Introduction to Particle Physics

Katja Krüger (DESY)
HEP Summer Student Lectures
26. \& 29. July 2013

- this lecture cannot replace a university course on particle physics
- you have heard already many things in the general Introduction to Particle Physics and in the lecture on Accelerator Physics, and you will get more detailed information in specialised lectures on
- Detectors
- Electroweak and Higgs physics
- QCD
- Searches for SUSY and Exotica
- Theory
- will try to concentrate on important concepts and on history how we arrived at the current picture of the Standard Model
- if you have questions, please ask!
- Introduction
- Pre-requisites
- relativistic kinematics
- cross section measurement
- symmetries and conserved quantities
- Feynman diagrams
- Fermions
- first generation
- second generation
- third generation
- Gauge Bosons / Forces
- gluon
- W and Z
- Higgs
- Open Questions

Standard Model: Particles

from Wikipedia

Standard Model: Interactions

The Standard Model

- looks rather neat and tidy:
- only 12 matter fermions, 4 gauge bosons and the Higgs
- can explain (nearly) all observations
- looks very "natural" today, but its history was not always straight-forward
- does this mean there is nothing else?
- not the first time in history in a similar situation:

1874, the Munich physics professor Philipp von Jolly advised Max Planck against going into physics, saying, "in this field, almost everything is already discovered, and all that remains is to fill a few holes."

- small things that didn't fit the picture often lead to new discoveries and new theories
- clear hints that we do not understand certain things

Questions?

Relativistic Kinematics

- "natural units": c=1, $\hbar=1$
\rightarrow masses, energies and momenta are measured in GeV
- particle quantities are described as 4-vectors:
energy/momentum: $\quad p=(E, \vec{p})$
time/space: $\quad x=(t, \vec{x})$
- product of 4 -vectors is invariant: $p_{1} \cdot p_{2}=\left(E_{1} \cdot E_{2}-\vec{p}_{1} \cdot \vec{p}_{2}\right)=$ constant \rightarrow can use the "easiest" reference frame for calculations special case: $p \cdot p=\left(E^{2}-\vec{p} \cdot \vec{p}\right)=\left(E_{0}^{2}-0\right)=m^{2}$
- with $\beta=v / c$ and $\gamma=1 / \sqrt{1-\beta^{2}}: E=\gamma m$ and $|\vec{p}|=\beta \gamma m$

Relativistic Kinematics: applications

- centre-of-mass energy of a collider, e.g. HERA

$$
\begin{aligned}
& \mathrm{P} \xrightarrow[920 \mathrm{GeV}]{\sim} \mathrm{e} 27.6 \mathrm{GeV} \\
& \mathrm{e} \quad \begin{array}{l}
p_{\mathrm{P}}=\left(E_{\mathrm{P}}, \vec{p}_{\mathrm{P}}\right)=\left(E_{\mathrm{P}}, 0,0, E_{\mathrm{P}}\right) \\
p_{\mathrm{e}}=\left(E_{\mathrm{e}}, \vec{p}_{\mathrm{e}}\right)=\left(E_{\mathrm{e}}, 0,0,-E_{\mathrm{e}}\right)
\end{array} \\
& s=\left(p_{\mathrm{P}}+p_{\mathrm{e}}\right)^{2}=\left(E_{\mathrm{P}}+E_{\mathrm{e}}\right)^{2}-\left(E_{\mathrm{P}}-E_{\mathrm{e}}\right)^{2}=4 E_{\mathrm{P}} E_{\mathrm{e}} \approx 10^{5} \mathrm{GeV}^{2} \\
& \Rightarrow \sqrt{s}=318 \mathrm{GeV}
\end{aligned}
$$

- decay of a particle $X \rightarrow Y Z$:

$$
\begin{aligned}
M_{X}^{2} & =\left(p_{X}\right)^{2}=\left(p_{Y}+p_{Z}\right)^{2} \\
& =m_{Y}^{2}+m_{Z}^{2}+2 p_{Y} p_{Z} \\
& =m_{Y}^{2}+m_{Z}^{2}+2\left(E_{Y} E_{Z}-\vec{p}_{Y} \cdot \vec{p}_{Z}\right) \\
\text { and } E_{Y}^{2} & =m_{Y}^{2}+\left|p_{Y}\right|^{2}, \quad E_{Z}^{2}=m_{Z}^{2}+\left|p_{Z}\right|^{2}
\end{aligned}
$$

\Rightarrow if daughter particle types are known (or their masses are negligible), mass of decaying mother particle can be reconstructed from the momenta of the daughters ("invariant mass")

Heisenberg's Uncertainty Principle

- limits the precision with which (certain) pairs of physical quantities can be determined
- relation momentum \leftrightarrow position: $\Delta p \Delta x \geq \hbar c \approx 200 \mathrm{MeV} \mathrm{fm}$ possible application: the maximum possible momentum transfer in a reaction limits the size of structures you can resolve
(what counts is the momentum transfer in the center-of-mass frame)
examples:
- you need a momentum transfer of 200 MeV to resolve structures of the size of a proton (1 fm)
- with an energy transfer of 200 GeV (possible at HERA) you can resolve $1 / 1000 \mathrm{fm}$ (roughly our current limit of the maximum size of quarks)

Heisenberg's Uncertainty Principle

Heisenberg's Uncertainty Principle

- limits the precision with which (certain) pairs of physical quantities can be determined
- relation energy \leftrightarrow time: $\Delta E \Delta t \geq \hbar \approx 6.6 \cdot 10^{-22} \mathrm{MeV}$ s
since in a particles rest frame the energy is given by the mass, this implies that only stable particles have an exact mass!

An unstable partich has no fixed mass

$$
\Gamma \tau=\hbar \approx 6.6 \cdot 10^{-22} \mathrm{MeV} \mathrm{~s}
$$

- in the PDG either Γ or τ is listed, depending what is measured for this particle

Questions?

How to measure a cross section

- very generally:

$$
N_{\mathrm{evt}}=\sigma \int L d t \Rightarrow \sigma=\frac{N_{\mathrm{evt}}}{\int L d t} \quad \text { and } \quad L=\frac{n f N_{1} N_{2}}{\sigma_{X} \sigma_{Y}} \quad \text { for a collider }
$$

- in practice:
- selected events contain background $N_{\text {Bkg }}$
- detectors are not perfect, but have an efficiency ε
- events are only measured in a specific decay channel with a branching ratio BR

$$
\sigma=\frac{\left(N_{\mathrm{evt}}-N_{\mathrm{Bkg}}\right)}{\epsilon B R \int L d t}
$$

How to measure a total cross section

- (simple) example:
$Z^{0} \rightarrow \mu^{+} \mu^{-}$from ATLAS
- identify muons in the detector, select events with at least 2 muons of opposite charge, calculate the invariant mass, fill the mass into a histogram
- determine how much background
- use the prediction from a MC simulation (works if background is well known)

- fit a function of the form $f(m)=\operatorname{signal}(m)+\operatorname{bkg}(m)$ to the data (works if expected shapes are known)

$$
\sigma=\frac{\left(N_{\mathrm{evt}}-N_{\mathrm{Bkg}}\right)}{\epsilon B R \int L d t}
$$

How to measure a differential cross section

- quite often more can be learned by the dependence of the cross section on some quantities
- determine the number of signal (and background) events in bins of that quantity and fill it into a histogram (here: rapidity y)
- but now the number of events depends on the bin size!
- take bin size into account by
 measuring differential cross section

$$
\frac{d \sigma}{d y} \approx \frac{\Delta \sigma}{\Delta y}=\frac{\left(N_{\text {evt }}-N_{\text {Bkg }}\right)_{\text {bin }}}{\Delta y \in B R \int L d t}
$$

How to measure a differential cross section

- differential cross section can be compared to theory predictions
- can exclude predictions that describe the total cross section but differ in shape
- meaningful comparison only possible if uncertainties are known!
- statistical uncertainties (from signal and background events!)
- systematic uncertainties (efficiency, branching ratio, luminosity)
- are there correlations between the bins? (e.g. uncertainty on luminosity shifts all data points the same way \rightarrow correlated)

How to measure a differential cross section

- other example:
$\Upsilon \rightarrow \mu^{+} \mu^{-}$from CMS
- differential cross section with different bin sizes can be compared directly!

Questions?

Symmetries and Conserved Quantities

Attention, this makes the connection plausible, this is no proof!
Quantum mechanics:

- (system of) particles is described by a wave function or state vector ψ
- observables are described by operators O, their expectation values o as

$$
o=\int \psi^{*} O \psi d V
$$

- the time dependence of o can be put either into ψ (Schrödinger picture) or into O (Heisenberg picture)
- time development (in the non-relativistic case) is determined by the Hamilton operator H according to the Schrödinger equation:

$$
i \hbar \frac{\partial}{\partial t} \psi(t)=H \psi(t)
$$

for a stationary state: $\quad E \psi=H \psi$

Symmetries and Conserved Quantities

- Schrödinger picture (if H does not depend on t explicitly):
$\psi(t)=T\left(t, t_{0}\right) \psi\left(t_{0}\right) \quad$ with $\quad T\left(t, t_{0}\right)=\exp \left[-i\left(t-t_{0}\right) H / \hbar\right] \quad$ and $\psi(t)^{*}=\psi\left(t_{0}\right)^{*} T^{-1}\left(t, t_{0}\right)$
- Heisenberg and Schrödinger picture have to describe the same expectation value:

$$
\begin{aligned}
& o=\underset{\text { Heisenberg }}{\int_{0}\left(t_{0}\right)^{*} O \psi\left(t_{0}\right) d V \equiv \int \psi(t)^{*} O_{0} \psi(t) d V} \text { Schrödinger } \\
& \Rightarrow O=T^{-1} O_{0} T \\
& \Rightarrow i \hbar \frac{d}{d t} O=-H O+O H=[O, H] \text { if } \frac{\partial}{\partial t} O=0
\end{aligned}
$$

\rightarrow in general: if an operator commutates with the Hamilton operator, $[O, H]=0$, then the operator O describes a conserved quantity

Symmetries and Conserved Quantities

example for continuous symmetry: translation in space

- infinitely small translation δr

$$
\psi^{\prime}=\psi(r+\delta r)=\psi(r)+\delta r \frac{\partial}{\partial r} \psi=\left(1+\delta r \frac{\partial}{\partial r}\right) \psi=D \psi \quad \text { with } \quad D=1+\delta r \frac{\partial}{\partial r}
$$

- the operator for the momentum is

$$
p=-i \hbar \partial / \partial r \quad \Rightarrow \quad D=1+(i / \hbar) p \delta r
$$

- then a finite translation $\Delta r=\mathrm{n}^{*} \delta r$ can be described by

$$
D=\lim _{n \rightarrow \infty}\left(1+\frac{i}{\hbar} p \delta r\right)^{n}=\exp \left(\frac{i}{\hbar} p \Delta r\right)
$$

- if Hamiltonian is invariant for translations in space $\Leftrightarrow[D, H]=0$
$\Rightarrow[p, H]=0 \Rightarrow$ momentum is conserved
Noether's theorem (informal version):
If a system has a continuous symmetry property, then there are corresponding quantities whose values are conserved in time.

Symmetries and Conserved Quantities

example for discrete symmetry: parity

- parity operator P describes what happens if you look into a mirror: inversion of all space coordinates:

$$
P \psi(\vec{r}) \rightarrow \psi(-\vec{r})
$$

- since repeating P leads to the same state, $P^{2}=1$
- if it exists, the eigenvalue of P can be +1 or -1
examples: $\quad \psi(x)=\cos (x), \quad P \psi(x) \rightarrow \cos (-x)=\cos (x)=+\psi$
$\psi(x)=\sin (x), \quad P \psi(x) \rightarrow \sin (-x)=-\sin (x)=-\psi$
$\psi(x)=\cos (x)+\sin (x), \quad P \psi(x) \rightarrow \cos (x)-\sin (x) \neq \pm \psi$
- if the Hamiltonian is invariant for the parity operation, eigenstates have a defined parity P which is conserved

Conserved Quantities

quantity	interaction			invariance
	strong	elm.	weak	
energy	yes	yes	yes	translation in time
momentum	yes	yes	yes	translation in space
angular momentum	yes	yes	yes	rotation in space
P (parity)	yes	yes	no	coordinate inversion
C (charge parity)	yes	yes	no	charge conjugation (particle \leftrightarrow anti-particle)
T (time parity)	yes	yes	no	time inversion
CPT	yes	yes	yes	
lepton number	yes	yes	yes	
baryon number	yes	yes	yes	
isospin	yes	no	no	

Questions?

Standard Model: Interactions

Feynman Diagrams

not only a visualisation of how a process happens, but also a recipe for calculating cross sections

- the amplitude of each possible interaction is described by a diagram
- the cross section is proportional to the sum of the amplitudes squared:
$\sigma \sim|A|^{2}=\left|\sum_{i} A_{i}\right|^{2}$
\Rightarrow diagrams do not just add up, but also interfere

Feynman Diagrams: Fermion Vertices

neutrinos???

always 2 fermions and 1 boson

- mixes generations for quarks
- specific helicity structure

Feynman Diagrams: Boson Vertices

makes QCD very different from QED

Feynman Diagrams: More Boson Vertices

more details in theory lecture

Feynman Diagrams: Example

$\mathrm{f}_{1}+\mathrm{f}_{2} \rightarrow \mathrm{f}_{3}+\mathrm{f}_{4}$
four-momentum of exchange boson B:
$q=p_{3}-p_{1}=p_{4}-p_{2}$
transition amplitude:
$A \sim f\left(f_{1,} f_{2,} f_{3,} f_{4}\right) \cdot g_{a} g_{b} \cdot \frac{1}{q^{2}-m_{B}^{2}}$
fermion wave vertex propafunction coupling gator
cross section:
$\sigma \sim\left|\sum A_{i}\right|^{2} \cdot$ phasespace
note: internal lines in diagrams describe virtual particles, for these usually $\mathrm{p}^{2} \neq \mathrm{m}^{2}$

$e^{+} e^{-} \rightarrow e^{+} e^{-}$

- two contributions: space-like (exchange of photon) and time-like (annihilation into photon)

- space-like contribution is large for small scattering angles (large $\cos \theta$)

from S.L. Wu, Phys. Rep. 107 (1984) 59

$e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}$

- pure annihilation into photon (QED) should be symmetric in $\cos \theta$ (parity conservation)
- instead of the photon also an intermediate Z is possible

\rightarrow weak interaction does not conserve parity, leads to
 "forward-backward" asymmetry
from S.L. Wu, Phys. Rep. 107 (1984) 59

e p $\rightarrow \mathbf{e X}$ (Neutral Current Deep Inelastic Scattering)

- scattering of an electron/positron on a quark inside the proton (the proton breaks up)
- at low four-momentum transfer $Q^{2}=-q^{2}$ photon exchange dominates, for $Q^{2} \approx M_{z}{ }^{2}$ photon and Z are equally important
- interference between photon and Z has opposite sign for electrons and positrons

Perturbation Theory: Higher Orders

- in principle, all possible Feynman diagrams contribute to a reaction
- practically, those with the smallest number of vertices are most relevant
- those with more vertices are referred to as "higher orders" since they correspond to terms with higher order in the coupling if you write the cross section as a perturbation series

$A \sim g_{e m}{ }^{2}$

$A \sim g_{e m}{ }^{3}$

$A \sim g_{e m}{ }^{3}$
higher orders

Questions?

Elementary Particles

- all building blocks of matter are fermions with spin $1 / 2$ (quarks, leptons)
- all force carriers are bosons with spin 1 (photon, Z, W, gluon)
- the Higgs boson is the only fundamental particle with spin 0 , it has the same quantum numbers as the vacuum
beautiful, simple picture BUT

Elementary Particles

- all building blocks of matter are fermions with spin $1 / 2$ (quarks, leptons)
- all force carriers are bosons with spin 1 (photon, Z, W, gluon)
- the Higgs boson is the only fundamental particle with spin 0 , it has the same quantum numbers as the vacuum
beautiful, simple picture BUT
- we never observe free quarks!
- what we do observe are hadrons, particles built of quarks. they come in two variants:
- baryons (greek "barys": heavy): built of 3 quarks, examples: proton, neutron
- mesons (greek "mesos": intermediate): built of a quark and an anti-quark, examples: pion, kaon

(Not so) Elementary Particles

a Particle

Everything You Always Wanted to Know About Sex But Were Afraid to Ask

- known as "the PDG"
- 1528 pages
- not only properties of existing particles, but also searches
- reviews on Standard Model, Statistics, Astrophysics, Colliders and Detectors, ...
(very good, but extremely condensed, not a classical textbook)
- less heavy: http://pdg.lbl.gov/
(or the PDG booklet)

Baryons

this is all just u and d quarks

contain at least one c quark
something missing?
this is all just u and d quarks (with a bit of $\mathrm{s} \bar{s}$)

	LIGHT UNFLAVORED $(S=C=B=0)$	$\begin{gathered} \text { STRANGE } \\ (S= \pm 1, C=B=0) \end{gathered}$	CHARMED, STRANGE$\begin{gathered} (C=S= \pm 1) \\ \left(J^{\rho}\right) \end{gathered}$	${ }_{I^{G}\left(J^{P C}\right)}$
$1^{G}\left(J^{p C}\right)$	$G\left(J^{P C}\right)$	(J^{p})		$7_{c}(15) \quad 0^{+}\left(0^{-+}\right)$
$\bullet \pi^{ \pm} \quad 1^{-}\left(0^{-}\right)$	- $\pi_{2}(1670) 1^{-(2-+)}$	- $K^{ \pm} \quad 1 / 2\left(0^{-}\right)$	- $D_{s}^{ \pm} \quad 0\left(0^{-}\right)$	- $1 / \psi(15) \quad 0-(1--)$
- $\pi^{0} \quad 1-\left(0^{-+}\right)$	- $\phi(1680) \quad 0^{-}\left(1^{--}\right)$	- $K^{0} 1 / 2\left(0^{-}\right)$	- $D_{5}^{* \pm} \quad 0\left(?^{?}\right)$	- $\chi_{c 0}(1 P) \quad 0^{+}\left(0^{++}\right)$
- $\eta \quad 0^{+}\left(0^{-+}\right)$	- $p_{3}(1690) 1^{+}\left(3^{--}\right)$	- $K_{5}^{0} \quad 1 / 2\left(0^{-}\right)$	- $D_{s 0}^{*}(2317)^{ \pm} \quad 0\left(0^{+}\right)$	- $\chi_{c 1}(1 P) \quad 0^{+}\left(1^{++}\right)$
- $f_{0}(500) \quad 0^{+}\left(0^{++}\right)$	- $p(1700) \quad 1^{+}(1--)$	- $K_{L}^{0} \quad 1 / 2\left(0^{-}\right)$	$\text { - } D_{s 1}(2460)^{ \pm} \quad 0\left(1^{+}\right)$	- $h_{c}(1 P) \quad ?^{?}(1+-)$
- $p(770) \quad 1^{+}(1--)$	$a_{2}(1700) \quad 1^{-(2++)}$	$K_{0}^{*}(800) \quad 1 / 2\left(0^{+}\right)$	- $D_{s 1}(2536)^{ \pm} \quad 0\left(1^{+}\right)$	- $\chi_{c 2}(1 P) \quad 0^{+}\left(2^{++}\right)$
- $\omega(782) \quad 0^{-}\left(1^{--}\right)$	- $f_{0}(1710) \quad 0+\left(0^{++}\right)$	- $K^{*}(892) \quad 1 / 2\left(1^{-}\right)$	$\text { - } D_{52}(2573) \quad 0\left(7^{?}\right)$	- $\eta_{c}(25) \quad 0+\left(0^{-+}\right)$
- $\eta^{\prime}(958) \quad 0^{+}\left(0^{-+}\right)$	$\eta(1760) \quad 0^{+}\left(0^{-+}\right)$	- $K_{1}(1270) 1 / 2\left(1^{+}\right)$	- $D_{s 1}^{*}(2700)^{ \pm} \quad 0\left(1^{-}\right)$	- $\psi(25) \quad 0^{-}\left(1^{--}\right)$
- $f_{0}(980) \quad 0^{+}\left(0^{++}\right)$	- $\pi(1800) \quad 1-(0-+)$	- $K_{1}(1400) \quad 1 / 2\left(1^{+}\right)$	$D_{s J}^{*}(2860)^{ \pm} \quad 0\left(?^{?}\right)$	- $\psi(3770) \quad 0^{-(1--)}$
- $a_{0}(980) \quad 1-(0++)$	$f_{2}(1810) \quad 0^{+}\left(2^{++}\right)$	- $K^{*}(1410) \quad 1 / 2(1-)$	$D_{s} J(3040)^{ \pm} \quad 0\left(?^{?}\right)$	- X(3872) $0^{+}\left(1^{++}\right)$
- $\phi(1020) \quad 0^{-}\left(1^{--}\right)$	$X(1835) \quad ?^{?}\left(?^{-+}\right)$	- $K_{0}^{*}(1430) \quad 1 / 2\left(0^{+}\right)$		- $\chi_{\text {co }}(2 P) \quad 0^{+}\left(0^{++}\right)$
- $h_{1}(1170) ~ 0-(1+-)$	- $\phi_{3}(1850) 0^{-}\left(3^{--}\right)$	- $K_{2}^{*}(1430) \quad 1 / 2\left(2^{+}\right)$	BOTTOM $\{B= \pm 1\}$	- $\chi_{c 2}(2 P) \quad 0^{+}\left(2^{++}\right)$ $X(3940) \quad 7^{?}(7 ? 7)$
- $b_{1}(1235) \quad 1^{+}\left(1^{+-}\right)$	$\eta_{2}(1870) 0^{+}\left(2^{-+}\right)$	$K(1460) \quad 1 / 2\left(0^{-}\right)$	$\{B= \pm 1\}$	$X(3940) \quad ?^{?}\left(?^{? ?}\right)$
- $a_{1}(1260) \quad 1^{-(1++)}$	- $\pi_{2}(1880) \quad 1^{-(2-+)}$	$K_{2}(1580) \quad 1 / 2(2-)$	$\text { - } B^{ \pm} \quad 1 / 2\left(0^{-}\right)$	- $\psi(4040) \quad 0^{-}\left(1^{--}\right)$
- $f_{2}(1270) \quad 0^{+}(2++)$	$p(1900) \quad 1^{+}\left(1^{--}\right)$	$K(1630) \quad 1 / 2\left(?^{?}\right)$	$\text { - } B^{0} \quad 1 / 2\left(0^{-}\right)$	$X(4050)^{ \pm} ?\left(?^{?}\right)$
- $f_{1}(1285) \quad 0^{+}\left(1^{++}\right)$	$f_{2}(1910) \quad 0^{+}\left(2^{++}\right)$	$K_{1}(1650) \quad 1 / 2\left(1^{+}\right)$	- $B^{ \pm} / B^{\circ}$ ADMIXTURE	$X(4140) \quad 0^{+}\left(?^{?+}\right)$
- $\eta(1295) \quad 0+\left(0^{-+}\right)$	- $f_{2}(1950) \quad 0^{+}\left(2^{++}\right)$	- $K^{*}(1680) \quad 1 / 2\left(1^{-}\right)$	- $B^{ \pm} / B^{0} / B^{0} / b$-baryon	- $\psi(4160) \quad 0^{-}\left(1_{77}^{--}\right)$
- $\pi(1300) 1^{-\left(0^{-+}\right)}$	$\rho_{3}(1990) 1^{+}\left(3^{--}\right)$	$\text { - } K_{2}(1770) \quad 1 / 2\left(2^{-}\right)$	ADMIXTURE $V_{\text {b }}$ and $V_{u b}$ CKM Ma	$X(4160) \quad ?^{?}\left(?^{? ?}\right)$
- $a_{2}(1320) ~ 1-(2++)$	- $f_{2}(2010) \quad 0^{+}\left(2^{++}\right)$	$\text { - } K_{3}^{*}(1780) \quad 1 / 2\left(3^{-}\right)$	V_{b} and $V_{u b}$ CKM Ma tröx Elements	$X(4250)^{ \pm} \quad ?\left(?^{?}\right)$
- $\mathrm{fo}^{(1370)} \mathrm{ll} 0^{+}\left(0^{++}\right)$	$f_{0}(2020) 0^{+}\left(0^{++}\right)$	- $K_{2}(1820) \quad 1 / 2\left(2^{-}\right)$	$\text { - } B^{*} \quad 1 / 2\left(1^{-}\right)$	- $X(4260) \quad ?^{?}(1--)$ $X(4350) \quad 0+(7 ?+)$
$\begin{array}{cc}h_{1}(1380) & ?^{-}\left(1^{+-}\right) \\ 1^{-}(1-+)\end{array}$	- $a_{4}(2040) \quad 1-(4++)$	K(1830) $1 / 2\left(0^{-}\right)$	$B_{j}^{*}(5732) \quad ?\left(?^{?}\right)$	$X(4350) \quad 0+\left(?^{?+}\right)$
- $\pi_{1}(1400) \quad 1-(1-+)$	- $f_{4}(2050) \quad 0^{+}\left(4^{++}\right)$	$K_{0}^{*}(1950) \quad 1 / 2\left(0^{+}\right)$	$\text { - } B_{1}(5721)^{p} \quad 1 / 2\left(1^{+}\right)$	- $X(4360) \quad ?^{?}\left(1^{--}\right)$
$\begin{array}{ll}\text { - } \eta(1405) & 0^{+}\left(0^{-+}\right) \\ \text {- } f_{1}(1420) & 0^{+}(1++)\end{array}$	$\begin{array}{ll}\pi_{2}(2100) & 1-(2-+) \\ f .(2100) & 0+(0++)\end{array}$	$K_{2}^{*}(1980) \quad 1 / 2\left(2^{+}\right)$	- $B_{2}^{*}(5747)^{0} \quad 1 / 2\left(2^{+}\right)$	- $\psi(4415) \quad 0^{-}\left(1^{--}\right)$
$\begin{array}{ll}\text { - } f_{1}(1420) & 0^{+}(1+ \\ \text { - } \omega(1420) & 0^{-}(1-\end{array}$	$\begin{array}{ll}f_{0}(2100) & 0^{+}\left(0^{++}\right) \\ f_{0}(2150) & 0^{+}(2++)\end{array}$	- $K_{4}^{*}(2045) \quad 1 / 2\left(4^{+}\right)$		$X(4430)^{ \pm} \quad ?\left(?^{?}\right)$
$\begin{array}{rr}\bullet \omega(1420) & 0^{-}(1--) \\ f_{2}(1430) & 0^{+}(2++)\end{array}$	$\begin{array}{ll}f_{2}(2150) & \\ \rho(2150) & 1^{+}(1\end{array}$	$K_{2}(2250) \quad 1 / 2\left(2^{-}\right)$	BOTTOM, STRANGE $(B= \pm 1, S=\mp 1)$	- $X(4660)$
- ao(1450) $1^{-}-(0++)$	- $\phi(2170) 0^{-}(1--)$	$K_{3}(2320) \quad 1 / 2\left(3^{+}\right)$	- $B_{s}^{0} \quad 0\left(0^{-}\right)$	$b \bar{b}$
- $\rho(1450) \quad 1^{+}(1--)$	$f_{0}(2200) \quad 0+(0++)$	$\begin{array}{ll}K_{5}(2380) & 1 / 2(5) \\ K_{4}(2500) & 1 / 2\left(4^{-}\right)\end{array}$	- $B_{s}^{*} \quad 0(1-)$	$\eta_{\mathrm{b}}(15) \quad 0^{+}\left(0^{-+}\right)$
- $\eta(1475) \quad 0+\left(0^{-+}\right)$	$f_{j}(2220) \quad 0^{+}\left(2^{+}+\right.$?)	- $B_{51}(5830)^{0} \quad 0\left(1^{+}\right)$	- $T(15) \quad 0^{-}\left(1^{--}\right)$
- $f_{0}(1500) \quad 0^{+}\left(0^{++}\right)$	or 4^{++})		- $B_{52}^{*}(5840)^{0} \quad 0\left(2^{+}\right)$	- $\chi_{00}(1 P) \quad 0^{+}\left(0^{++}\right)$
$f_{1}(1510) \quad 00^{+}(1++)$	$\eta(2225) \quad 0^{+}\left(0^{-+}\right)$	CHARMED	$B_{s, J}^{*}(5850) \quad ?\left(?^{?}\right)$	- $\chi_{\mathrm{ot} 1}(1 P) \quad 0^{+}(1++)$
- $f_{2}^{\prime}(1525) \quad 0^{+}\left(2^{++}\right)$	$p_{3}(2250) \quad 1^{+}\left(3^{--}\right)$	($C= \pm 1$)		- $h_{b}(1 P) \quad ?^{?}\left(1^{+-}\right)$
$f_{2}(1565) \quad 0^{+}\left(2^{++}\right)$	- $\left.f_{2}(2300) ~ 0-12++\right)$	$\cdot D^{ \pm}$ $1 / 2\left(0^{-}\right)$	BOTTOM, CHARMED $\{B=C= \pm 1\}$	$\begin{array}{cc} \bullet \chi_{\mathrm{b} 2}(1 P) & 0^{+}(2++) \\ \eta_{\mathrm{b}}(25) & 0^{+}\left(0^{-++}\right) \end{array}$
$\rho(1570) \quad 1^{+}\left(1^{--}\right)$	$f_{4}(2300) \quad 0^{+}\left(4^{++}\right)$	$\text { -别 } \quad 1 / 2\left(0^{-}\right)$	$(B=C= \pm 1)$	$\eta_{\mathrm{b}}(25) \quad 0^{+}\left(0^{-+}\right)$
$h_{1}(1595) \quad 0^{-(1+-)}$	$f_{0}(2330) \quad 0+(0++)$	$\text { - } D^{*}(2007)^{0} \quad 1 / 2\left(1^{-}\right)$	- $B_{c}^{ \pm} \quad 0\left(0^{-}\right)$	- T(25) $0^{-}\left(1^{--}\right)$ - T(1D) $0-(2--)$
- $\pi_{1}(1600) \quad 1^{-(1-+)}$	- $f_{2}(2340) \quad 0^{+}\left(2^{++}\right)$	$\text { - } D^{*}(2010)^{ \pm} \quad 1 / 2\left(1^{-}\right)$		- $T(1 D) \quad 0^{-}\left(2^{--}\right)$
$a_{1}(1640) \quad 1{ }^{-(1++)}$	$\rho_{5}(2350) \quad 1+(5--)$	$\text { - } D_{0}^{*}(2400)^{\circ} \quad 1 / 2\left(0^{+}\right)$		- $\chi_{\mathrm{bo}}(2 P) \quad 0^{+}\left(0^{++}\right)$
$f_{2}(1640) \quad 0^{+}\left(2^{++}\right)$	$a_{6}(2450) \quad 1-(6++)$	$D_{0}^{\prime}(2400)^{ \pm} \quad 1 / 2\left(0^{+}\right)$		- $\chi_{\mathrm{b} 1}(2 P) \quad 0^{+}(1++)$ $h_{0}(2 P) \quad 7^{?}(1+-)$
$\begin{array}{ll}\text { - } 7_{2}(1645) & 0^{+}(2-+) \\ \text { - } \omega(1650) & 0^{-}(1--)\end{array}$	$f_{6}(2510) \quad 0^{+}\left(6^{++}\right)$	$\text { - } D_{1}(2420)^{0} \quad 1 / 2\left(1_{2}^{+}\right)$		$\begin{array}{cl} h_{\mathrm{b}}(2 P) & ?^{?}\left(1^{+-}\right) \\ -\gamma_{\mathrm{h}}(2 P) & 0+(2++) \end{array}$
- $\omega(1650) \quad 0^{-}\left(1^{--}\right)$ - $\omega_{3}(1670) \quad 0^{-}\left(3^{--}\right)$	OTHER LIGHT	$\begin{array}{ll}D_{1}(2420)^{ \pm} & 1 / 2\left(7^{?}\right) \\ D_{1}(2430)^{0} & 1 / 2\left(1^{+}\right)\end{array}$		$\text { - } T(35) \quad 0^{-}\left(1^{--}\right)$
$\bullet \omega_{3}(1670)$ -	Further States	$D_{1}(2430)^{0} \quad 1 / 2\left(1^{+}\right)$		$\text { - } \chi_{b}(3 P) \quad ?^{?}\left(?^{?+}\right)$
		- $D_{2}^{*}(2460)^{0} \quad 1 / 2\left(2^{+}\right)$		- $T(45) \quad 0^{-}(1--)$
		- $D_{2}^{*}(2460)^{ \pm} \quad 1 / 2\left(2^{+}\right)$		$X(10610)^{ \pm} ?^{+}\left(1^{+}\right)$
		$D(2550)^{\circ} \quad 1 / 2\left(0^{-}\right)$		$X(10650)^{ \pm} ?^{+}\left(1^{+}\right)$
		$D(2600) \quad 1 / 2\left(?^{?}\right)$		- $T(10860) \quad 0^{-}\left(1^{--}\right)$
		$D^{*}(2640)^{ \pm} \quad 1 / 2\left(?^{?}\right)$		- $T(11020) 0^{-}\left(1^{--}\right)$
		$D(2750) \quad 1 / 2\left(?^{?}\right)$		-

something missing?

Mesons

- Indicates particles that appear in the preceding Meson Summary Table. We do not regard the other entries as being established.

	LIGHT UNFLAVORED$(S=C=B=0)$			$\begin{gathered} \text { STRANGE } \\ (S= \pm 1, C=B=0) \end{gathered}$		CHARMED, STRANGE$(C=S= \pm 1)$		$c \bar{C}$	
	$I^{G}\left(J^{P C}\right)$		$I^{G}\left(J^{P C}\right)$		$1\left(J^{P}\right)$		$1\left(J^{P}\right)$		$0^{+}\left(0^{-+}\right)$
$\bullet \pi^{ \pm}$	$1^{-}\left(0^{-}\right)$	- $\pi_{2}(1670)$	$1^{-}\left(2^{-+}\right)$	- $K^{ \pm}$	$1 / 2\left(0^{-}\right)$	- $D_{s}^{ \pm}$	$0\left(0^{-}\right)$	- $J / \psi(1 S)$	$0^{-}(1--)$
- π^{0}	$1^{-}\left(0^{-+}\right)$	- $\phi(1680)$	$0^{-}\left(1^{--}\right)$	- K^{0}	$1 / 2\left(0^{-}\right)$	- $D_{s}^{* \pm}$	$0\left(?^{?}\right)$	- $\chi_{c 0}(1 P)$	$0^{+}\left(0^{++}\right)$
- η	$0^{+}\left(0^{-+}\right)$	- $\rho_{3}(1690)$	$1^{+}\left(3^{--}\right)$	- K_{S}^{0}	$1 / 2\left(0^{-}\right)$	- $D_{s 0}^{*}(2317)^{ \pm}$	$0\left(0^{+}\right)$	- $\chi_{c 1}(1 P)$	$0^{+}(1++)$
- $f_{0}(500)$	$0^{+}\left(0^{++}\right)$	- $\rho(1700)$	$1^{+}\left(1^{--}\right)$	- K_{L}^{0}	$1 / 2\left(0^{-}\right)$	- $D_{s 1}(2460)^{ \pm}$	$0\left(1^{+}\right)$	- $h_{c}(1 P)$	$?(1+-)$
- $\rho(770)$	$1^{+}\left(1^{--}\right)$	$a_{2}(1700)$	$1^{-}\left(2^{++}\right)$	$K_{0}^{*}(800)$	$1 / 2\left(0^{+}\right)$	- $D_{s 1}(2536)^{ \pm}$	$0\left(1^{+}\right)$	- $\chi_{c 2}(1 P)$	$0^{+}\left(2^{++}\right)$
- ω (782)	$0^{-}\left(1^{--}\right)$	- $f_{0}(1710)$	$0^{+}\left(0^{++}\right)$	- $K^{*}(892)$	1/2(1-)	- $D_{s 2}(2573)$	$0\left(?{ }^{\text {? }}\right.$)	- $\eta_{c}(2 S)$	$0^{+}\left(0^{-+}\right)$
- $\eta^{\prime}(958)$	$0^{+}\left(0^{-+}\right)$	$\eta(1760)$	$0^{+}\left(0^{-+}\right)$	- $K_{1}(1270)$	$1 / 2\left(1^{+}\right)$	- $D_{\text {s1 }}^{*}(2700)^{ \pm}$	$0\left(1^{-}\right)$	- $\psi(2 S)$	$0^{-}(1--)$
- $f_{0}(980)$	$0^{+}\left(0^{++}\right)$	- $\pi(1800)$	$1^{-}\left(0^{-+}\right)$	- $K_{1}(1400)$	$1 / 2\left(1^{+}\right)$	$D_{s, J}^{*}(2860)^{ \pm}$	0(? ${ }^{\text {? }}$)	- $\psi(3770)$	$0^{-}(1--)$
- $a_{0}(980)$	$1^{-}\left(0^{++}\right)$	$f_{2}(1810)$	$0^{+}\left(2^{++}\right)$	- $K^{*}(1410)$	1/2(1-)	$D_{s . J}(3040)^{ \pm}$	$0\left(?{ }^{\text {? }}\right.$)	- $X(3872)$	$0^{+}(1++)$
- $\phi(1020)$	$0^{-}\left(1^{--}\right)$	$X(1835)$	$?^{?}\left(?^{-+}\right)$	- $K_{0}^{*}(1430)$	$1 / 2\left(0^{+}\right)$			- $\chi_{c 0}(2 P)$	$0^{+}\left(0^{++}\right)$
- h. 11171	$n-(1+-)$	- $\tan (1850)$	n-12--1	- \|**1anか	$1 \mathrm{mon+1}$	BOTTO		- $V_{\text {m }}(2 P)$	$\mathrm{n}^{+} \mathrm{n}^{++}$

$b \bar{b}$	
$\eta_{b}(1 S)$	$0^{+}\left(0^{-+}\right)$
$\bullet \gamma(1 S)$	$0^{-}\left(1^{--}\right)$
$\bullet \chi_{b 0}(1 P)$	$0^{+}\left(0^{++}\right)$
$\ldots \quad n+n_{1}++1$	

these are the mesons you should know

Questions?

Elementary Particles

Elementary Particles: First Generation

First Generation

all you need to build up our "everyday" matter:

- $\mathrm{p}=u u d, \mathrm{n}=u d d$
- similarities of u and d for strong interactions can be described by isospin I
- $I=1 / 2$ for both u and $d, I_{z}=+1 / 2$ for $u, I_{z}=-1 / 2$ for d
- p, n, e^{-}and \bar{v} all take part in β decay:

e^{+}and v appear in fusion process

The Positive Electron

Out of a group of 1300 photographs of cosmic-ray tracks in a vertical Wilson chamber 15 tracks were of positive particles which could not have a mass as great as that of the proton. From an examination of the energy-loss and ionization produced it is concluded that the charge is less than twice, and is probably exactly equal to, that of the
curvatures and ionizations produced require the mass to be less than twenty times the electron mass. These particles will be called positrons. Because they occur in groups associated with other tracks it is concluded that they must be secondary particles ejected from atomic nuclei.

Editor proton. If these particles carry unit positive charge the
from C. Anderson, Phys. Rev. 43 (1933) 491

Nobel Prize 1936 for C. Anderson

Anti-neutrino

- first direct detection in inverse β decay reaction: $\bar{v}_{e} p \rightarrow n e^{+}$
- important ingredients:
- high flux of anti-neutrinos from nuclear reactor
- low background (cosmic rays! \rightarrow underground)
- detection:

200 I water with CdCl_{2}
~3 events/h

Nobel Prize 1995 for F. Reines

Pions

Pion Decays

Charged Pion

$\pi^{ \pm}$

$$
I^{G}\left(J^{P}\right)=1^{-}\left(0^{-}\right)
$$

$$
\text { Mass } m=139.57018 \pm 0.00035 \mathrm{MeV} \quad(\mathrm{~S}=1.2)
$$

$$
\text { Mean life } \tau=(2.6033 \pm 0.0005) \times 10^{-8} \mathrm{~s} \quad(\mathrm{~S}=1.2)
$$

$$
c \tau=7.8045 \mathrm{~m}
$$

$\boldsymbol{\pi}^{+}$DECAY MODES \quad Fraction $\left(\Gamma_{i} / \Gamma\right) \quad$ Confidence level | p |
| :---: |
| $(\mathrm{MeV} / \mathrm{c})$ |

$\mu^{+} \nu_{\mu}$	[b] (99.98770 ± 0.00004) \%				30
$\mu^{+} \nu_{\mu} \gamma$	[c]	(2.00	± 0.25) $\times 10^{-4}$	30
$e^{+} \nu_{e}$	[b]	(1.230	± 0.004) $\times 10^{-4}$	70
$e^{+} \nu_{e} \gamma$	[c]	(7.39	± 0.05) $\times 10^{-7}$	70
$\mathrm{p}^{+}{ }_{1} \pi^{0}$		11 ก2\%	+ 0 กпк	1×10^{-8}	,

why is the decay to muon and neutrino so much more likely than the decay to electron and neutrino, although the muon is much heavier than the electron?

Decay of Charged Pions

- neutrino is left-handed, π has spin 0
\Rightarrow charged lepton also has to be left-handed, which is the "wrong" spin
- the heavier the charged lepton, the less suppressed is the wrong helicity, proportional to ($1-\mathrm{v} / \mathrm{c}$)

- left-handedness of neutrinos also means that weak interaction violates C , but CP can be conserved (and indeed CP violation is much smaller)

