$$
$$E - E' = \frac{Q^{2}}{2M} \Rightarrow E' = \frac{E}{1 + \frac{2E}{M}\sin^{2}\left(\frac{\theta}{2}\right)}$$

target stays intact

Only one independent variable!

Mott Scattering:
$$\left. \frac{\mathrm{d}\sigma}{\mathrm{d}Q^2} \right|_{\mathrm{Mott}} = \frac{4\pi\alpha^2 Z^2}{Q^4} \frac{E'}{E} \cos^2\left(\frac{\theta}{2}\right)$$

Assume a Dirac particle with spin 1/2:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}Q^2} = \frac{4\pi\alpha^2 Z^2}{Q^4} \frac{E'}{E} \left[\cos^2\left(\frac{\theta}{2}\right) - \frac{Q^2}{2M^2} \sin^2\left(\frac{\theta}{2}\right) \right]$$

Proton Form Factors

So far we have assumed a point-like nucleon with spin 1/2. Now take a proton with Z=1 and allow for a charge distribution $\varrho(r)$.

Potential becomes:
$$V(\mathbf{r}) = \int \frac{\rho(\mathbf{r'})}{4\pi |\mathbf{r} - \mathbf{r'}|} d\mathbf{r'}$$
 with $\int \rho(\mathbf{r'}) d\mathbf{r'} = 1$

This introduces two (a priori unknown) form factors in the cross section: $G_E(Q^2)$, $G_M(Q^2) = e(k)$

Rosenbluth Formula

$$\frac{\mathrm{d}\sigma}{\mathrm{d}Q^2} = \frac{4\pi\alpha^2 Z^2}{Q^4} \frac{E'}{E} \left[\cos^2\left(\frac{\theta}{2}\right) \frac{G_E^2 + \tau G_M^2}{1+\tau} + 2\tau G_M^2 \sin^2\left(\frac{\theta}{2}\right) \right]$$

with $\tau = Q^2/(4M^2) > 0$ (space-like)

Using the Mott cross section:

$$\left(\frac{\mathrm{d}\sigma}{\mathrm{d}Q^2}\right)_{\mathrm{ela}} = \left(\frac{\mathrm{d}\sigma}{\mathrm{d}Q^2}\right)_{\mathrm{Mott}} \left[\frac{G_E^2 + \tau G_M^2}{1 + \tau} + 2\tau G_M^2 \tan^2\left(\frac{\theta}{2}\right)\right]$$

e(k')

Proton Form Factors

At small $\tau \ll 1$, and hence at small Q^2 , the electric and magnetic form factors are just the Fourier-transforms of the charge and magnetic moment distributions of the proton:

$$G_E(Q^2) \approx \int e^{i \boldsymbol{q} \cdot \boldsymbol{r}} \rho(\boldsymbol{r}) \mathrm{d}\boldsymbol{r} \quad \text{and} \quad G_M(Q^2) \approx \int e^{i \boldsymbol{q} \cdot \boldsymbol{r}} \mu(\boldsymbol{r}) \mathrm{d}\boldsymbol{r}$$

This means that at $Q^2 \approx 0$ we expect

$$\underline{G_E(0)} = \int \rho(\mathbf{r'}) d\mathbf{r'} = \underline{1} \text{ and } G_M(0) = \int \mu(\mathbf{r'}) d\mathbf{r'} = \vec{\mu}$$

The experimental value of the anomalous magnetic moment of the proton $\mu_p = 2.79$, so we expect $G_M(0) = 2.79$

Proton Form Factors

In fact, we find that $\mu_p G_E(Q^2) = G_M(Q^2) \Rightarrow G_M(0) = \mu_p$

This means that the charge distribution is the same as the current spatial distribution in the proton.

Inelastic Electron Scattering

Transferred momentum:

q = k - k'

Virtuality of exchanged boson:

 $Q^2 = -q^2 > 0$

Squared centre-of-mass energy:

 $s = (P+k)^2$

Squared mass of the hadronic final state:

$$W^{2} = (P+q)^{2} = M^{2} + 2q \cdot P - Q^{2}$$

Inelasticity:
$$y = \frac{q \cdot P}{k \cdot P}$$
 with $0 \le y \le 1$

Scaling variable:
$$x = \frac{Q^2}{2q \cdot P}$$
 with $0 \le x \le 1$

Deep:
$$Q^2 \gg M^2$$

Inelastic: $W > M$

Deep-Inelastic Scattering (DIS)

Deep: $Q^2 \gg M^2$

Inelastic: W > M

Neglect rest masses whenever $W \gg m_e, \ W \gg M$

$$Q^{2} = -(k - k')^{2} \quad W^{2} = (P + q)^{2}$$
$$x = \frac{Q^{2}}{2q \cdot P} \qquad y = \frac{q \cdot P}{k \cdot P}$$

Squared centre-of-mass energy: $s = 4 E_e E_p$

Out of Q^2 , x, y, W only two are independent at fixed centre-of-mass energy, since they are related through $Q^2 = s x y$ and $W^2 = M^2 + 2 q \cdot P - Q^2$

Thus, pairs of these variables fully determine the kinematics of the scattering. Often used: (Q^2 , x) and (Q^2 , W^2)

Deep-Inelastic Scattering Results

Early results from SLAC (1969): E = 7 - 17.7 GeV $\theta = 10^{\circ}$

Elastic cross section falls off rapidly due to the proton not being point-like

Inelastic: W > M

Ratio to Mott cross section nearly flat in Q^2

 Q^2 dependence becomes weaker for increasing W

Proton a composite particle!

M. Breidenbach et al., Phys. Rev. Lett. 23, 935 (1969)

Partons

Assume that proton consists of partons, then the electron scatters off a parton with momentum xP:

$$p_q = q + xP$$

$$p_q^2 = (xP)^2 = m_q^2 = 0$$

$$= (q + xP)^2$$

$$= -Q^2 + 2xq \cdot P + (xP)^2$$
so we get $x = \frac{Q^2}{2q \cdot P}$

The variable x can be interpreted as the momentum fraction of the proton carried by the struck parton

DIS Cross Section

The leptonic tensor $L_{\alpha\beta}$ is fully determined by QED:

$$L_{\alpha\beta} = 2\left(k_{\alpha}k_{\beta}' + k_{\beta}k_{\alpha}' - g_{\alpha\beta}k \cdot k'\right)$$

The hadronic tensor $W_{\alpha\beta}(P,q)$ is unknown, since it involves all the structure of the proton

$$\underline{W_{\alpha\beta}(P,q)} = \frac{1}{4\pi} \int \mathrm{d}^4 z e^{iq \cdot z} \langle P, S | \left[j^{\dagger}_{\alpha}(z), j_{\beta}(0) \right] | P, S \rangle$$

 \Rightarrow Absorb our ignorance in structure functions $F_1(x,Q^2)$ and $F_2(x,Q^2)$

DIS Cross Section

The DIS cross section then becomes

$$\frac{\mathrm{d}^2 \sigma}{\mathrm{d}Q^2 \mathrm{d}x} = \frac{4\pi \alpha^2}{xQ^4} \left[(1-y) F_2(x,Q^2) + \frac{y^2}{2} 2x F_1(x,Q^2) \right]$$

Rewrite the Rosenbluth formula in terms of Q^2 and y

$$\frac{\mathrm{d}\sigma}{\mathrm{d}Q^2} = \frac{4\pi\alpha^2}{Q^4} \frac{E'}{E} \left[\cos^2\left(\frac{\theta}{2}\right) \frac{G_E^2 + \tau G_M^2}{1+\tau} + 2\tau G_M^2 \sin^2\left(\frac{\theta}{2}\right) \right]$$

with
$$y = 1 - \frac{E''}{E} \sin^2(\theta/2)$$

we get (elastic scattering):

$$\frac{d\sigma}{dQ^2} = \frac{4\pi\alpha^2}{Q^4} \left[(1-y)\frac{G_E^2 + \tau G_M^2}{1+\tau} + \frac{1}{2}y^2 \underline{G_M^2} \right]$$

 $F_2(x,Q^2)$ corresponds to the electromagnetic field of the parton $F_1(x,Q^2)$ corresponds to the spin of the parton

Early F₂ Data

Independence of the structure functions of Q^2 : $F_i(x,Q^2) = F_i(x)$

J.D. Bjørken predicted scaling for $Q^2 \rightarrow \infty$ as x stays fixed. Scaling is obtained using Gell-Mann's current algebra in the quark model.

Scattering from point-like constituents of the proton!

Callan-Gross Relationship

 F_1 and F_2 are not independent, but satisfy the Callan-Gross relationship:

$$2xF_1 = F_2$$

This means that partons are spin 1/2 particles! (spin 0, would mean $2xF_1 = 0$)

The cross section now becomes

$$\frac{\mathrm{d}\sigma}{\mathrm{d}Q^2\mathrm{d}x} = \frac{4\pi\alpha^2}{xQ^4}\left(1-y+\frac{y^2}{2}\right)F_2(x,Q^2)$$

The electric charge and magnetic moment are fixed with respect to each other

→ scattering from point-like Dirac particles

Clear evidence for Quarks!

P. Schmüser, Feynman-Graphen und Eichtheorien für Experimentalphysiker, Springer Verlag (1988)

Ш

Quark Parton Model (QPM)

- Single photon exchange
- incoherent scattering of quarks from the proton
- take $q_i(x)dx$ to be the probability to find quark of type *i* inside the proton with momentum fraction between *x* and *x*+d*x*

$$\frac{\mathrm{d}\sigma}{\mathrm{d}Q^2\mathrm{d}x} = \frac{4\pi\alpha^2}{Q^4}\left(1 - y + \frac{y^2}{2}\right)\sum_i e_i^2 q_i(x)$$

Compare with:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}Q^2\mathrm{d}x} = \frac{4\pi\alpha^2}{xQ^4}\left(1 - y + \frac{y^2}{2}\right)F_2(x,Q^2)$$

$$F_2(x) = x \sum_i e_i^2 q_i(x)$$

How Does F₂(x) Look?

Early Experimental Results on F₂

$$F_{2}(x,Q^{2}) = \frac{d\sigma}{dQ^{2}dx} \frac{xQ^{4}}{4\pi\alpha^{2}} \frac{1}{(1-y+y^{2}/2)}$$

Experimentally accessible!

In the QPM $F_2(x)$ is directly proportional to the quark distributions $q_i(x)$

FIG. 38. Values of νW_2^p , $\frac{\nu W_2^n}{\nu W_2^n}$, and $\frac{\nu W_2^d}{\nu W_2^n}$ plotted against x. The errors shown are purely random.

The QPM - Mini Summary

Proton consists of 3 partons, which can be identified with spin-1/2 quarks

Electron-proton scattering is then a sum of incoherent electron-quark scatterings with single photon exchange

Proton structure is defined by parton distributions $q_i(x)$

The Structure function is directly proportional to the quark content of the proton

$$F_2(x) = x \sum_i e_i^2 q_i(x)$$

What's Missing?

In the proton up-quark carry twice as much momentum as down-quarks $\sqrt{}$ What about colour ?

Where are 50% of the proton momentum ?

Discovering Colour

Rate for e⁺e⁻→hadrons

Ignoring differences in the phase space,

$$R = \frac{\sigma(e^+e^- \to \text{hadrons})}{\sigma(e^+e^- \to \mu^+\mu^-)} = N_C \frac{e_q^2}{e^2}$$

- R directly sensitive to N_C
- Number of available flavours depends on $s = q^2$, with $\sqrt{s} > 2m_q$ for a quark of flavour q to be produced

CM energy [GeV]	available quark pairs	R with $N_C = 3$	
$1 < \sqrt{s} < 3$	$1 < \sqrt{s} < 3$ u, d, s		
$4 < \sqrt{s} < 9$	u, d, s, c	10/3	
$\sqrt{s} > 10$	u, d, s, c, b	11/3	

Discovering Colour

▶ Compendium of many measurements from e⁺e⁻ colliders

- Consistent with $N_C = 3$
- Resonances at quark production thresholds: $q\overline{q}$ -bound states
- At $\sqrt{s} > 100$ GeV contributions from Z-exchange

More Evidence

Instead of $SU(3)_{flavour}$ we use $SU(3)_{colour}$, theory must be invariant under gauge transformations in colour space

Theory is fully determined by the Lagrangian

$$S = \int dt L = \int dt d^3 x \mathcal{L} = \int d^4 x \mathcal{L}(\phi, \partial_\mu \phi) \quad \Rightarrow \quad \left| \partial_\mu \left(\frac{\partial \mathcal{L}}{\partial(\partial_\mu \phi)} \right) = \frac{\partial \mathcal{L}}{\partial \phi} \right|$$

Euler-Lagrange equations: lead to equations of motion

Quark fields: three colours $\psi_a = \begin{pmatrix} \psi_1 \\ \psi_2 \\ \psi_3 \end{pmatrix}$

Construct the Lagrangian analogous to QED:

Free Lagrangian:
$$\mathcal{L}_0 = \bar{\psi} \left[i \gamma_\mu \partial^\mu - m \right] \psi$$

Require invariance under $SU(3)_c$ gauge transformations:

$$\psi(x) \longrightarrow \tilde{\psi}(x) = U \,\psi(x)$$

With $U = \exp\left[ig \sum_{a} \theta_{a}(x) \frac{\lambda_{a}}{2} \right]$ and $\theta_{a}(x)$ a real function and $a = 1,...,8$

Eight generators $t_a = \lambda_a/2$ of SU(3), with the Gell-Mann matrices

Lagrangian has to stay invariant under transformations Infinitessimal gauge transformation:

$$U = \exp\left[ig\sum_{a}\theta_{a}(x)t_{a}\right] = 1 + ig\sum_{a}\theta_{a}(x)t_{a} + \dots$$
$$\widetilde{\psi}_{a}(x) = \psi_{a}(x) + ig\sum_{b}\theta_{b}(x)t^{b}\psi_{a}(x)$$

Derivative of the transformed field:

$$\partial^{\mu} \widetilde{\psi}_{a}(x) = \partial^{\mu} \psi_{a}(x) + ig \sum_{b} t^{b} \theta_{b}(x) \partial^{\mu} \psi_{a}(x) - ig \sum_{b} t^{b} \left(\partial^{\mu} \theta_{b}(x) \right) \psi_{a}(x)$$

transforms differently than the field $\rightarrow \mathcal{L}_0$ is not gauge-invariant

Solution: Introduction of eight gauge fields: $A_a(x)$

Gauge transformation $\widetilde{A}^{\mu} = UA^{\mu}U^{-1} + \frac{i}{g}(\partial^{\mu}U)U^{-1}$

$$\widetilde{A}_{a}^{\mu}(x) = A_{a}^{\mu}(x) + ig \sum_{b,c} f_{abc} \theta_{b}(x) A_{c}^{\mu}(x) - \partial^{\mu} \theta_{a}(x)$$

Similarly to QED construct the covariant derivative

$$\begin{split} D^{\mu} &= \partial^{\mu} + ig \sum_{a} A^{\mu}_{a}(x) t^{a} \\ \text{Gauge invariance given by } \widetilde{D^{\mu}\psi_{a}} &= \partial^{\mu}\widetilde{\psi}_{a} + ig \sum_{b} \widetilde{A}^{\mu}_{b}(x) t^{b}\widetilde{\psi}_{a} \\ \text{We find that } \widetilde{D^{\mu}\psi_{a}} &= D^{\mu}\psi_{a} + ig \sum_{a} \theta_{a}(x) t^{a} D^{\mu}\psi_{a} = U\left(D^{\mu}\psi_{a}\right) \\ \Rightarrow \text{ the derivative transforms similar to the quark fields} \\ \text{We arrive at the Lagrangian } \mathcal{L} &= \overline{\psi}(i\gamma^{\mu}\mathcal{D}_{\mu} - m_{j})\psi - \frac{1}{4}F^{a}_{\mu\nu}F^{\mu\nu}_{a} \\ \text{with } F^{\mu\nu}_{a} &= \partial^{\mu}A^{\nu}_{a} - \partial^{\nu}A^{\mu}_{a} \end{split}$$

BUT this Lagrangian is again not invariant under SU(3)_c!

Reason: transformation of field strength tensor

$$\widetilde{A}_{a}^{\mu}(x) = A_{a}^{\mu}(x) + ig \sum_{b,c} \underline{f_{abc}}\theta_{b}(x)A_{c}^{\mu}(x) - \partial^{\mu}\theta_{a}(x)$$

Add an additional term:

$$G_a^{\mu\nu} = \partial^{\mu}A_a^{\nu} - \partial^{\nu}A_a^{\mu} + g\sum f_{abc}A_b^{\mu}A_c^{\nu}$$

And finally we have the full Lagrangian of QCD

$$\mathcal{L} = \sum_{f} \bar{\psi}_{f} (i\gamma^{\mu} \mathcal{D}_{\mu} - m_{f}) \psi_{f} - \frac{1}{4} G^{a}_{\mu\nu} G^{\mu\nu}_{a}$$

 A^1_μ

Gauge invariance lead to

- Introduction of 8 gluon fields: {3} × {3} = 8 ⊕ 1 possible fields, but only the octet fields carry colour
- \bullet gluons are massless, since a term $m_g A^\mu_a A^a_\mu$ would violate gauge invariance
- ${\ensuremath{\bullet}}$ same coupling strength g for quark-gluon and gluon-gluon interaction
- renormalisability a non-Abelian gauge theory is renormalisable if it is gauge invariant (t'Hooft)

The Missing Piece: Gluons

Decay of the Y(9.46)

If gluons existed, the primary decay would be through three gluons

Decay width (from DORIS):

The Missing Piece: Gluons

Three-Jet Events in e⁺e⁻

Radiation of a gluon leads to 3-jet structure

First observed at PETRA (higher CMS energy than at DORIS)

Oblateness: $O = F_{\text{major}} - F_{\text{minor}}$

O is small for 2-jet events and becomes larger for 3-jet events, proportional to the P_T of the radiated gluon

Summary of Part I

We saw that...

Quarks - 6 flavours, massive spin-1/2 particles $\sqrt{}$

Gluons - massless spin I particles 🗸

3 colours 🗸

Hadrons: composite particles made of quarks and gluons

... and found QCD

Beautiful field theory with local gauge invariance, but can it explain

- quasi-free partons observed in DIS ?
- non-observation of free quarks and gluons ?
- Formation of jets and production of hadrons in particle collisions ?

