Beyond the Standard Model

Supersymmetry and Exotica – Lecture II

Altan Cakir DESY, 13.08.2013 Hamburg, Germany.

(1) It is a profound phenomenon in nature that the gauge symmetry SU(2)xU(1) is spontaneously broken. \rightarrow Why does this happen?

② What does explanation look like for hierarchy problem? → Are there any new particles, forces or dimensions in nature?

3 Anomalies: we face significant experimental issues which guaranteed to be beyond the Standard Model.

Searches for new physics phenomenology and questions

Altan Cakir | Beyond the Standard Model I | DESY Summer School Lectures 2013 | 14.08.2013 | Page 3

- All these questions → the weak/Higgs mass scale and "naturalness"
 ○New physics appears near electro-weak scale (fix divergences)
 New physics modifies couplings: GUT at the electro-weak scale
 - \odot Gravity is strong in ND, weak in 4D; e.g. MPI (5D) ~ TeV ?
 - Extra groups: Occur naturally in GUT scale theories
 - O Natural combination for the quark and lepton sector
 - More generations? New/excited fermions

- o All these questions → the weak/Higgs mass scale and "naturalness"
 - **ONew physics appears near electro-weak scale (fix divergences)**
 - \odot New physics modifies couplings: GUT at the electro-weak scale

Supersymmetry

- Gravity is strong in ND, weak in 4D; e.g. MPI (5D) ~ TeV ?
 Extra Dimensions
- \odot Extra groups: Occur naturally in GUT scale theories

Extra Gauge groups: Z`, W`

O Natural combination for the quark and lepton sector

Leptoquarks

○ More generations? New/excited fermions

Compositeness

Topological signals vs BSM models?

1 jet + MET Many extensions of the SM have been iets + MET developed over the past decades. 1 lepton + MET Supersymmetry Same-sign di-lepton **Dilepton resonance Extra-Dimensions Diphoton resonance** Technicolor(s) Diphoton + MET Little Higgs **Multileptons** Lepton-jet resonance No Higgs Lepton-photon resonance GUT Gamma-jet resonance **Diboson resonance** Hidden Valley Z+MET Leptoquarks W/Z+Gamma resonance Top-antitop resonance Compositeness Slow-moving particles 4th generation (t', b') Long-lived particles **Top-antitop production** LRSM, heavy neutrino Lepton-Jets • etc... Microscopic blackholes **Dijet resonance** etc...

Topological presentation requires jumping between very different models

Remember!

The Standard Model of elementary particle physics gives no explanation for this hierarchy

Altan Cakir | Beyond the Standard Model I | DESY Summer School Lectures 2013 | 14.08.2013 | Page 7

Extra Dimensions

Solution "Extra Dimensions"

Existence of large, extra, compactified space-dimensions ...

Fundamental scale in $4+\delta$ dimensions: M_D

Then:

$$M_{Pl}^2 = (Volume)_{\delta} M_D^{2+\delta}$$

Gravitation exists in all D=1+3+ δ dimensions.

The Standard Model of elementary particle physics gives no explanation for this hierarchy

Extra Dimensions

This theory requires that the fields of the Standard Model are confined to a four-dimensional membrane, while gravity propagates in several additional spatial dimensions that are large compared to the Planck scale. Altan Cakir | Beyond the Standard Model || DESY Summer School Lectures 2013 | 14.08.2013 | Page 9

Gravitational Force 4D

Extra Dimensions

r » R:

$$\oint \vec{F}_G d\vec{S} = \int_0^R \oint \vec{F}_G d\vec{\tau} dL \sim mM$$

$$\Rightarrow F_G \sim \frac{mM}{r^2R}$$

$$F(r) = \frac{G_{(3+n)}}{R^n} \frac{mM}{r^2} \propto \frac{1}{r^2}$$

$$G(3)$$

$$F(r) = G_{(3+n)} \frac{mM}{r^{2+n}} \propto \frac{1}{r^{2+n}}$$

$$(3+n-\dim)$$

SM interactions tested up to $r \sim 10^{-18}$ m But gravity ... only tested down to about 0.1 mm ...

No conflict ... if only gravity 'lives' in extra dimensions

Hierarchy Problem?

Extra Dimensions may solve Hierarchy problem if size of the compactified dimensions is large enough

Gravity becomes strong at small distances i.e. for distances of the order of the size of the extra dimensions

But: Only gravity should live inside the Extra Dimensions as distance laws for other SM interactions are much better known

New Dimensions

Removes the hierarchy problem

Consider 4+n dimensional space time

- Gravity propagates in all dimensions
- Appears weak in 4D space-time
- Gravity becomes strong at short distances

✓ expect

- Effects of virtual graviton interactions
- Kaluza-Klein excitations of graviton

- ADD Arkani-Hamed, Dimopoulos, Dvali, PL **B429** (1998)
- n dimensions, compactified over multidim torus of radius R
- $M_{\rm Pl}^2 \approx M_{\rm S}^{2+n} R^n$
- RS Randall and Sundrum, PRL 83, 3370 (1999)
- one warped dimension

Extra Dimensions \rightarrow ADD and RS

- virtual gravitons modify production of sm particles
 - enhanced production at high mass
- graviton production
 - KK excitations \rightarrow resonances
 - graviton unobserved \rightarrow missing momentum
- example: γγ mass spectrum §
 - $\text{ADD } M_D > 2.6 \dots 3.9 \text{ TeV}$
 - for $n = 7 \dots 3$
 - $\text{RS} m(g_{RS}) > 1.0 \dots 2.1 TeV$
 - for $k/\overline{M}_{Pl} = 0.01 \dots 0.1$

Black Holes

- Black Holes are a direct prediction of Einstein's general theory on relativity
- If Planck scale ~TeV region, expect Quantum Black Hole production
- Using Gauss's law with n extra dimensions $V(r) \sim \frac{M}{M^{n+2}} \frac{1}{r^{n+1}}$
- For small extra dimension of size R

$$V(r) \sim \frac{M_p^{n+2} r^{n+1}}{M_p^{n+2} R^n} \frac{1}{r}$$

- Relation between planck scale in 4D and 4+nD $M_{p(4)}^2 \sim M_p^{n+2} R^n$
- Schwarzschild radius is the radius in which a confined mass would become a black hole $r_h = \frac{1}{\sqrt{\pi}M_p} \left(\frac{M_{BH}}{M_p}\right)^{\frac{1}{n+1}} \left(\frac{8\Gamma\left(\frac{n+3}{2}\right)}{n+2}\right)^{\frac{1}{n+1}}$
 - $M_{pl} = 10^{19} \text{ GeV}$ in 4D implies $r_h << 10^{-35} \text{ m}$
 - M_{pl} = TeV in 4+n D implies $r_h \simeq 10^{-17}$ m
- Occasionally protons with parton center of mass energy $M_{BH} = \sqrt{\hat{s}}$ could collide at a distance smaller than r_h
- such collisions satisfy the black hole definition but with tiny mass

Production and Decay of Black Holes

- Formation: semi-classical argument
 - Partons with impact parameter less than Schwarzchild radius $R_s(\sqrt{s})$

area ~ πR_s^2 ~ 1 TeV $^{-2}$ ~ 10 $^{-38}$ m² ~ 100 pb Production rate of ~0.1 Hz at L = 10³⁴ cm⁻² s⁻¹

• Hawking evaporation with lifetime $\tau \sim 10^{-27}$ sec

 $\begin{array}{rll} \mathsf{BH} \rightarrow (\mathsf{q} \text{ and } \mathsf{g} : \mathsf{leptons} : \mathsf{Z} \text{ and } \mathsf{W} : \mathsf{v} \text{ and } \mathsf{G} : \mathsf{H} : \mathsf{\gamma}) \\ &= (\mathsf{72\%} : \mathsf{11\%} : \mathsf{8\%} : \mathsf{6\%} : \mathsf{2\%} : \mathsf{1\%}) \end{array}$

- Experimental signatures
 - High multiplicity events
 - Hadrons:Leptons ~ 5:1
 - Spherical events
 - Large missing PT
- Could be discovered with 1 fb⁻¹ if $M_{Pl} < 5$ TeV!

Searches for Black Holes at the LHC

Multijet events as Black Holes

Altan Cakir | Beyond the Standard Model I | DESY Summer School Lectures 2013 | 14.08.2013 | Page 19

Searches for new resonances at the LHC

- New gauge bosons predicted by many extensions of the Standard Model with extended gauge symmetries
 - Z_{SSM} in Sequential Standard Model with same Z0 coupling as in Standard Model
 - Z' models from E6 and SO(10) GUT groups
 - The Kaluza-Klein model from Extra Dimension
 - Little, Littlest Higgs model
- No precise prediction for mass scale of gauge bosons
- Technicolor also predicts variety of narrow heavy particles
- Backgrounds
 - relatively clean with good S/B
 - mostly tails of SM processes
- Experimental challenges
 - detector resolution can be a key player
 - I.3% 2.4% for electrons and 7% for muons at I TeV mass
 - extra care for energy/momentum reconstruction above I TeV

New Resonances

■ Number (D) of space-time dimensions → form of force observed

Propagation into the other dimensions:

Resonances!

What we will see:

2D+1 world

Tabletop experiments: look for deviations from 1/r² law

Di-Electron Searches for Z` Model

- Additional U(1) gauge ٠ Also E6 Grand Unified u, d, s symmetries and Theory (GUT), broken associated Z gauge γΙΖΙΖ in U(5) and two U(1)bosons are one of the groups, giving raise to best motivated two new U(1) fields. extensions of the u, d, s Their mixing can give Standard Model (SM). rise to Z' candidates 10' Events Events / 10 GeV CMS $dt = 4.7 \text{ fb}^{-1}$ Data 2011 ATLAS Preliminary 10⁵ √s = 7 TeV preliminary 10⁶ **Z**/γ* DATA Diboson 104 Z/γ*→e^{*}e^{*} 10⁵ _ dt = 4.9 fb⁻¹ tt + other prompt leptons W+jets 10³ 10⁴ jets (data) QCD multijet s = 7 TeV 10² (1500 GeV 10^{3} (1750 GeV 10 (2000 GeV 10² 10 10⁻¹ 10⁻² 10-1 10⁻³ 10⁻² 10 10⁻³ 10² 2×10² 10³ 2×10³ m(ee) [GeV] 70 300 1000 100 200 2000 m_e [GeV]
- Background estimation: QCD and ttbar from data, DY from MC

Di-Electron Searches for Z` Model

Background estimation: QCD and ttbar from data, DY from MC

Di-Electron Searches for Z` Model

• Background estimation: QCD and ttbar from data, DY from MC

Di-Muon

- Several events with mass of I TeV
- But much larger resolution with muons spreads out a possible signal a lot compared to electrons

W` → Lepton + MET Search

- Heavy analog of SM W; assume same couplings to fermions. Cleanest signature: high-p_T lepton (e or μ)
- Search for peak/enhancement in transverse mass spectrum (e/µ + MET)
- Look for heavy W-like Jacobian peak in transverse mass

$$m_T = \sqrt{2p_T \not\!\!\!E_T (1 - \cos\Delta\phi_{\ell, \not\!\!\!E_T})}$$

- Dominant background: W production in Standard Model Model || DESY Summer School Lectures 2013 | 14.08.2013 | Page 26
- Now also take into account interference with SM

Heavy Neutrinos and LR Symmetry

	Standard Model	Left-Right-Symmetric Extension (LRSM)	
Gauge group	$SU(2)_{L} X U(1)_{Y}$	SU(2) _L X SU(2) _R X U(1) _{B-L}	
Fermions	LH doublets: $Q_L = (u^i, d^{i})_L$, $L_L = (l^i, v^i)_L$ RH singlets: $Q_R = u^i_R$, d^{i}_R , $L_R = l^i_R$	LH doublets: $Q_L = (u^i, d^{i})_L, L_L = (l^{i}, v^{i})_L$ RH doublets: $Q_R = (u^i, d^{i})_R, L_R = (l^{i}, N^{i})_R$	
Neutrinos	v_R^i do not exist v_L^i are massless & pure chiral	N^{i}_{R} are heavy partners to the v^{i}_{L} N^{i}_{R} Majorana in the Minimal LRSM	
Gauge bosons	$W^{\pm}_{\ L}$, Z ⁰ , γ	$W_{L}^{\pm}, W_{R}^{\pm}, Z^{0}, Z', \gamma$	

- Parity violation built-in for the Standard Model
 - Parity violation in LRSM via symmetry breaking at intermediate mass scale
- Neutrino oscillations require massive neutrinos
 - but neutrinos mass forbidden in SM
 - "See saw" mechanism in LRSM can explain small mass of neutrinos via heavy partners

Heavy Neutrino and W_R Symmetry

WZ Resonances

- Sensitive to sequential SM and techni-hadrons
- 3 leptons + missing energy
 - Sum of lepton Pt
 - WZ invariant mass with W mass constraint
- Scalar sum of transverse momenta a key discriminator to reject SM background

WZ and ZZ Resonances

- For very heavy resonances hadronic W and Z merge into one fat jet
 - jet energy resolution

ZZ Resonance

Altan Cakir | Beyond the Standard Model I | DESY Summer School Lectures 2013 | 14.08.2013 | Page 31

Di-Jet Resonance

 Very early search for numerous resonances BSM: string resonance, excited quarks, axigluons, colorons, E6 diquarks, W' & Z', RS gravitons

Tri-Jet Resonance

- 6 jets in several theoretical models
 - Q = g = SU(3)C Adjoint Majorana Fermion
 - R-Parity violating (No Missing ET)
- Modeled as R-parity violating gluino (negligible intrinsic width)

$$pp \rightarrow QQ \rightarrow 3j + 3j$$

dN/dm (GeV⁻¹c²)

10²

10-1

10⁻²

Data

CMS Preliminary, 5.0 fb⁻¹

Four-Parameter Background Fit

··· 300 GeV/c² Gluino Model

√s = 7 TeV

200 250 300 350 400 450 Triplet Mass (GeV/c²) **Di-Jet Pair**

Altan Cakir | Beyond the Standard Model I | DESY Summer School Lectures 2013 | 14.08.2013 | Page 34

- b'b' pair production
- BR(b'→tW) = 100%
- Decay Chain: b'b'→tWtW→**bbW+W**-W+W-
- Complex signature

How to see I, v, q, b?

Counting experiment

Final States: 4L+2J, <u>3L+4J</u>, <u>2L+6J</u>, 1L+8J, 0L+10J

(clean/large modes)

- same-sign lepton(e/µ) pair or trilepton
- at least 1 b-jet
- higher mass then top quark & more Jets then top pair

$b'\bar{b}' \rightarrow tW^-\bar{t}W^+ \rightarrow bW^+W^-\bar{b}W^-W^+$

- At least 1 b-jet, 2 or 3 leptons
- Main backgrounds determined from lepton fake rate in data
- Dominant systematic uncertainty: b-tagging and lepton efficiency
- Main background discrimination from total transverse energy $\sum p_T(\text{jets}) + \sum p_T(\text{leptons}) + \mathbb{Z}_T$

Altan Cakir | Beyond the Standard Model I | DESY Summer School Lectures 2013 | 14.08.2013 | Page 38

Exotica Searches in the CMS Collaboration

Altan Cakir | Beyond the Standard Model I | DESY Summer School Lectures 2013 | 14.08.2013 | Page 39

Exotica Searches in the ATLAS Collaboration

	ATLAS Exotics S	earches* - 95% CL Lower Limits (Status: May 2013)
Large ED (ADD) : monojet + $E_{T,miss}$	L=4.7 fb ⁻¹ , 7 TeV [1210.4491]	4.37 TeV M _D (δ=2	()
Large ED (ADD) : monophoton + $E_{T,miss}$	L=4.6 fb ⁻¹ , 7 TeV [1209.4625]	1.93 TeV M _D (0=2)	ATLAS
Large ED (ADD) : diphoton & dilepton, $m_{\gamma\gamma/\parallel}$	L=4.7 fb ⁻¹ , 7 TeV [1211.1150]	4.18 TeV M _S (HLZ	0=3, NLO) Preliminary
$S^{1/7}$ CD i dilatton m	L=4.8 fb ⁻¹ , 7 TeV [1209.0753]	1.40 TeV Compact. Scale R	p-1
$S/Z_2 ED$ dilepton, m_{\parallel}	L=30.0 fb ⁻¹ 8 ToV [1209.2535]		k/M = 0.1
$\frac{1}{1000} = \frac{1}{1000} = 1$	L=20 ID , 8 TeV [ATLAS-CONF-2013-017]	2.47 TeV Graviton mass $(k/M) = 0.2$	$(1)_{Pl} = 0.1)$
Bulk BS : 77 resonance m_{m}	L=4.7 ID , 7 IEV [1208.2880]	$\frac{1.23 \text{ lev}}{\text{Graviton mass}} \left(\frac{k}{M} - 1.0\right)$	$\int I dt = (1 - 20) \text{ fb}^{-1}$
BS $a \rightarrow t\bar{t}$ (BB=0.925) $t\bar{t} \rightarrow t + iets m$	$I = 4.7 \text{ fb}^{-1}$ 7 TeV [1305 2756]		$J^{-\alpha}$
$\begin{array}{c} H = 0 \\ H = 0 \\$	/=1.3 fb ⁻¹ 7 TeV [1111 0080]	1 25 TeV $M_{\rm p}$ (δ =6)	s = 7, 8 TeV
ADD BH $(M_{TH}/M_{D}=3)$: leptons + jets, Σp	/=1.0 fb ⁻¹ 7 TeV [1204 4646]	15 TeV $M_{\rm p}$ ($\delta = 6$)	
Quantum black hole : dijet. F (m_{i})	L=4.7 fb ⁻¹ . 7 TeV [1210.1718]	4 11 TeV M _α (δ=6)	
qqqq contact interaction : $\chi(m')$	L=4.8 fb ⁻¹ , 7 TeV [1210.1718]	7.6 TeV	Δ
gall CI : ee & uu, m	L=5.0 fb ⁻¹ , 7 TeV [1211.1150]		13.9 TeV Λ (constructive int.)
uutt CI : SS dilepton + jets + $E_{T mise}$	L=14.3 fb ⁻¹ . 8 TeV [ATLAS-CONF-2013-051]	3.3 TeV ∆ (C=1)	
Z' (SSM) : m _{eo(uu}	L=20 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-017]	2.86 TeV Z' mass	
Z' (SSM) : m_	L=4.7 fb ⁻¹ , 7 TeV [1210.6604]	1.4 TeV Z' mass	
Z' (leptophobic topcolor) : $t\bar{t} \rightarrow l+jets, m$	L=14.3 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-052]	1.8 TeV Z' mass	
\gg W' (SSM) : $m_{Te/u}$	L=4.7 fb ⁻¹ , 7 TeV [1209.4446]	2.55 TeV W' mass	
W' (\rightarrow tq, g _p =1) : m_{tq}	L=4.7 fb ⁻¹ , 7 TeV [1209.6593] 43	0 GeV W' mass	
$W'_{B} (\rightarrow tb, LRSM) : m_{H}$	L=14.3 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-050]	1.84 TeV W' mass	
Scalar LQ pair (β =1) : kin. vars. in eejj, evjj	L=1.0 fb ⁻¹ , 7 TeV [1112.4828]	660 GeV 1 st gen. LQ mass	
Scalar LQ pair (β =1) : kin. vars. in µµjj, µvjj	L=1.0 fb ⁻¹ , 7 TeV [1203.3172]	685 GeV 2 nd gen. LQ mass	
Scalar LQ pair (β=1) : kin. vars. in ττjj, τνjj	L=4.7 fb ⁻¹ , 7 TeV [1303.0526]	534 GeV 3rd gen. LQ mass	
α 4 th generation : t't'→ WbWb	L=4.7 fb ⁻¹ , 7 TeV [1210.5468]	656 GeV t' mass	
4th generation : b'b' \rightarrow SS dilepton + jets + $E_{T \text{ miss}}$	L=14.3 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-051]	720 GeV b' mass	
Vector-like quark : $TT \rightarrow Ht + X$	L=14.3 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-018]	790 Gev T mass (isospin doublet)	
Vector-like quark : CC, m _{lvg}	L=4.6 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-137]	1.12 TeV VLQ mass (charge -1/3, cou	pling $\kappa_{qQ} = v/m_Q$
Excited quarks : γ-jet resonance, m	L=2.1 fb ⁻¹ , 7 TeV [1112.3580]	2.46 TeV q* mass	,
Excited quarks : dijet resonance, m_{jj}	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-148]	3.84 TeV q* mass	
Excited b quark : W-t resonance, m _{wt}	L=4.7 fb ⁻¹ , 7 TeV [1301.1583]	870 GeV b* mass (left-handed coupling)	
Excited leptons : I- γ resonance, m_{μ}	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-146]	2.2 TeV I* mass ($\Lambda = m(I^*)$)
Techni-hadrons (LSTC) : dilepton,m _{ee/μμ}	L=5.0 fb ⁻¹ , 7 TeV [1209.2535]	850 GeV ρ_T / ω_T mass $(m(\rho_T / \omega_T) - m(\pi_T) = N$	Л _w)
Techni-hadrons (LSTC) : WZ resonance (MI), m	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-015]	920 GeV ρ_T mass $(m(\rho_T) = m(\pi_T) + m_W, m_W)$	$m(a_{T}) = 1.1 m(\rho_{T}))$
Major. neutr. (LRSM, no mixing) : 2-lep + jets	L=2.1 fb ⁻¹ , 7 TeV [1203.5420]	1.5 TeV N mass (<i>m</i> (W _R) = 2 TeV	/)
Heavy lepton N [±] (type III seesaw) : Z-I resonance, m_{ZI}	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-20子56]	V^{\pm} mass (IV _e I = 0.055, IV _µ I = 0.063, IV _τ I = 0)	
H_{L}^{-} (DY prod., BR($H_{L}^{-} \rightarrow II$)=1): SS ee ($\mu\mu$), m_{μ}	L=4.7 fb ⁻¹ , 7 TeV [1210.5070] 409	Gev H ^{±±} _L mass (limit at 398 GeV for μμ)	
Color octet scalar : dijet resonance, m_{jj}	L=4.8 fb ⁻¹ , 7 TeV [1210.1718]	1.86 TeV Scalar resonance ma	ass
Multi-charged particles (DY prod.) : highly ionizing tracks			
Magnetic monopoles (DY prod.) : highly ionizing tracks	L=2.0 fb ⁻⁺ , 7 TeV [1207.6411]	862 GeV mass	
	10 ⁻¹	1	10 10
	10	I	
*0.1			iviass scale [TeV]

Only a selection of the available mass limits on new states or phenomena shown

Altan Cakir | Beyond the Standard Model I | DESY Summer School Lectures 2013 | 14.08.2013 | Page 40

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ExoticsPublicResults

Summary

- ✓ There is a very rich and exciting the physics beyond the SM program at LHC (beyond?) probing many fundamental aspects of the nature.
- ✓ Past 3 years of data taking at the LHC have been very intense and productive!
- ✓ Many different signatures of new physics (SUSY & Exotica) are being studied in both collaborations (also many other experiments).
- ✓ Many searches of new Physics in complementary final states have been performed, and many analyses are ready to process with full dataset in 2012.
- \checkmark Unfortunately, no significant excess observed over SM.

Outlook

THERE'S STILL THE POSSIBILITY FOR A LOT OF NEW THINGS.

Understand electroweak symmetry breaking Observe the Higgs boson \checkmark \rightarrow Observation of the new boson! Measure neutrino masses and mixings Establish Majorana neutrinos ($\beta\beta_{0\nu}$) Thoroughly explore CP violation in B decays Exploit rare decays (K, D, \ldots) Observe neutron EDM, pursue electron EDM Use top as a tool Observe new phases of matter Understand hadron structure quantitatively Uncover QCD's full implications Observe proton decay Understand the baryon excess *Catalogue matter and energy of the universe* Measure dark energy equation of state Search for new macroscopic forces Determine GUT symmetry Detect neutrinos from the universe CAP Learn how to quantize gravity Learn why empty space is nearly weightless Test the inflation hypothesis Understand discrete symmetry violation Resolve the hierarchy problem Discover new gauge forces Directly detect dark-matter particles Explore extra spatial dimensions Understand the origin of large-scale structure Observe gravitational radiation Solve the strong CP problem Learn whether supersymmetry is TeV-scale Seek TeV-scale dynamical symmetry breaking Search for new strong dynamics Explain the highest-energy cosmic rays Formulate problem of identity

Whoa.