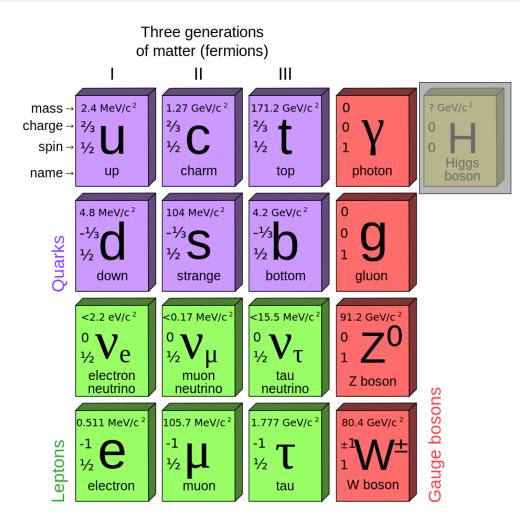

Flavour Physics (Experiment)

DESY Summer Student Lecture Torben Ferber (torben.ferber@desy.de) 16.08.2013

Get fascinated by and for flavour physics!

Disclaimer: This is not a review talk...

Torben Ferber | DESY Summer Student | 16.08.2013 | Page 2

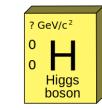

- >Introduction
- Direct CP violation
- Time-dependent CP violation
- Flavour Tagging and the Belle experiment
- >Other topics at flavour factories
- Future of flavour physics
- Summary

Introduction

A story of success: Standard Model (SM)

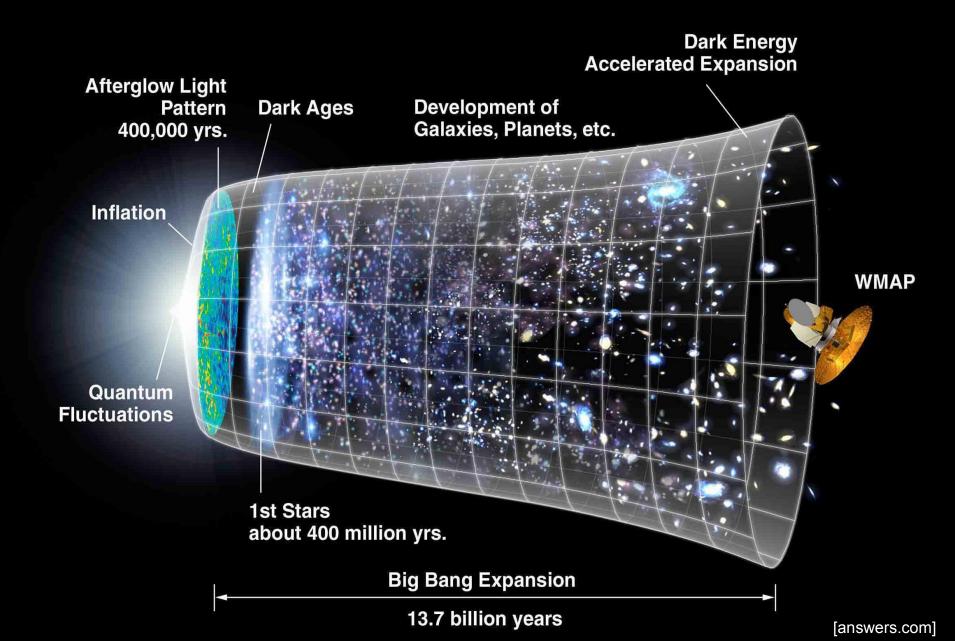
- > 2 types of fermions (quarks and leptons)
- > 3 generations
- > 3 gauge interactions
- > 4 gauge bosons

A story of success: Origin of mass in the SM

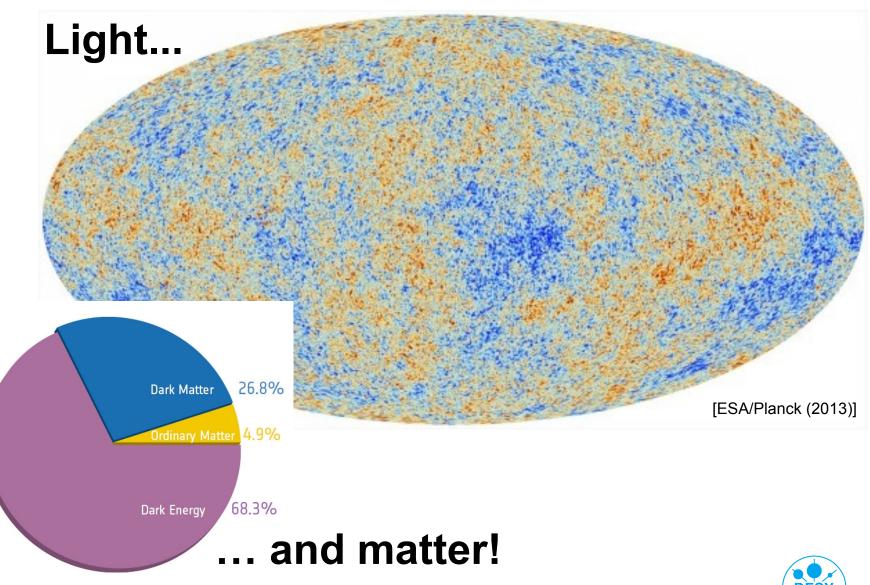

One of the fundamental question of the last decade(s):

>How do (fundamental) particles acquire mass?

- SM: Higgs mechanism ↔ Higgs particle
- Confirmed experimentally at LHC


>Why are the masses as they are?

- Higgs mechanism gives no answer!
- Understanding SM mass hierarchy requires new physics we are sure that there is more: <u>new heavy particles?</u>



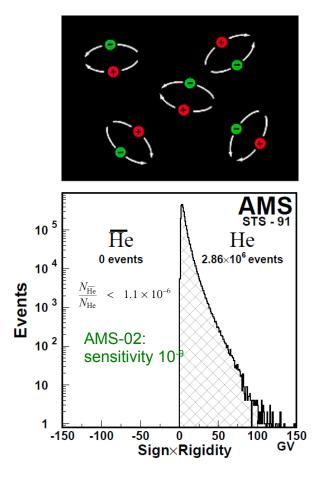
Where are we from?

Where are we from: Light, matter, ...

Torben Ferber | DESY Summer Student | 16.08.2013 | Page 8

... and antimatter!

>matter + antimatter = photons


in other words: the same amount of matter and antimatter is created. Always.

- but wait...we are here...!
- and we are matter... only matter...!

>Where is the antimatter?

- no (sizeable) amount of antimatter in the universe
- no annihilation radiation
- no anti-nuclei in cosmic rays

Some sort of mechanism favors matter!?!

There is hope: matter + antimatter = photons + <u>CP violation</u>

Measured (Particle Data Group value):

 $\frac{n_{baryons} - n_{antibaryons}}{n_{\gamma}} \approx \frac{n_{baryons}}{n_{\gamma}} = (5.5 \pm 0.5) \times 10^{-10}$

SM with maximal CP violation:

 $\frac{n_{baryons}}{n_{\gamma}} < 10^{-20}$

The Standard Model is great! But it cannot explain the key features of our universe:

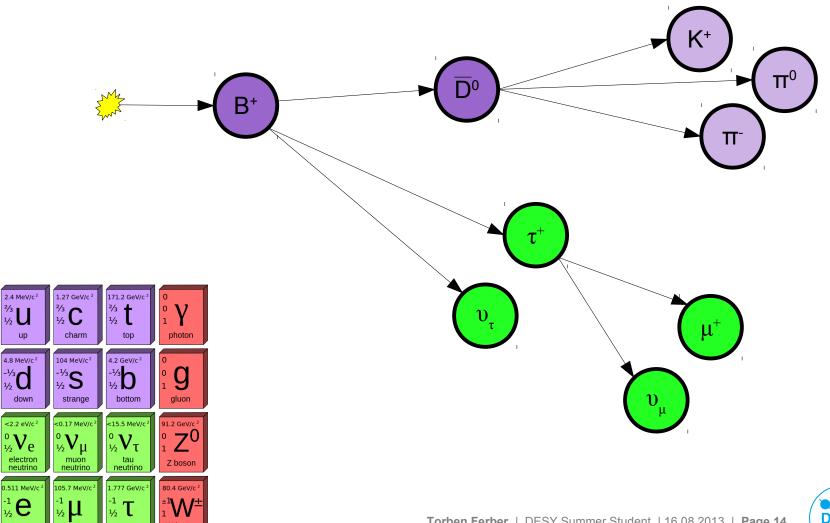
- Three generations of fermions
- Fermion mass values
- Gravity
- Dark matter requires new particles
- Dark energy is completely weird
- CP-violation in the SM is much too small to explain matter/antimatter asymmetry in the universe

Solving one of these issues will likely open the doors to the others...

Why did you tell me that?

I thought this is a flavour physics lecture!

Why did you tell me that?


I thought this is a flavour physics lecture!

Because flavour physics is a lab-prototype of the entire universe - and a way to measure CP violation

Torben Ferber | DESY Summer Student | 16.08.2013 | Page 13

Flavour physics is a prototype of the entire universe

up

-1

electron

muon

tau

W boson

What has that to do with flavour physics?

>How to search for CP violation (CPV)?

If CP is not violated, the two processes (for example), should have the same decay rate:

(*Spoiler alert!* In reality, the left process occurs about 13%(!!!!!) more common than the right one...)

The amplitude for the process $i \to f$ is given by $\mathcal{M} = |\mathcal{M}| e^{i\phi} e^{i\theta} \qquad B^0 \to K^+ \pi^-$

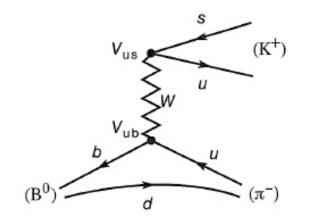
> The amplitude for the process $\tilde{i} \to \tilde{f}$ is given by: $\widetilde{\mathcal{M}} = |\mathcal{M}| e^{i\phi} e^{-i\theta} \qquad \overline{B}^0 \to K^- \pi^+$

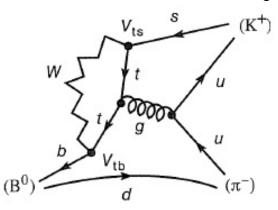
- The difference between the two matrix elements is subtile:
 - θ is a complex CKM phase ("weak phase")
 - Φ is an ordinary phase ("strong phase" → no CP violation in strong interactions observed yet)

 $\rightarrow \mathcal{M}$ and \mathcal{M} are equal, except the CKM matrix elements get conjugated...

- >But: Even if θ is complex, there is no CP violation, since the probability is proportional to the respective matrix element squared $|\mathcal{M}|^2 = |\widetilde{\mathcal{M}}|^2$
- Huh? Why are the decay rates for B⁰ and B⁰ different by 13%?

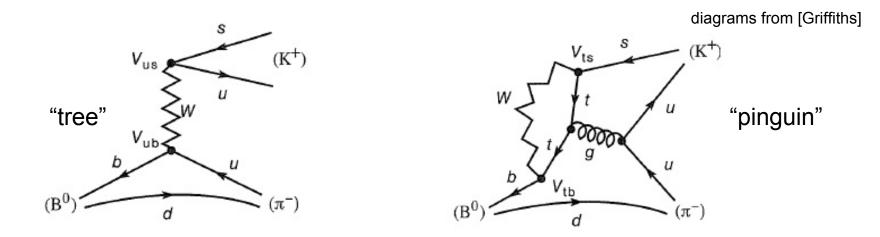
Please draw the Feynman diagram for the decay $B^{\scriptscriptstyle 0} \to K^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}$


Draw the Feynman diagram(s)



Torben Ferber | DESY Summer Student | 16.08.2013 | Page 18

Draw the Feynman diagram(s)



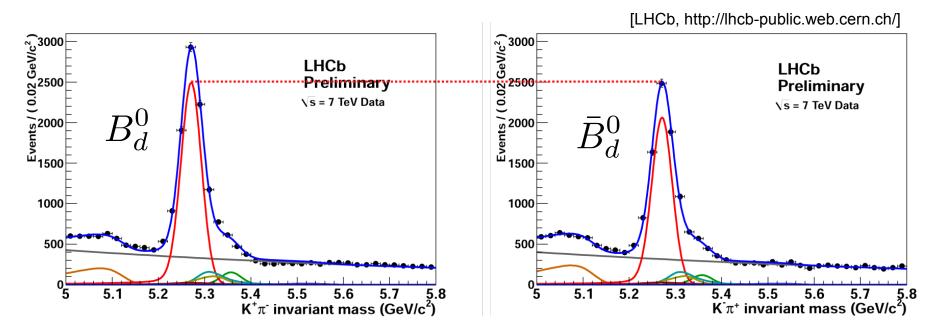
diagrams from [Griffiths]

Draw the Feynman diagram(s)

There are two routes to the same final state!

$$\begin{split} \mathcal{M}_{1} &= |\mathcal{M}_{1}|e^{i\phi_{1}}e^{i\theta_{1}} & \mathcal{M}_{2} = |\mathcal{M}_{2}|e^{i\phi_{2}}e^{i\theta_{2}} \\ \widetilde{\mathcal{M}}_{1} &= |\widetilde{\mathcal{M}}_{1}|e^{i\phi_{1}}e^{-i\theta_{1}} & \widetilde{\mathcal{M}}_{2} = |\widetilde{\mathcal{M}}_{2}|e^{i\phi_{2}}e^{-i\theta_{2}} \\ \mathcal{M} &= \mathcal{M}_{1} + \mathcal{M}_{2} \\ |\mathcal{M}|^{2} &= |\mathcal{M}_{1} + \mathcal{M}_{2}|^{2} \neq |\mathcal{M}_{1}|^{2} + |\mathcal{M}_{2}|^{2} \\ \text{(analogue for CP conjugated)} \end{split}$$

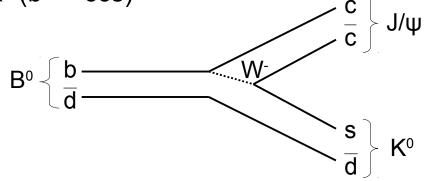
after some math (Yes, you can all do it!) and using $e^{ix}=cos(x)+i*sin(x)$:


 $|\mathcal{M}|^2 - |\widetilde{\mathcal{M}}|^2 = -4|\mathcal{M}_1||\mathcal{M}_2|\sin(\phi_1 - \phi_2)\sin(\theta_1 - \theta_2)$

Now, the rates are different, CP is violated!?Necessary conditions:

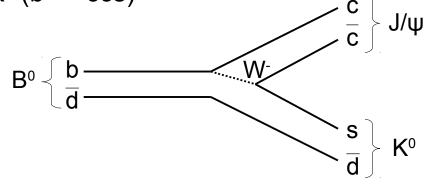
- two (or more) ways to the same final state
- a conjugated phase (different for the two ways!)
- an ordinary phase (also different for the two ways!)

CPV by eye (CPV in decays, "direct CPV")



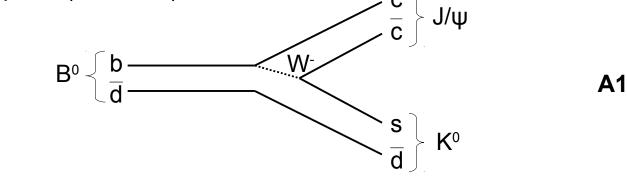
(look at the red curves only)

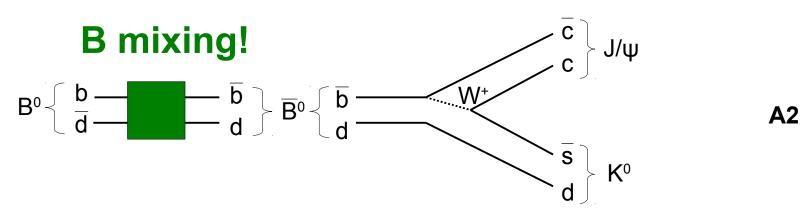
Experimentally, there is a cleaner way to measure CP violation in the B system:


■ select a final state, which is a CP eigenstate, a very famous one is $J/\psi+K^0$ (b $\rightarrow ccs$)

Experimentally, there is a cleaner way to measure CP violation in the B system:

■ select a final state, which is a CP eigenstate, a very famous one is $J/\psi+K^0$ (b $\rightarrow ccs$)

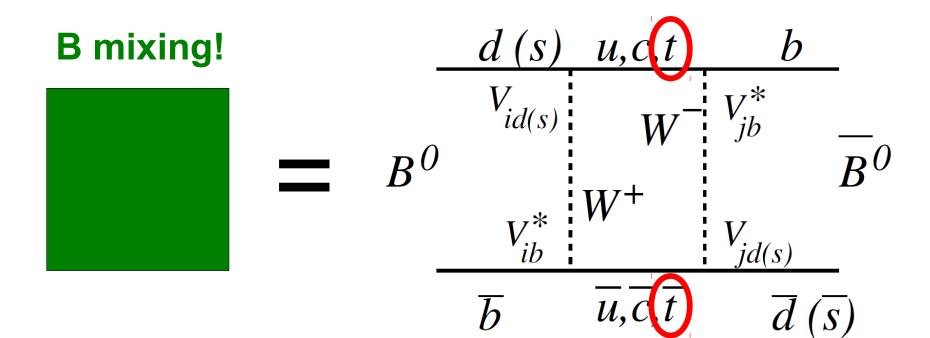

Remember: We need a different way to the same final state... (i.e. we need "interference")



CP violation at flavour factories

Experimentally, there is a cleaner way to measure CP violation in the B system:

■ select a final state, which is a **CP eigenstate**, a very famous one is $J/\psi+K^0$ (b $\rightarrow ccs$)



B mixing

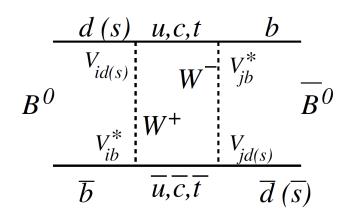
(and u,c,t $(\overline{u},\overline{c},\overline{t})$ interchanged by W)

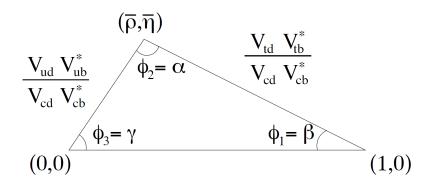
B mixing

>time evolution of a QM state:

$$|X(t)\rangle = e^{-iHt} |X(0)\rangle = e^{(-i\Re\{H\} + \Im\{H\})t} |X(0)\rangle$$

>most general Hamiltonian (X is a state):

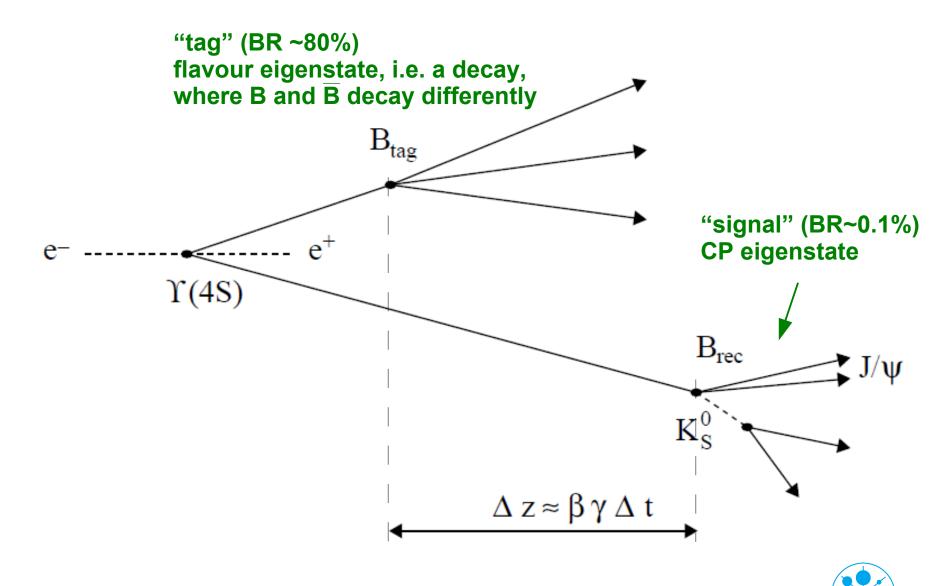

$$H|X\rangle = i\frac{d}{dt}|X\rangle = \left(M_X - \frac{i}{2}\Gamma_X\right)|X\rangle$$
$$i\frac{d}{dt}\left(\begin{vmatrix}B_q^0(t)\rangle\\|\overline{B}_q^0(t)\rangle\end{vmatrix} = \left(M_q - \frac{i}{2}\frac{\Gamma_q}{=}\right)\left(\begin{vmatrix}B_q^0(t)\rangle\\|\overline{B}_q^0(t)\rangle\end{vmatrix}$$



B mixing

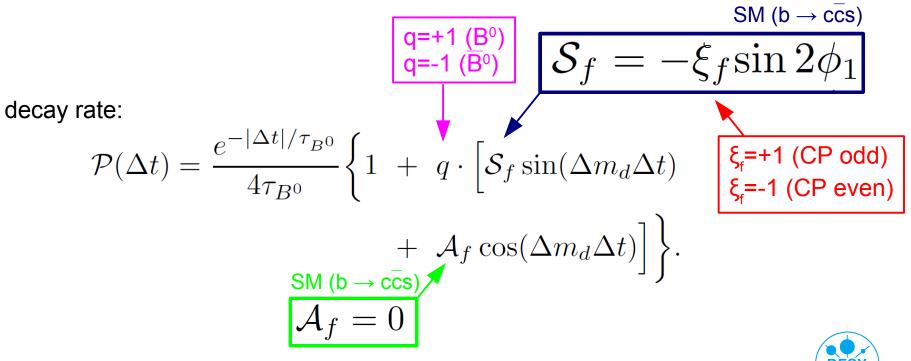
> $B \rightarrow J/\psi$ K⁰ and $\overline{B} \rightarrow J/\psi$ K⁰ have a different time dependence (instead of a strong phase)

> The phase of the mixed process A2 depends mostly on $V_{td} \rightarrow$ measure CP violation and Φ_1

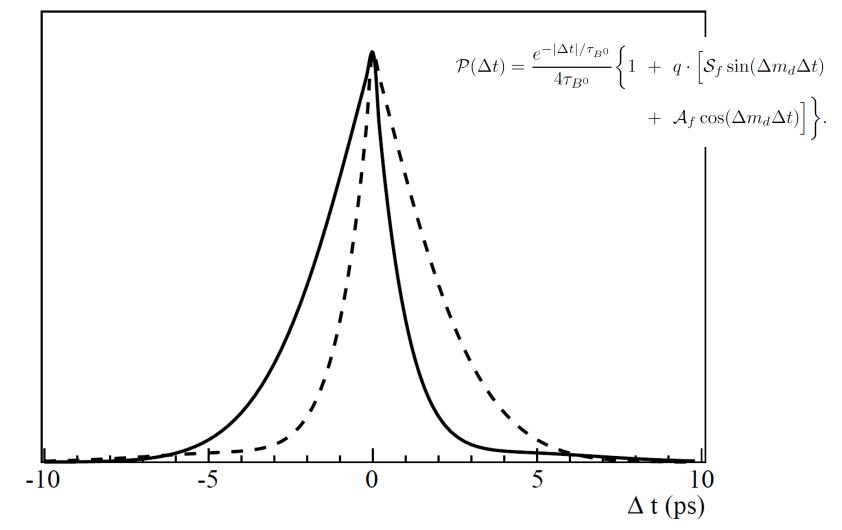

How to measure this quantity the flavour factory way:

- collide electrons and positrons to produce a Y(4S) resonance $(b\overline{b})$
- Y(4S) always decays into $B^{0}\overline{B}^{0}$ or $B^{+}B^{-}$ (BR ~50% each)
- The two B's are in coherent state: As long as the flavour is not measured (i.e. as long as it is not determined which B contains the b and which the b), either both or none of the B's mix - this is indistinguishable!
- As soon as the flavour of one B is determined, the other's flavour is known - and it mixes...

>Huh? Sounds strange... lets look at a picture!

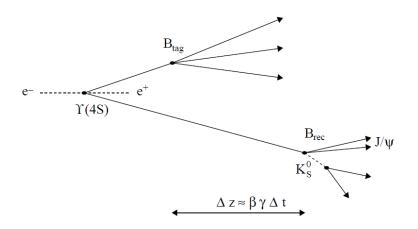

tag and signal

DES


time measurement starts, if the first B decay is measured

Δt is expressed relative to the flavour tagged B, i.e.
Δt is negative if the CP eigenstate decay is the first

Perfect time resolution, perfect tagging

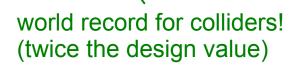


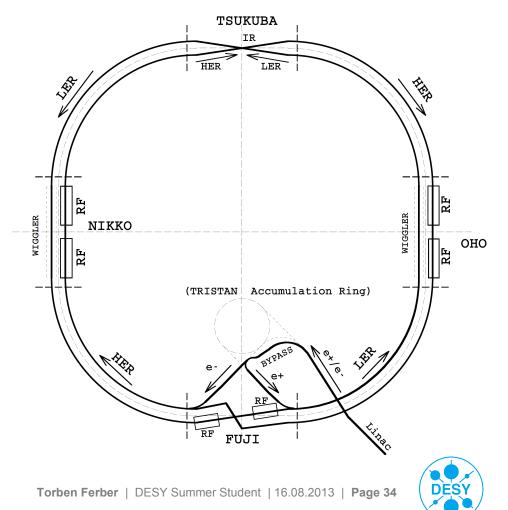
Phys. Rev. Lett. 108, 171802 (2012)

Torben Ferber | DESY Summer Student | 16.08.2013 | Page 32

I did not mention an important detail:

How to produce an Y(4S): What collider, what energies...?

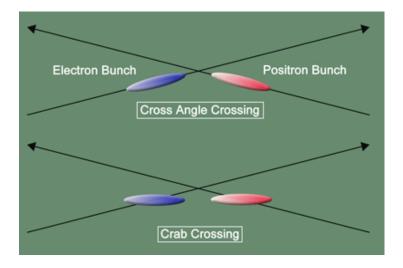

The Belle experiment at KEKB


Belle is a so-called flavour factory at the KEK accelerator in Japan (similar: BaBar at SLAC)

>1999-2010

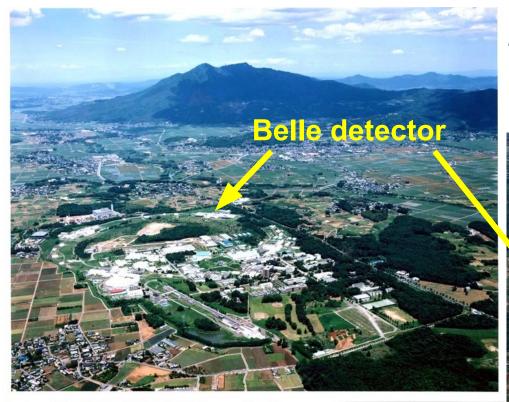
>KEKB:

- 3.1km circumfence
- crossing angle 11mrad
- electrons (8 GeV) positrons (3.5 GeV)
 → βγ=0.425
- Luminosity (final): ~2x10³⁴/cm²/s



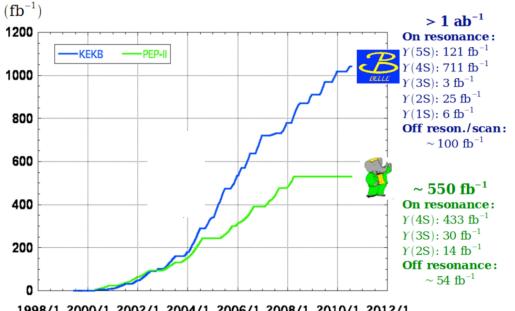
KEKB

finite beam crossing angle needed for efficient beam separation and background reduction


crab cavities to force head-on collisions (from 2007)
 beam sizes are tiny: ~2x100µm

The Belle experiment at KEKB

KEK (similar size as DESY) in Tsukuba, ~100km northeast of Tokyo

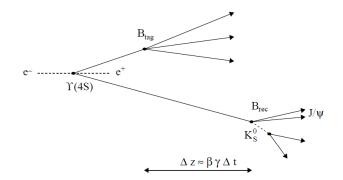


Total cross-section and trigger rates with $L = 10^{34} / \text{cm}^2 / \text{s}$ from various physics processes at $\Upsilon(4S)$

Physics process	Cross section (nb)	Rate (Hz)
$\Upsilon(4S) \rightarrow B\bar{B}$	1.2	12
Hadron production from continuum	2.8	28
$\mu^+\mu^-+ au^+ au^-$	1.6	16
Bhabha ($\theta_{lab} \ge 17^{\circ}$)	44	4.4^{a}
$\gamma\gamma \ (\theta_{\text{lab}} \ge 17^{\circ})$	2.4	0.24^{a}
2γ processes ($\theta_{\text{lab}} \ge 17^\circ$, $p_t \ge 0.1 \text{ GeV}/c$)	~15	~ 35 ^b
Total	~67	~96

^a Indicates the values pre-scaled by a factor 1/100. ^b Indicates the restricted condition of $p_t \ge 0.3$ GeV/c.

[NIM A479, 117]


1998/1 2000/1 2002/1 2004/1 2006/1 2008/1 2010/1 2012/1

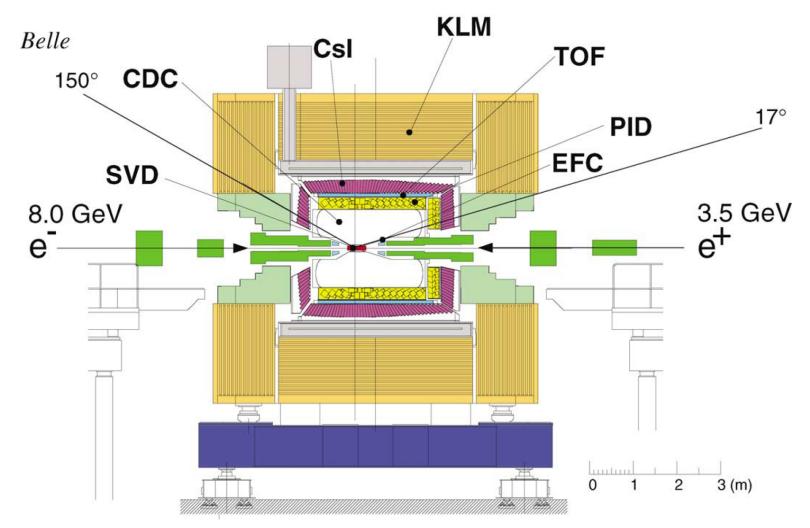
>about 800,000,000 BB pairs produced at Belle

>initial state very well known (unique feature of e⁺e⁻)

- constraint event kinematics: each B/B has half beam energy
- no pile up: maximally one BB event per collision
- >asymmetric beam energies
 - Y(4S) is boosted in forward direction, decay products not at rest
 - measure displaced decay vertices of tag and signal B

- Low particle energies (100MeV 5GeV) require low "material budget" (thin or gaseous detectors, no passive material)
- Tiny lifetime differences require excellent vertex resolution (~ some 10 µm)
- "Flavour tagging" needs excellent charge reconstruction (tracking in B field and particle identification
- >Very good **energy resolution** for photons (e.g. from $\pi^0 \rightarrow \gamma \gamma$) and electrons
- Very high beam backgrounds (mostly photons) require radiation hardness

Detector requirements - flavour tagging

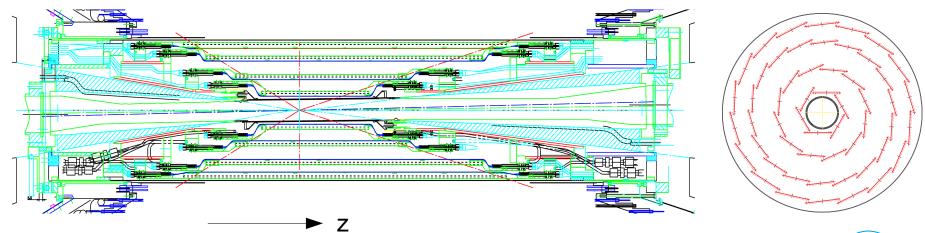

Remember: "tag side" reconstruction requires to identify the B flavour

- in a nutshell: look in the PDG booklet, find decays that are different for B and B
 , try to use as many of them as possible
- >Fast leptons (e or μ): **b** \rightarrow **c** I **v** (I⁺ for B)
- Slow leptons (e or μ): $\mathbf{b} \to \mathbf{c} \ [\mathbf{c} \to \mathbf{s} \ \mathbf{l} \ \mathbf{v} \] \mathbf{X}$ (l⁺ for \overline{B}) Kaons: $\mathbf{b} \to \mathbf{c} \ [\mathbf{c} \to \mathbf{s} \ \mathbf{X} \] \mathbf{X}$ (K⁺ for B)
- >Slow pions: $\mathbf{D}^* \to \mathbf{D}^0 (\mathbf{D}^0 \to \mathbf{K}^* \mathbf{X}) \mathbf{\pi}_{slow}^-$ (π^+ for \overline{B})

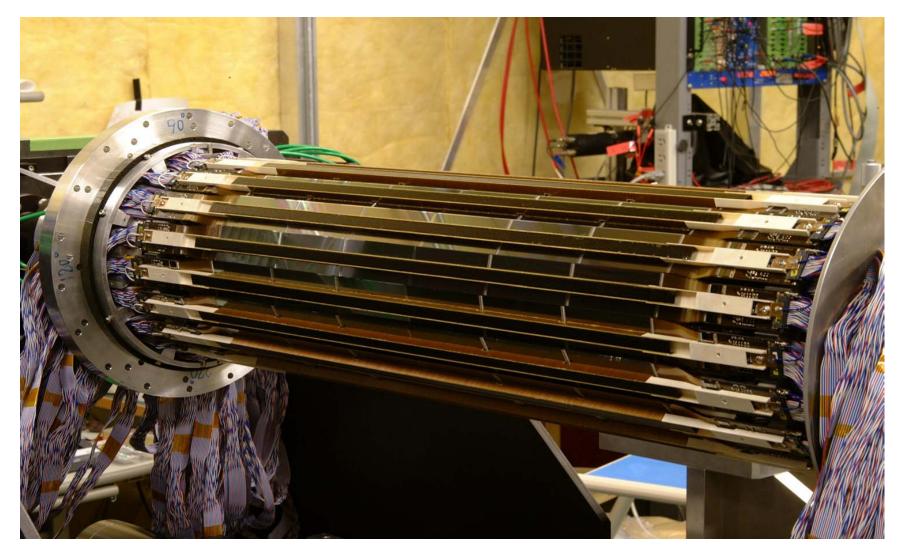
>Lambda (uds): $\mathbf{b} \to \mathbf{c} \to \mathbf{s}$ $\Lambda^0 \to \mathbf{p}^+ \pi^-$

 $(\Lambda \text{ for } B)$

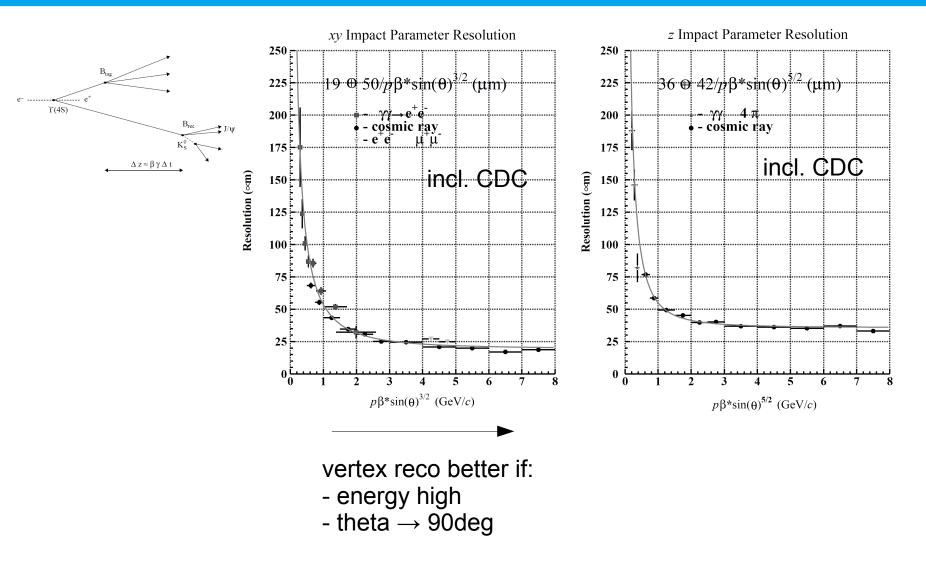
The Belle detector



three layers of double sided silicon strip detectors (DSSD)


 replaced after three years and 1MRad radiation dose (S/N degraded by about 30%, IP resolution stable)

Upgrade to four layers DSSD, smaller beam pipe (only 15mm radius)



Vertex detector (new SVD)

Vertex detector performance (old SVD)

Particle identification

Time-Of-Flight (TOF):

■ more mass ↔ longer flight time

>Aerogel Cerenkov Counters (ACC)

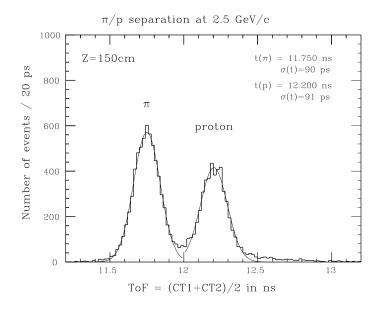
■ more velocity ↔ more photons

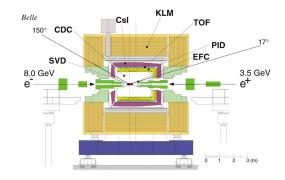
>measure dE/dx (CDC)

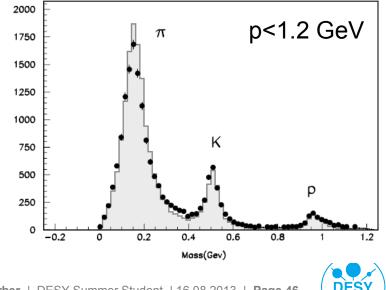
■ higher mass ↔ more deposited energy

>measure shower parameters (ECL)

exploit electron-like features

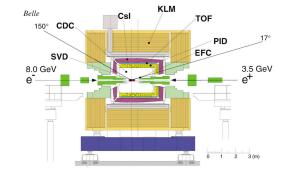

>penetration depth in iron (KLM)

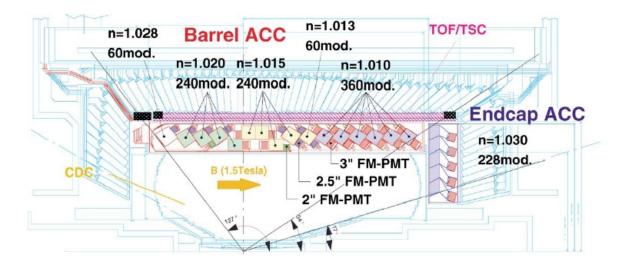

(almost) only muons reach that part of the detector



TOF

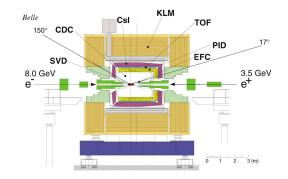
>about 1.2m away from IP >Plastic scintillator and PMTs > 100ps time resolution → PID for p<1.2GeV (covers about 90% of all particles)

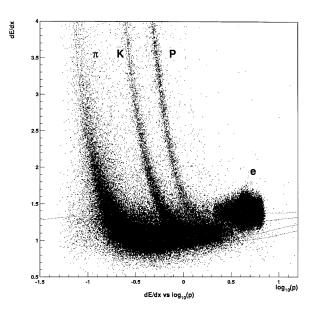


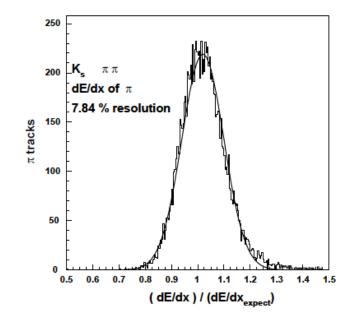

Torben Ferber | DESY Summer Student | 16.08.2013 | Page 46

ACC ("PID" in the detector drawing)

- number of emitted Cerenkov photons depends on the refraction index n and the particle speed
- Aerogel can be produced with different n

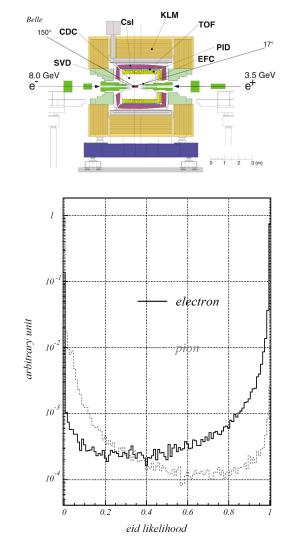

>pion/kaon separation in the range 1.2 GeV - 3.5 GeV





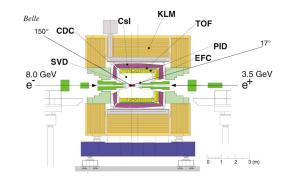
main CDC task: tracking and charge determination

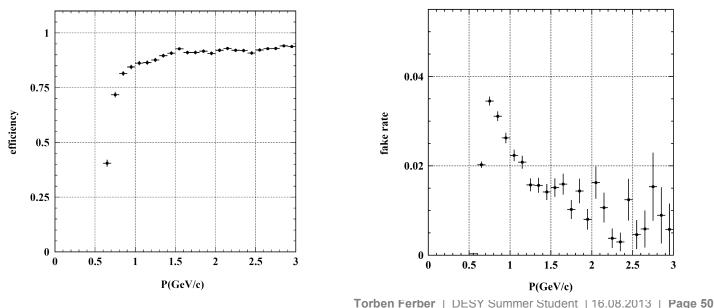
>measure energy loss in gas → very efficient at low energies (typical below 0.6 GeV)



main task: measure energy of electrons and photons

>PID for electrons:


- ratio of energy deposited in ECL and track momentum measured by CDC (~1 for electrons)
- transverse shower shape
- matching between a cluster at ECL and charged track position extrapolated to ECL
 - \rightarrow construct likelihood from these variables



KLM ("K_L and muon detector")

The only particles that reach that part of the detector are muons and K_L

Extrapolate tracks from CDC and check muon hypothesis (hits close to track, multiple scattering...)

- >We have the theory
- >We have the experimental idea
- We have the accelerator
- >We have the detector

Lets take a look at a real analysis from Belle and see if we can understand it! (Spoiler alert: We can!)

Precise measurement of the CP violation parameter $\sin 2\phi_1$ in $B^0 \to (c\bar{c})K^0$ decays

I. Adachi,⁹ H. Aihara,⁴⁹ D. M. Asner,³⁷ V. Aulchenko,¹ T. Aushev,¹⁴ T. Aziz,⁴⁴ A. M. Bakich,⁴³ A. Bav,²¹ V. Bhardwaj,²⁹ B. Bhuvan,¹⁰ M. Bischofberger,²⁹ A. Bondar,¹ A. Bozek,³² M. Bračko,^{24,15} T. E. Browder,⁸ P. Chen,³¹ B. G. Cheon,⁷ K. Chilikin,¹⁴ R. Chistov,¹⁴ K. Cho,¹⁸ S.-K. Choi,⁶ Y. Choi,⁴² J. Dalseno,^{25,45} M. Danilov,¹⁴ Z. Doležal,² Z. Drásal,² S. Eidelman,¹ D. Epifanov,¹ J. E. Fast,³⁷ V. Gaur,⁴⁴ N. Gabyshev,¹ A. Garmash,¹ Y. M. Goh,⁷ B. Golob,^{22,15} J. Haba,⁹ K. Hara,⁹ T. Hara,⁹ K. Hayasaka,²⁸ H. Hayashii,²⁹ T. Higuchi,⁹ Y. Horii,²⁸ Y. Hoshi,⁴⁷ W.-S. Hou,³¹ Y. B. Hsiung,³¹ H. J. Hyun,²⁰ T. Iijima,^{28,27} A. Ishikawa,⁴⁸ R. Itoh,⁹ M. Iwabuchi,⁵⁵ Y. Iwasaki,⁹ T. Iwashita,²⁹ T. Julius,²⁶ P. Kapusta,³² N. Katayama,⁹ T. Kawasaki,³⁴ H. Kichimi,⁹ C. Kiesling,²⁵ H. J. Kim,²⁰ H. O. Kim,²⁰ J. B. Kim,¹⁹ J. H. Kim,¹⁸ K. T. Kim,¹⁹ Y. J. Kim,¹⁸ K. Kinoshita,³ B. R. Ko,¹⁹ S. Koblitz,²⁵ P. Kodyš,² S. Korpar,^{24,15} P. Križan,^{22,15} P. Krokovny,¹ T. Kuhr,¹⁷ R. Kumar,³⁸ T. Kumita,⁵¹ A. Kuzmin,¹ Y.-J. Kwon,⁵⁵ J. S. Lange,⁴ S.-H. Lee,¹⁹ J. Li,⁴¹ Y. Li,⁵³ C. Liu,⁴⁰ Y. Liu,³¹ Z. Q. Liu,¹¹ D. Liventsev,¹⁴ R. Louvot,²¹ D. Matvienko,¹ S. McOnie,⁴³ K. Miyabayashi,²⁹ H. Miyata,³⁴ Y. Miyazaki,²⁷ R. Mizuk,¹⁴ G. B. Mohanty,⁴⁴ T. Mori,²⁷ N. Muramatsu,³⁹ E. Nakano,³⁶ M. Nakao,⁹ H. Nakazawa,⁵⁶ S. Neubauer,¹⁷ S. Nishida,⁹ K. Nishimura,⁸ O. Nitoh,⁵² S. Ogawa,⁴⁶ T. Ohshima,²⁷ S. Okuno,¹⁶ S. L. Olsen,^{41,8} Y. Onuki,⁴⁹ H. Ozaki,⁹ P. Pakhlov,¹⁴ G. Pakhlova,¹⁴ H. K. Park,²⁰ K. S. Park,⁴² T. K. Pedlar,²³ R. Pestotnik,¹⁵ M. Petrič,¹⁵ L. E. Piilonen,⁵³ A. Poluektov,¹ M. Röhrken,¹⁷ M. Rozanska,³² H. Sahoo,⁸ K. Sakai,⁹ Y. Sakai,⁹ T. Sanuki,⁴⁸ Y. Sato,⁴⁸ O. Schneider,²¹ C. Schwanda,¹² A. J. Schwartz,³ K. Senyo,⁵⁴ V. Shebalin,¹ C. P. Shen,²⁷ T.-A. Shibata,⁵⁰ J.-G. Shiu,³¹ B. Shwartz,¹ A. Sibidanov,⁴³ F. Simon,^{25,45} J. B. Singh,³⁸ P. Smerkol,¹⁵ Y.-S. Sohn,⁵⁵ A. Sokolov,¹³ E. Solovieva,¹⁴ S. Stanič,³⁵ M. Starič,¹⁵ M. Sumihama,⁵ K. Sumisawa,⁹ T. Sumiyoshi,⁵¹ S. Tanaka,⁹ G. Tatishvili,³⁷ Y. Teramoto,³⁶ I. Tikhomirov,¹⁴ K. Trabelsi,⁹ T. Tsuboyama,⁹ M. Uchida,⁵⁰ S. Uehara,⁹ T. Uglov,¹⁴ Y. Unno,⁷ S. Uno,⁹ Y. Ushiroda,⁹ S. E. Vahsen,⁸ G. Varner,⁸ K. E. Varvell,⁴³ A. Vinokurova,¹ V. Vorobyev,¹ C. H. Wang,³⁰ M.-Z. Wang,³¹ P. Wang,¹¹ M. Watanabe,³⁴ Y. Watanabe,¹⁶ K. M. Williams,⁵³ E. Won,¹⁹ B. D. Yabsley,⁴³ H. Yamamoto,⁴⁸ Y. Yamashita,³³ M. Yamauchi,⁹ Y. Yusa,³⁴ Z. P. Zhang,⁴⁰ V. Zhilich,¹ A. Zupanc,¹⁷ and O. Zvukova¹ (The Belle Collaboration)

Phys. Rev. Lett. 108, 171802 (2012)

>dataset: 772x10⁶ BB pairs (full dataset @Y(4S)) >b $\rightarrow c c s$

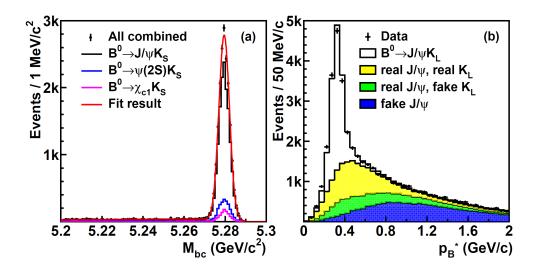
- CP even:
- J/ψ K_s
 ψ(2S) K_s
 X_{c1} K_s
 CP odd:
 - **>** J/ψK_L

Step 1

>Step 1: Search signal events: J/ψ K⁰

■ 1a) $J/\psi \rightarrow ee \text{ or } J/\psi \rightarrow \mu\mu$: invariant mass of the two leptons must result in J/ψ mass (within some 30-100 MeV)

- 1b) K_s → π⁺π⁻ (careful, the decay length of the K_s is some cm) or
 K_L cluster is found in ECL or KLM and no other charged track is nearby
 - → 4 charged tracks, two of them leptons (opposite charge), two of them pions (opposite charge) or
 2 charged tracks from leptons and one cluster


Step 2

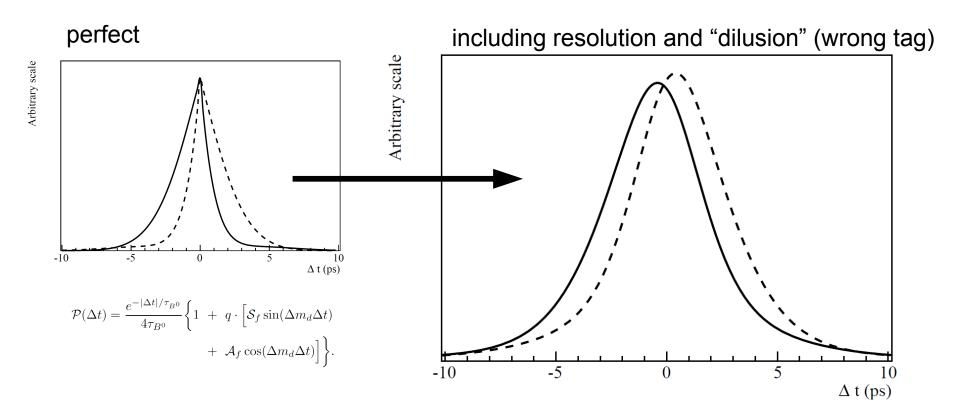
Step 2: Make a signal B (we call it "candidate")

Use the reconstructed J/ψ and the reconstructed K_s (or K_L) to make a B, use the fact, that you already know its energy (E*_{beam}=10.58GeV/2)

$$M_{bc} = \sqrt{E_{beam}^{*2} - p_B^{*2}}$$

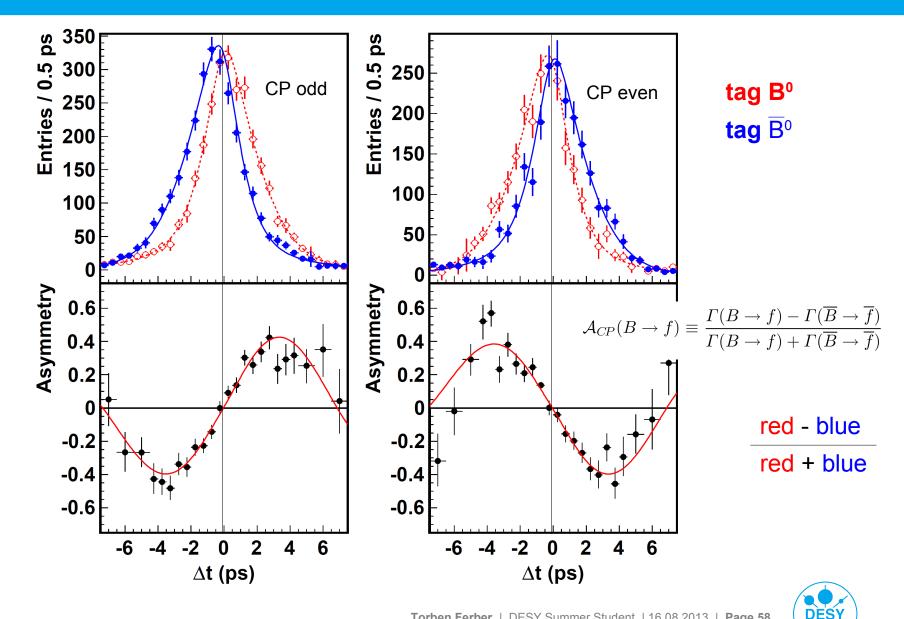
For the K_L, you have to calculate the four-momentum p_B* assuming two body decay kinematics

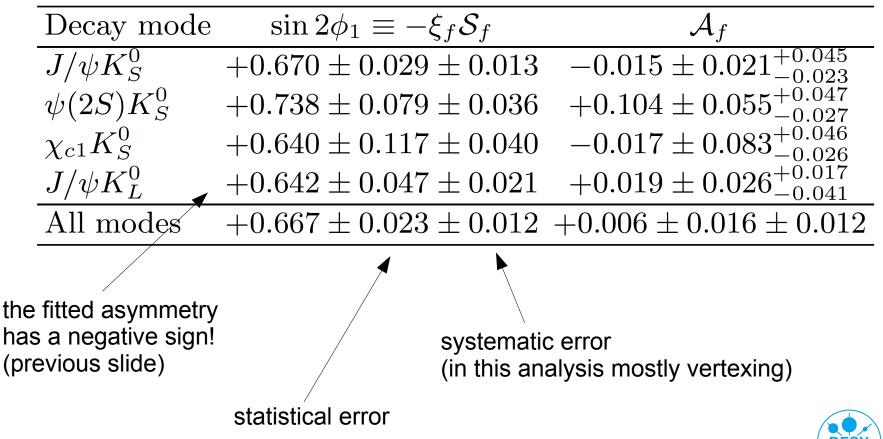
Step 3

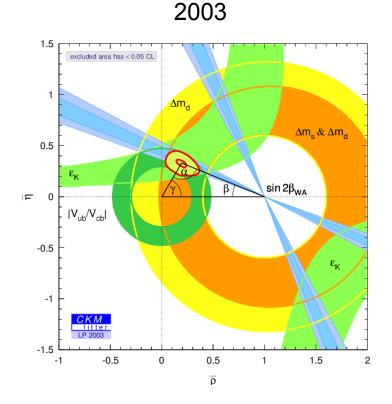

>3) "tag" the other B by using the leftover tracks

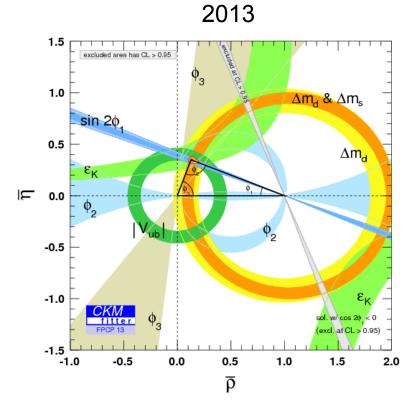
- you dont need to reconstruct everything here, just tag the flavour via one of the possible ways discussed before
- you have to reconstruct the vertex, though...

TABLE I: CP eigenvalue (ξ_f) , signal yield (N_{sig}) and purity for each $B^0 \to f_{CP}$ mode.


Decay mode	ξ_f	$N_{ m sig}$	Purity (%)
$J/\psi K_S^0$	-1	12649 ± 114	97
$\psi(2S)(\ell^+\ell^-)K^0_S$	-1	$904\pm~31$	92
$\psi(2S)(J/\psi\pi^+\pi^-)K^0_S$	-1	$1067 \pm \ 33$	90
$\chi_{c1}K^0_S$	-1	940 ± 33	86
$J/\psi K_L^0$	+1	10040 ± 154	63

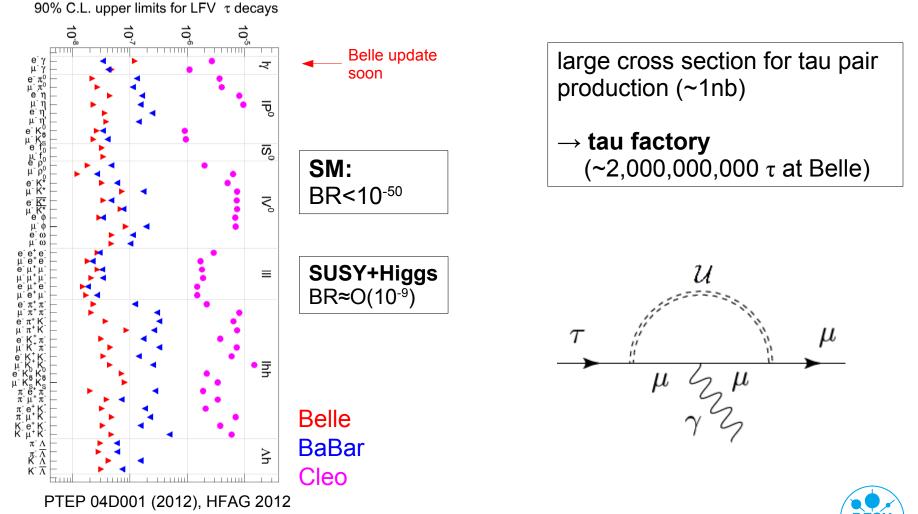

Results

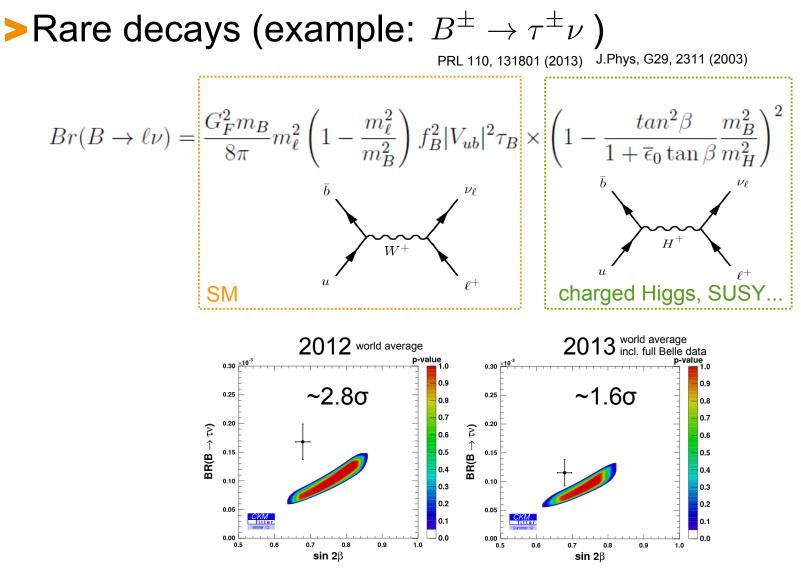

Torben Ferber | DESY Summer Student | 16.08.2013 | Page 58


Results

$$\mathcal{P}(\Delta t) = \frac{e^{-|\Delta t|/\tau_{B^0}}}{4\tau_{B^0}} \bigg\{ 1 + q \cdot \Big[\mathcal{S}_f \sin(\Delta m_d \Delta t) + \mathcal{A}_f \cos(\Delta m_d \Delta t) \Big] \bigg\}.$$

10 years of flavour factories (+LHCb)

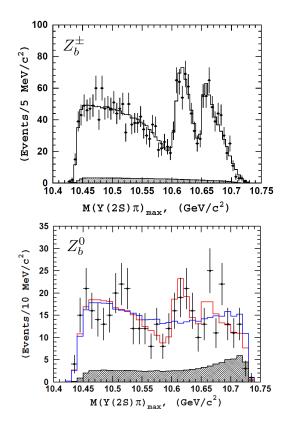




Other topics at flavour factories (1)

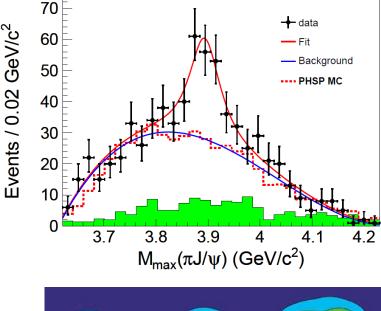
Lepton Flavour Violation (LFV)

Other topics at flavour factories (2)



Other topics at flavour factories (3)

Spectroscopy and exotica (tetraquarks?)


 $Z_b^{\pm}, Z_b^0 \text{ in } \Upsilon(5S) \to \Upsilon(2)\pi$

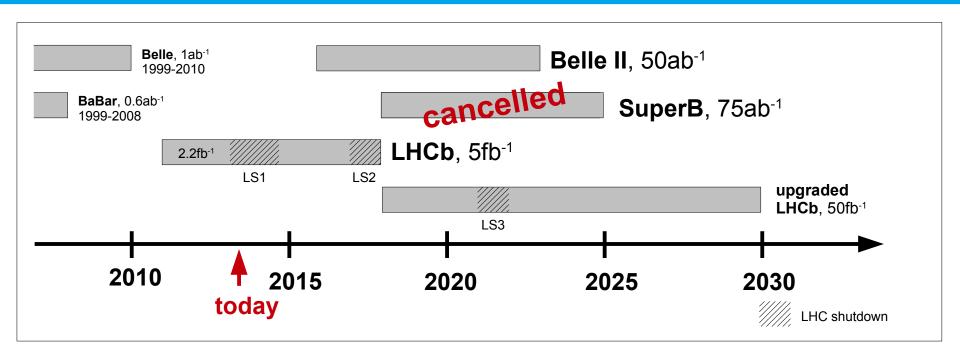
PRL 108, 122001(2012), BELLE-CONF-1271 (2012)

 $X_c(3872)$ in X(4260)J/ $\Psi\pi$

Phys. Rev. Lett. 110, 252002 (2013)

APS/Alan Stonebraker

Charm physics: Mixing and CP violation


- Inclusive decays: Full reconstruction, CKM matrix elements, …
- Precision electroweak physics (Weinberg angle)

>Hadronization

- Tau physics (LFV, precision tests)
- >2 Photon physics
- Physics at Y(5S), involving B_s

the next 10 years

strong interplay with other intensity frontier fields, e.g.:

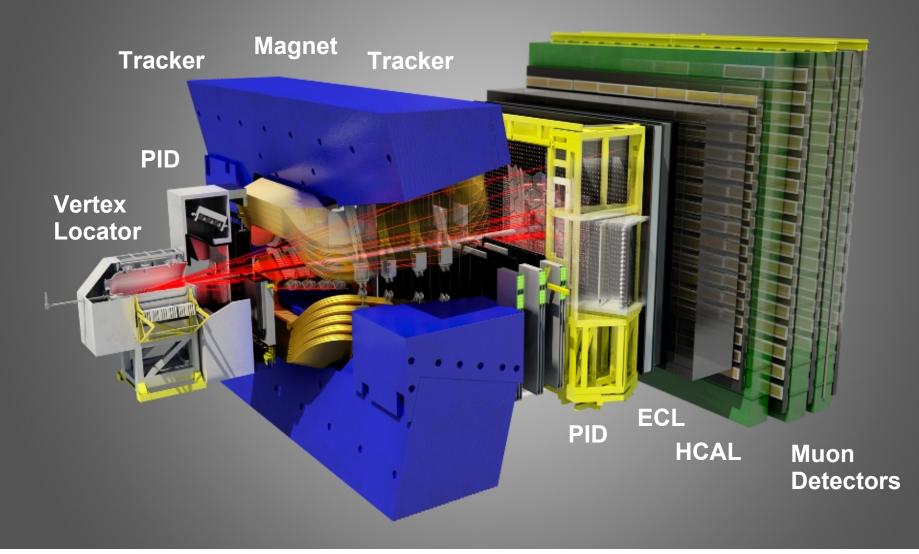
- rare kaon decays (NA62, KLOE2, KOTO,...)
- lepton flavor violation (Mu2e, COMET, MEG,...)
- light quark factories (BESIII, VEPP-2000, CLEO-c, ...)

>At the LHC, $b\overline{b}$ pairs are be produced in pp collisions

- large pile up (i.e. several bb pairs per event)
- huge cross section (~300 µb @ 8 TeV)
- bb in extreme forward(or backward) direction

rule of thumb:

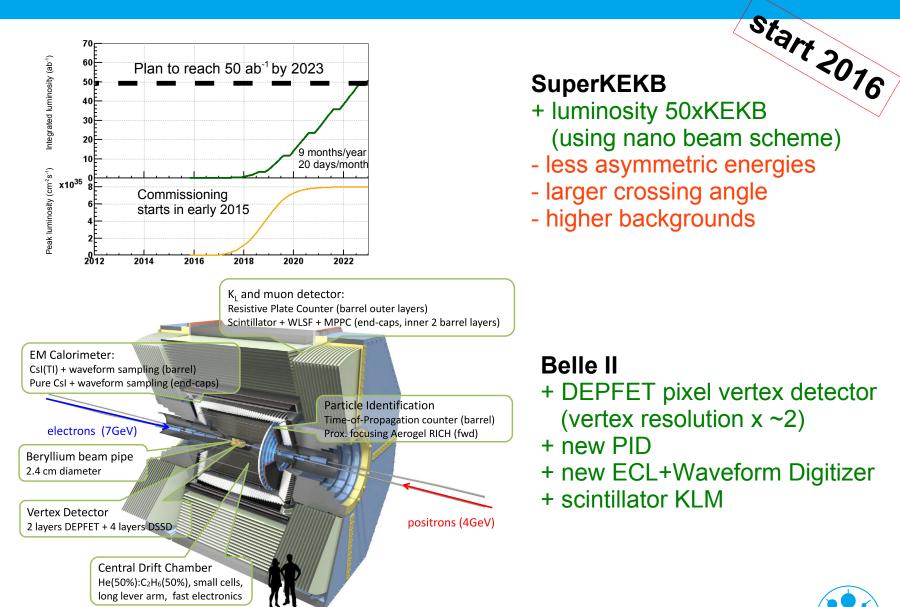
- statistically superior to Belle/BaBar for simple event kinematics (e.g. $B \rightarrow K^{+}\pi^{-}$, $B_{s} \rightarrow \mu\mu$, ...)
- but: not able to reconstruct events with missing energy (neutrinos) and difficulties with photons
- covers B_s physics (i.e. bs mesons) as well
- complementary production and experimental methods


LHCb MC √s = 8 TeV

3π/4

 θ_1 [rad]

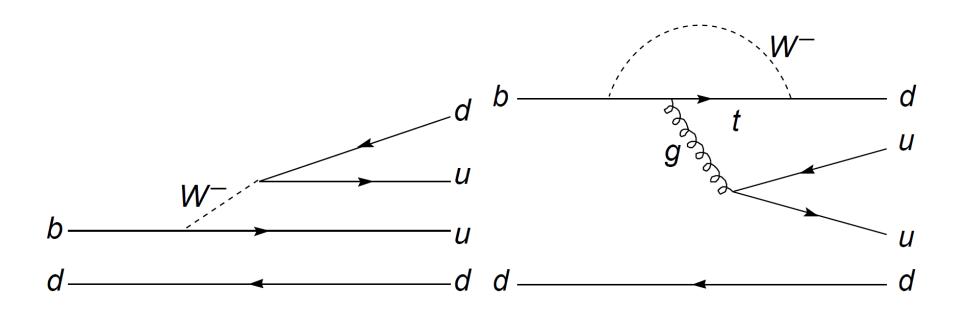
 θ_{2} [rad] $\pi/2$


LHCb detector

Torben Ferber | DESY Summer Student | 16.08.2013 | Page 67

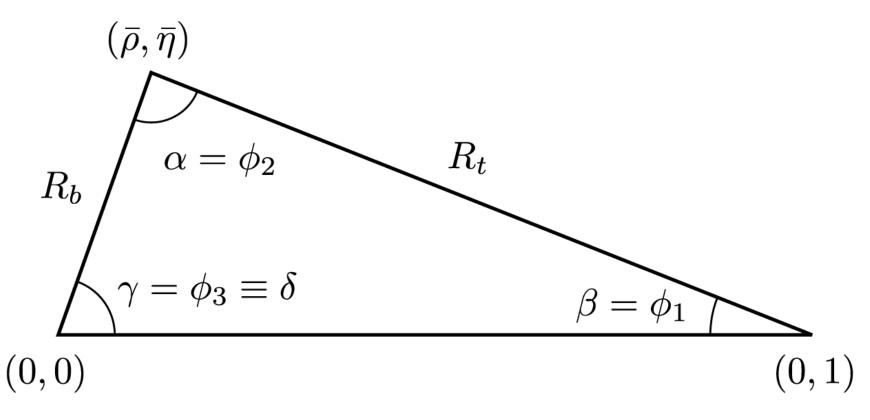
Belle 2 at SuperKEKB

- >SM is a poor description of the universe
- >SM works surprisingly well in particle physics
- No physics beyond SM found in flavour physics (or the LHC) yet (take a look in the PDG booklet)
- There <u>must</u> be physics beyond the SM, and this physics <u>must</u> violate CP
- Precision experiments like Belle probe energy scales via loops and boxes direct searches can not
- Two very big players (upgraded LHCb and Belle 2) are getting ready to challenge the SM even further

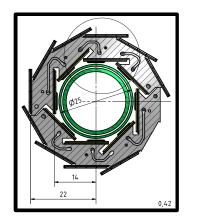

more information:

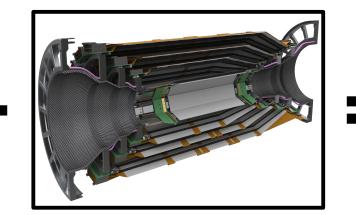
- belle2.desy.de (Belle and Belle 2 at DESY) belle.kek.jp (Belle)
- belle2.kek.jp (Belle 2)
- slac.stanford.edu/BF/ (BaBar)
- lhcb-public.web.cern.ch/lhcb-public (LHCb)
- pdg.lbl.gov (Particle Data Group)
- ckmfitter.in2p3.fr (global CKM fits)

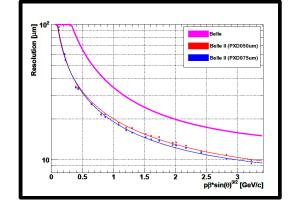
Backup



Torben Ferber | DESY Summer Student | 16.08.2013 | Page 72


CKM, unitary triangle





Torben Ferber | DESY Summer Student | 16.08.2013 | Page 73

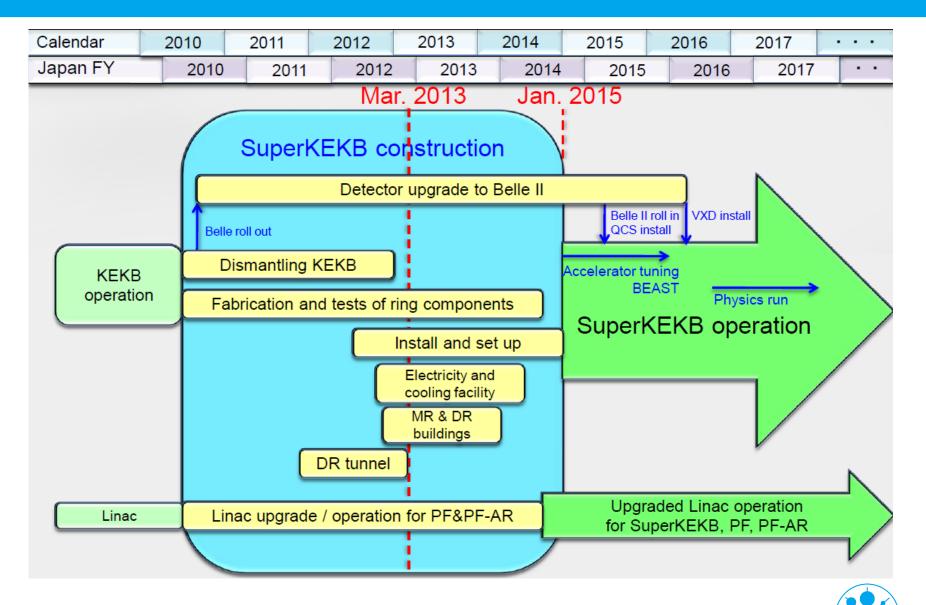
2 layers of DEPFET pixel detectors (PXD) 4 layers of double-sided silicon strip detectors (SVD)

PXD 0.21% X_0 /layer

pixel: 50x55/85µm thickness: 75µm

hit time resolution: 20µs

SVD 0.55% X₀/layer


shaping time: 20ns hit time resolution: 3ns PXD + SVD = VXD

Z vertex resolution two times better than Belle

```
Improved K_s efficiency
(e.g. B \rightarrow K_s K_s K_s, ...)
```


Belle II Schedule

DESY

Belle II physics reach compared to LHCb


Observable/mode	Current	LHCb	//SuperB//	Belle II	LHCb upgrade	theory
e beer vable, mede	now	(2017)	(2021)	(2021)	(10 years of	now
	110 11	$5 {\rm fb}^{-1}$	75 ab74	$50 {\rm ab}^{-1}$	running) $50 \mathrm{fb}^{-1}$	100
$\tau \to \mu \gamma \; (\times 10^{-9})$	< 44		2.4	< 5.0		
$\tau \to e\gamma \; (\times 10^{-9})$	< 33		//	< 3.7 (est.)		
$\tau \to \ell \ell \ell \; (\times 10^{-10})$	< 150 - 270	$ < 244^{\ a}$	<2,3,-8,2	< 10	$< 24^{-b}$	
	111	B	u, a Decays	· ·	11	
$BR(B \to \tau \nu) \; (\times 10^{-4})$	1.64 ± 0.34		0.05	0.04		1.1 ± 0.2
$BR(B \to \mu\nu) \ (\times 10^{-6})$	< 1.0		0.02	0.03		0.47 ± 0.08
$BR(B \to K^{*+} \nu \overline{\nu}) \ (\times 10^{-6})$	< 80		////	2.0		6.8 ± 1.1
$BR(B \to K^+ \nu \overline{\nu}) \ (\times 10^{-6})$	< 160		<u>0,7</u>	1.6		3.6 ± 0.5
$BR(B \to X_s \gamma) \ (\times 10^{-4})$	3.55 ± 0.26			0.13	0.23	3.15 ± 0.23
$A_{CP}(B \to X_{(s+d)}\gamma)$	0.060 ± 0.060			0.02		$\sim 10^{-6}$
$B \to K^* \mu^+ \mu^- \text{ (events)}$	250^{c}	8000	//uzzzkad	7-10k	100,000	-
$BR(B \to K^* \mu^+ \mu^-) \ (\times 10^{-6})$	1.15 ± 0.16			0.07		1.19 ± 0.39
$B \to K^* e^+ e^-$ (events)	165	400	XXXXXX/	7-10k	5,000	-
$BR(B \to K^* e^+ e^-) \ (\times 10^{-6})$	1.09 ± 0.17			0.07		1.19 ± 0.39
$A_{FB}(B \to K^* \ell^+ \ell^-)$	0.27 ± 0.14^{e}	f	0.00	0.03		-0.089 ± 0.020
$B \to X_s \ell^+ \ell^- \text{ (events)}$	280		//86:0///	7,000		-
$BR(B \to X_s \ell^+ \ell^-) \ (\times 10^{-6})^g$	3.66 ± 0.77^{h}		0.08///	0.10		1.59 ± 0.11
$S \text{ in } B \to K^0_s \pi^0 \gamma$	-0.15 ± 0.20		0.03	0.03		-0.1 to 0.1
$S \text{ in } B \to \eta' K^0$	0.59 ± 0.07		0.01	0.02		± 0.015
$S \text{ in } B \to \phi K^0$	0.56 ± 0.17	0.15	0.02///	0.03	0.03	± 0.02
$B_s^{(0)}$ Decays///						
$BR(B_s^0 \to \gamma\gamma) \ (\times 10^{-6})$	< 8.7		19.3	0.2 - 0.3		0.4 - 1.0
$A_{SL}^{s} \; (\times 10^{-3})$	-7.87 ± 1.96 ^{<i>i</i>}	j	4,///	5. $(est.)$		0.02 ± 0.01
D/Decays///						
x	$(0.63 \pm 0.20\%)$	0.06%	0.02%	0.04%	0.02%	$\sim 10^{-2 k}$
y	$(0.75 \pm 0.12)\%$	0.03%	0.01%	0.03%	0.01%	$\sim 10^{-2}$ (see above).
УСР	$(1.11 \pm 0.22)\%$	0.02%	0.03%	0.05%	0.01%	$\sim 10^{-2}$ (see above).
q/p	$(0.91 \pm 0.17)\%$	8.5%	2.7%	3.0%	3%	$\sim 10^{-3}$ (see above).
$\arg\{q/p\}$ (°)	-10.2 ± 9.2	4.4	///XA///	1.4	2.0	$\sim 10^{-3}$ (see above).

arXiv:1109.5028v2

Belle detector performance

Detector	Туре	Configuration	Readout	Performance
Beam pipe	Beryllium double wall	Cylindrical, $r = 20 \text{ mm}$ 0.5/2.5/0.5 (mm) = Be/He/Be		He gas cooled
EFC	BGO	Photodiode readout segmentation: 32 in ϕ ; 5 in θ	160×2	RMS energy resolution: 7.3 % at 8 GeV 5.8% at 3.5 GeV
SVD	Double-sided Si strip	Chip size: $57.5 \times 33.5 \text{ mm}^2$ Strip pitch: 25 (p)/50 (n) µm 3 layers: 8/10/14 ladders	φ: 40.96k z: 40.96k	$\sigma_{\varDelta_z} \sim 80 \ \mu \mathrm{m}$
CDC	Small cell drift chamber	Anode: 50 layers Cathode: 3 layers r = 8.3-86.3 cm $-77 \le z \le 160$ cm	<i>A</i> : 8.4k <i>C</i> : 1.8k	$\sigma_{r\phi} = 130 \ \mu m$ $\sigma_z = 200 - 1400 \ \mu m$ $\sigma_{p_t}/p_t = 0.3\% \sqrt{p_t^2 + 1}$ $\sigma_{dE/dx} = 6\%$
ACC	Silica aerogel	960 barrel/228 end-cap FM-PMT readout		$N_{p,e, \geq 6}$ K/ π separation: 1.2 < p < 3.5 GeV/ c
TOF	Scintillator	128 ϕ segmentation	128×2	$\sigma_t = 100 \text{ ps}$
TSC		r = 120 cm, 3-m long 64 ϕ segmentation	64	K/π separation: up to 1.2 GeV/c
ECL	CsI (towered structure)	Barrel: $r = 125-162$ cm End-cap: $z = -102$ cm and $+196$ cm	6624 1152 (F) 960 (B)	$\sigma_E/E = 1.3\%/\sqrt{E}$ $\sigma_{\text{pos}} = 0.5 \text{ cm}/\sqrt{E}$ (<i>E</i> in GeV)
KLM	Resistive plate counters	14 layers (5 cm Fe + 4 cm gap) 2 RPCs in each gap	<i>θ</i> : 16k <i>φ</i> : 16k	$\Delta \phi = \Delta \theta = 30 \text{ mr}$ for K _L ~ 1% hadron fake
Magnet	Supercon.	Inner radius $= 170$ cm		B = 1.5 T

