High-energy neutrinos at IceCube: A global picture

Lars Mohrmann, DESY – for the IceCube Collaboration

AG Annual Meeting 2013 Splinter Meeting – "The High-Energy Universe"

Eberhard Karls Universität Tübingen – September 26, 2013

Introduction to neutrino astronomy and IceCube

Searches for high-energy neutrinos in IceCube

Characterization of the IceCube high-energy excess

- "Astronomy is a natural science that is the study of celestial objects (such as moons, planets, stars, nebulae, and galaxies) [...]."
 Wikipedia
- Complete list of confirmed extraterrestrial neutrino sources:
 - The Sun
 - Supernova 1987a
- Neutrino astronomy is yet to begin But maybe it is just about to start...

The dawn of neutrino astronomy?

PRL 111, 021103 (2013)

PHYSICAL REVIEW LETTERS

week ending 12 JULY 2013

First Observation of PeV-Energy Neutrinos with IceCube

Observation of PeV Neutrinos in IceCube

Very high energy events in the 2010/2011 IceCube data

Why are high-energy neutrinos so interesting?

- Atmospheric neutrino spectrum is steeply falling
- Any excess at high energies is a sign for a new source of neutrinos

What are the possible sources of high-energy neutrinos?

- "Conventional"
- From π / K decay
- **>** Φ **~** E^{-3.7}

- "Prompt"
- From charmed meson decay
- **Φ** ~ E^{-2.7}
- > Undetected so far

Astrophysical sources

- > Astrophysical
- Benchmark scenario:
 - Φ ~ E⁻²
 - Flavor ratio ν_e : u_μ : $u_ au$ = 1 : 1 : 1
- The truth could be very different!

Lars Mohrmann – lars.mohrmann@desy.de – September 26, 2013

What can neutrinos tell us about astrophysical sources?

Neutrinos are tracers of hadronic interactions

ICECUBE

> They could help us to identify the acceleration sites of UHE cosmic rays

The IceCube Neutrino Observatory

- 1 km³ of South Pole Ice instrumented with 5160 PMTs
- Detect neutrino interactions via Cherenkov radiation of secondary particles
- Full detector with 86 strings completed in 2010 → IC86
- > Previous configurations:
 - IC79
 - IC59
 - IC40

The IceCube Neutrino Observatory

Neutrino event signatures in IceCube

Tracks

 \mathcal{V}_{μ} charged-current interaction

- Angular resolution < 1°</p>
- Can measure muon dE/dx only

> Showers

- ν_e + ν_{τ} charged-current interaction + ν_e + ν_{μ} + ν_{τ} neutral-current interaction
- Angular resolution > 10°
- Energy resolution ≥ 15% (on deposited energy)

Time

Introduction to neutrino astronomy and IceCube

Searches for high-energy neutrinos in IceCube

Characterization of the IceCube high-energy excess

Search for contained showers with IC40

ICECUBE

IC40 – contained showers Run 110884 Event 19256253 Zenith 1.18536 Zimuth 2.54233 nergy 224455 Zenith 2.9915 Azimuth 1.09661 Energy 143925 Excess over background: 2.7 σ 🖾 atm. μ + atm. ν atm. µ (3.6±1.2) ·10⁻⁸ GeVs⁻¹ cm⁻² sr⁻¹ E⁻² atm. $v_e + v_\mu$ (conventional) ~224 TeV atm. $v_e + v_\mu + v_\tau$ (prompt) ~144 TeV • data IceCube preliminary sample Ia or Ib Collaboration, in preparation Run 111113 Event 31099997 Run 111780 Event 29420816 10² Zenith 1.93537 Azimuth 4.11568 Energy 143840 Zenith 1.38802 Azimuth 1.52721 Energy 135124 events per bin $[\tau_{live} = 367.1d]$ 10^{1} 10^{0} 7777 10⁻¹ IceCube ~144 TeV ~135 TeV 10⁻² 3.5 4.5 4.0 5.0 5.5 6.0 log₁₀(E_{reco}/GeV) Time

Search for contained showers with IC59

- IC59 contained showers
- > Excess not significant

Search for high-energy muon neutrinos with IC59

- > IC59 throughgoing tracks
- Excess over background: 1.8 σ

First analysis of data from the full IceCube detector

- IC79 + IC86 very bright events >
- Found 2 events at energy threshold >
- Excess over background: 2.8 σ

ICECUBE

Follow-up analysis using the same data set

- IC79 + IC86 contained showers + tracks
- > 2 PeV-events + 26 new events (30 300 TeV)

Combined significance of excess: 4.1 σ

Introduction to neutrino astronomy and IceCube

Searches for high-energy neutrinos in IceCube

Characterization of the IceCube high-energy excess

Interpretation of the IceCube excess by the community

An incomplete collection...

Extragalactic sources

On the origin of IceCube's PeV neutrinos – Cholis, Hooper [1211.1974]

Diffuse PeV Neutrinos from Gamma-ray Bursts – Liu, Wang [1212.1260]

Cosmic PeV Neutrinos and the Sources of Ultrahigh Energy Protons – Kistler, Stanev, Yuksel [1301.1703]

PeV Neutrinos from Intergalactic Interactions of Cosmic Rays Emitted by Active Galactic Nuclei – Kalashev, Kusenko, Essey [1303.0300]

Diffuse PeV neutrino emission from ultraluminous infrared galaxies – He, Wang, Fan, Liu, Wei [1303.1253]

PeV neutrinos observed by IceCube from cores of active galactic nuclei – Stecker [1305.7404]

TeV-PeV neutrinos from Low-Power Gamma-ray Burst Jets inside Stars – Murase, loka [1306.2274]

Testing the Hadronuclear Origin of PeV Neutrinos Observed with IceCube – Murase, Ahlers, Lacki [1306.3417]

Photohadronic Origin of the TeV-PeV Neutrinos Observed in IceCube – Winter [1307.2793]

Long-lived PeV-EeV Neutrinos from GRB Blastwave – Razzaque [1307.7596]

Galactic sources

Galactic PeV Neutrinos – Gupta [1305.4123]

Sub-PeV Neutrinos from TeV Unidentified Sources in the Galaxy

– Fox, Kashiyama, Meszaros [1305.6606]

Pinning down the cosmic ray source mechanism with new IceCube data

- Anchordoqui et al. [1306.5021]

The Galactic Pevatron

– Neronov, Semikoz, Tchernin [1307.2158]

The Galactic Center Origin of a Subset of IceCube Neutrino Events – Razzaque [1309.2756]

Probing the Galactic Origin of the IceCube Excess with Gamma-Rays – Ahlers, Murase [1309.4077]

> Lorentz invariance tests

Stringent constraint on neutrino Lorentz invariance violation from the two IceCube PeV neutrinos – Borriello et al. [1303.5843]

Constraining Superluminal Electron and Neutrino Velocities using the 2010 Crab Nebula Flare and the IceCube PeV Neutrino Events – Stecker [1306.6095]

Testing Relativity with High-Energy Astrophysical Neutrinos – Diaz, Kostelecky, Mewes [1308.6344]

Exotic

Neutrino decays over cosmological distances and the implications for neutrino telescopes

- Baerwald, Bustamante, Winter [1208.4600]

Explanation for the Low Flux of High-Energy Astrophysical Muon Neutrinos

- Pakvasa, Joshipura, Mohanty [1209.5630]

Neutrinos at IceCube from heavy decaying dark matter

- Feldstein et al. [1303.7320]

Superheavy Particle Origin of IceCube PeV Neutrino Events – Barger, Keung [1305.6907]

Pseudo-Dirac neutrinos via mirror-world and depletion of UHE neutrinos

- Joshipura, Mohanty, Pakvasa [1307.5712]

Are IceCube neutrinos unveiling PeV-scale decaying dark matter?

– Esmaili, Sercipo [1308.1105]

Two source populations

TeV-PeV neutrinos over the atmospheric background: originating from groups of sources? – He, Yang, Fan, Wei [1307.1450]

[] = arXiv reference

- > Characterize the excess by fitting a generic model to the data of multiple analyses
- > Perform Poisson-likelihood fit of energy distributions

- **Goal:** Characterize the excess by using information from all analyses at the same time
- Method: Global Poisson-likelihood fit of energy distributions
- Components:
 - Atmospheric µ
 - Atmospheric v (conventional)
 - Atmospheric ν (prompt)
 - Astrophysical v

- CORSIKA simulation / from data
- Honda et al.¹ + Gaisser³ (H3a)
- Enberg et al.² + Gaisser³ (H3a)
- $E^2 \Phi = 10^{-8} \text{ GeV s}^{-1} \text{ sr}^{-1} \text{ cm}^{-2}$

¹Honda et al., Phys. Rev. D 75, 043006 (2007) ²Enberg et al., Phys. Rev. D 78, 043005 (2008) ³Gaisser, Astropart. Phys. 35, 801-806 (2012)

- **Goal:** Characterize the excess by using information from all analyses at the same time
- Method: Global Poisson-likelihood fit of energy distributions
- Components:

> Parameters:

- Atmospheric µ
- Atmospheric v (conventional)
- Atmospheric ν (prompt)
- Astrophysical v

■ * Nuisance parameters → absorb systematic effects

• Normalization $(\mu)^* + (\nu) + (\nu) + (\nu)$

- **Goal:** Characterize the excess by using information from all analyses at the same time
- Method: Global Poisson-likelihood fit of energy distributions
- Components:
 - Atmospheric µ
 - Atmospheric ν (conventional)
 - Atmospheric v (prompt)
 - Astrophysical v

- > Parameters:
 - Normalization $(\mu)^* + (\nu) + (\nu) + (\nu)$
 - Cosmic ray spectral index (μ, ν, ν)*

- **Goal:** Characterize the excess by using information from all analyses at the same time
- Method: Global Poisson-likelihood fit of energy distributions
- Components:
 - Atmospheric µ
 - Atmospheric ν (conventional)
 - Atmospheric v (prompt)
 - Astrophysical v

- Normalization $(\mu)^* + (\nu) + (\nu) + (\nu)$
- Cosmic ray spectral index (μ, ν, ν)*
- Kaon-to-pion ratio (v)*

- **Goal:** Characterize the excess by using information from all analyses at the same time
- Method: Global Poisson-likelihood fit of energy distributions
- Components:
 - Atmospheric µ
 - Atmospheric ν (conventional)
 - Atmospheric v (prompt)
 - Astrophysical v

- > Parameters:
 - Normalization $(\mu)^* + (\nu) + (\nu) + (\nu)$
 - Cosmic ray spectral index (μ, ν, ν)*
 - Kaon-to-pion ratio (v)*
 - Energy scale (μ, ν, ν, ν)*

- **Goal:** Characterize the excess by using information from all analyses at the same time
- Method: Global Poisson-likelihood fit of energy distributions
- Components:
 - Atmospheric µ
 - Atmospheric ν (conventional)
 - Atmospheric v (prompt)
 - Astrophysical v

- Normalization $(\mu)^* + (\nu) + (\nu) + (\nu)$
- Cosmic ray spectral index (μ, ν, ν)*
- Kaon-to-pion ratio (v)*
- Energy scale (μ, ν, ν, ν)*
- Power law index (v)

- **Goal:** Characterize the excess by using information from all analyses at the same time
- Method: Global Poisson-likelihood fit of energy distributions
- Components:
 - Atmospheric µ
 - Atmospheric ν (conventional)
 - Atmospheric v (prompt)
 - Astrophysical v

- Normalization $(\mu)^* + (\nu) + (\nu) + (\nu)$
- Cosmic ray spectral index (μ, ν, ν)*
- Kaon-to-pion ratio (v)*
- Energy scale (μ, ν, ν, ν)*
- Power law index (v)
- Exponential cut-off (v)
- * Nuisance parameters → absorb systematic effects

Fit result – background-only hypothesis

ICECUBE

Fit result – background-only hypothesis

ICECUBE

Fit result – with astrophysical signal ($\Phi_{astro} \sim E^{-2}$)

Lars Mohrmann – lars.mohrmann@desy.de – September 26, 2013

Fit result – with astrophysical signal ($\Phi_{astro} \sim E^{-2} \cdot e^{E/Ecut}$)

Lars Mohrmann – lars.mohrmann@desy.de – September 26, 2013

Fit result – with astrophysical signal ($\Phi_{astro} \sim E^{-\gamma}$)

Likelihood landscapes

- Scan of likelihood landscape shows correlation of parameters
- > Normalization of astrophysical spectrum is correlated with index / cut-off parameter

Conclusion

IceCube measures an excess of high-energy neutrino events → this could be the dawn of neutrino astronomy...

> Presented first global interpretation of IceCube results

- Results of individual analyses are consistent
- The prompt component of the atmospheric neutrino flux is not well constrained
- However, an astrophysical component is needed to explain the excess
- Different hypotheses for the astrophysical flux yield similar results
- Results of new analyses expected soon

 → global analysis will become more powerful

Backup slides

Skymap of the 28 high-energy events

Goodness-of-fit for background-only hypothesis

2-D profile likelihood for signal hypothesis (E⁻²)

Lars Mohrmann – lars.mohrmann@desy.de – September 26, 2013

1-D profile likelihood for signal hypothesis (E⁻² · e^{E/Ecut})

1-D profile likelihood for signal hypothesis (E^{-y})

2-D profile likelihood for signal hypothesis (E^{-y})

