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SNRs as CR sources

• Energetics fit

– E
SN

 x R
SN

 x Ɛ
SN

 = P
CR

– 1051 x 10-9 x 0.1 = 1041

• Theory predicts that particles in the ISM are accelerated to 
high energies in the SNR shock
– Both electrons and protons should be accelerated

• Observations show evidence of shock accelerated particles to 
high energies
– Until recently, no clear evidence of proton acceleration in 

SNRs, observations could always be interpreted using only 
electrons
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Emission processes

• Interactions between 
accelerated particles and 
the surrounding medium 
create gamma-ray emission 
in three ways
– Signature of π0-decay is 

the smoking gun for 
accelerations of protons
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π0-decay bump

• In the rest frame of the pion, the 
two gamma-rays created each 
have an energy of 67.5 MeV

• Conversion to lab frame with a 
proton power-law spectrum 
smears out the line but keeps 
symmetry in dN/dE in a 
logarithmic plot

• Multiplying with E2 breaks the 
symmetry and creates a bump

Dermer 1986, A&A, 157 
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π0-decay bump
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SNRs in the gamma-ray sky

Credit: L. Tibaldo
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Pion bump in IC 443 and W44

• Turnover at low energies clearly favors a hadronic model over 
a leptonic one
– Even an abrupt cut of the electron spectrum at 300 MeV is 

not enough to explain the data with bremsstrahlung
– Electron to proton ratio about 0.01

Ackermann et al. 2013, Science, 339, 807
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Spectrum of freshly accelerated CRs

• Smoothly broken power-law in 
momentum

• Low energy index compatible 
with shock acceleration
– 2.36 for both

SNRs
• High energy 

break likely due
to inefficiency 
in confining 
high energy
CRs 
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Emission region

• Bulk of the emission 
likely from regions 
where the SNR shell 
interacts with an 
external cloud.
– Escaping CRs are 

expected to have a 
harder spectrum
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Massive star-forming regions

• Most supernova 
expected to occur in 
star-forming regions

• Isotopic abundance of 
CRs indicate WR star 
origin

• Shocks in stellar winds 
are possible sources of 
CRs

Binns et al. 2007, SSR, 130, 449
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Gamma-ray excess in the Cygnus region

• Gamma-ray excess (left) associated with photo dissociation 
regions from 8 micron map from MSX (right)

Ackermann et al 2011, Science, 334, 1103

10 – 100 GeV
0°.25 smoothing 10-5.6 Wm−2 sr−1 

contour of the 
8 micron map
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Hard spectrum => freshly accelerated CRs

• Spectrum of excess harder 
than expected from large 
scale CRs after propagation
– Hadronic

– Leptonic

• Evidence for freshly
accelerated CRs Ackermann et al 2011, Science, 334, 1103
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CR propagation

• CRs are generated at the source
– SNRs 
– pulsars, stellar wind, ISM 

shocks, DM, ...
• CRs propagate through the Galaxy

– Energy losses, spallation, 
convection, reacceleration, …

– Scattering by magnetic fields 
makes CR astronomy 
impossible for all but the very 
highest energies

• Gamma rays important for 
understanding CRs
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The Interstellar Galactic Gamma-ray Emission

• Comprises more than half of the observed photons by Fermi-
LAT
– Strong signal to constrain CR physics
– Needs to be modeled accurately for data analysis

2 year Fermi-LAT counts above 1 GeV

4 year Fermi LAT data > 1GeV, front converting events only
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Two main analysis methods

• Template analysis
– Use templates for gas 

column density and IC 
emission

– CR flux determined from a 
fit to gamma-ray data

• Requires no knowledge 
of CR propagation

• Limited to uniform CR 
flux distribution for 
each template

• Does not separate 
bremsstrahlung and 
hadronic interactions 
with gas.

• Physical modeling 
– Use template for gas 

column density
– CR flux and IC calculated 

with a propagation code 
(e.g. GALPROP).

• Requires complex CR 
propagation 
calculations

• Can account for 
variation in CR flux 
within templates

• Constrained by other 
observations (e.g. CR 
and synchrotron).
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Local emissivity

• In latitude range |b| > 10 degrees gas is located within ~ 1 kpc 
from the sun.
– Useful to probe the local interstellar CR spectrum

• Using the template method we can determine the emissivity of 
local HI gas
– Clear correlation between

HI column density and 
gamma-rays after 
subtracting those associated
with other templates
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Local emissivity

Preliminary
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Local emissivity

• Compatible with observed CR proton, helium, and electron 
spectra once solar modulation has been taken into account!!

Preliminary
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Outer Galaxy

• More emissivity in the outer Galaxy than expected by 
propagation models
– Requires more CR sources in the outer Galaxy or modified 

propagation.

GALPROP models

Fermi – individual regions
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X
CO

: conversion from CO to H
2

• Gamma rays are a useful probe to study X
CO

– CRs penetrate the clouds => uniform emissivity
– Emissivity can be determined from nearby HI regions
– Not dependent 

on assumptions 
about the 
dynamical
state of the 
clouds

• Note that green
shaded region
was determined
using an a priori
assumption on 
CR flux
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External galaxies

• Observations of external galaxies allow us to probe CR 
physics outside of the Milky Way
– LMC is the best target for such exploration
– Correlation between gamma-ray skymaps and IR skymaps 

allows an estimate for CR propagation length

Murphy et al. 2012 ApJ, 750, 126 
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External galaxies

• Quasi linear correlation 
found between IR and 
gamma-ray luminosities
– IR luminosity expected to 

trace star formation => 
link between CRs and 
massive stars

Ackermann et al. 2012, ApJ, 755, 164
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Summary

• SNRs now observed to accelerate CR nuclei to high energies
– Connection between massive star-forming regions and CR 

acceleration
• Gamma rays in the local environment agree well with direct 

observations of CRs 
– Emission mechanism understood

• Gamma rays provide a wealth of information to constrain CR 
propagation models

– More gamma rays than expected in outer Galaxy

• More CR sources? More gas? Different propagation?
– Larger halo size is preferred

• There is currently no single best fit interstellar emission model

– A range of models can be put forward that explain the data 
reasonably well
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Backup slides ...
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The Interstellar Radiation Field (ISRF)

• Three main components
– Stellar light
– Dust re-emission of stellar light
– The Cosmic microwave background

• Only directly observable in one location
– Need sophisticated modeling

• Stellar distribution and properties
• Dust distribution and properties
• Radiation transport

– Some freedom in the model
• Especially in the inner Galaxy

(both dust and stars)

Porter et al. 2008 ApJ 682
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Couple of ISRF models

DIRBE Bulge x10Standard ISRF

1.25 μm

1.25 μm

1.25 μm

4.9 μm

240 μm
240 μm

4.9 μm
4.9 μm

240 μm

Preliminary
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The Interstellar Medium (ISM)
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The Three Components of the ISM

• Most of the ISM is hydrogen gas in three different forms:
– Atomic (H I)

• The most massive
 component with a large 
filling factor, z

1/2
 ~ 200 pc.

– Molecular (H
2
)

• The most dense 
component, very clumpy, 
z

1/2
 ~ 100 pc.

– Ionized (H II)
• The least significant 

component, very 
widespread, z

1/2
 ~ 1 kpc. Strong A.W., Moskalenko I.V. 

1998, ApJ 509, 212-228

Density at z=0
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Atomic Hydrogen

• Emits radiation at 21 cm wavelengths
– Hyperfine splitting of the ground state

• Not optically thin in all regions, need to correct for optical 
thickness

– Often parametrized in terms of a spin temperature, T
S 
under 

the assumption of a homogeneous line of sight

– Need to know T
S
(v) for all lines of sight

• Observations in radio show T
S
 to be in the range 50 K – 

8000 K
• Usually pick a single value for TS and apply it to the 

entire sky

N H I (T S (v))=−log (1−
T (v)

T S (v)−T bg
)∗T S (v)∗C
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Molecular Hydrogen

• No line emission observed from cold H
2

– CO used as a surrogate as both 
molecules form under similar 
conditions (H

2
 shields from UV light)

• CO J 1->0 line used for tracing CO

– The integrated line intensity, W
CO

, is 

found to be roughly linearly related to 
H

2
 column density

• N
H2

 = X
CO

 * W
CO

• Velocity information and rotation curve 
used to create a radial profile from 
emission lines
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Dust and Gamma-Rays

• Shown by Grenier et al. 2005 to be essential in analyzing 
EGRET data to account for dark gas (H

2
 not traced by CO)

– This has been confirmed by the Fermi-LAT data
• Observations of dust are in IR continuum ( turned into 

reddening E(B-V) ), so we must use CO and H I for distance 
information:
– Gas to dust ratio determined from H I and CO
– Contribution of H I and CO subtracted from dust

• Corrects for dark gas and also uncertain T
S
 and X

CO
 

under the assumption of constant gas to dust ratio
• Use optically thin H I as a lower limit

– Radial distribution of the residual dust unknown
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Intermediate Latitude Spectra

• Gas has small scale height => probes local CRs
– Good agreement between data and model
– Modeling works when ingredients are reasonably well 

known

Preliminary

Total
Total GDE
π0-decay
Bremss
IC
Isotropic
Sources

Model 2: SNR, 4 kpc, 
20 kpc, 150 K, 5 mag
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Local emissivity

• Analyses of other region suggest a slight variation of CR 
density within 1 kpc of the solar system
– Within systematic uncertainties in most cases
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Latitude profile

• Models agree with data spanning more than an order of 
magnitude in flux
– Models underpredict the data in the outer Galaxy plane

• CR sources? Gas densities? Propagation?
– North-south 

asymmetry visible
• Origin not known

Preliminary
Model 44: Lorimer, 6 kpc, 
20 kpc, OT, 5 mag

Total
Total GDE
H I
H

2

IC
H II
Isotropic
Sources
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Pulsars (Lorimer 06)
Pulsars (Y&K 04)
OB (Bronfman 00)

SNRs (CB 98)

Studying Systematics Using GALPROP

• CR source distribution from literature
– Pulsars (2 versions), SNRs, OB stars
– Assumes massive star origin

• CR confinement volume (halo)
– Vertical: 4, 6, 8, 10 kpc
– Radial: 20, 30 kpc

• Spin temperature

– T
S
: 150 K, Optically thin (100,000 K)

• E(B-V) magnitude cut
– 2 and 5 magnitudes

• ISRF scaling and X
CO

 determined from gamma-ray fit to 21 months 

of Fermi-LAT data
• Propagation determined from CR data (B/C, element spectra) with 

Iterative X
CO

 feedback from gamma-ray fit

• Grid comprises 4x4x2x2x2=128 models



Interstellar EmissionG. Johannesson 37

Statistical Comparison

z
h
 = 4kpc, 6kpc, 8kpc, 10kpc

R
h
 = 20kpc (sq), 30kpc (circ)

T
S
 = 150K (filled), OT (open)

E(B-V) cut = 
2mag (dark), 5mag (light)

z
h

R
h

T
S

E(B-V)

|b| > 8 deg |b| < 8 deg & l > 80 deg & l < 280 deg 

• Large difference in likelihood between models
– No single model gives best fit over all sky regions

• Large halo, flat CR source distribution and
more gas favored in outer Galaxy

• 5 mag E(B-V) cut favored 
– Dust better than CO + HI only
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Inverse Compton normalization

z
h
 = 4kpc, 6kpc, 8kpc, 10kpc

R
h
 = 20kpc (sq), 30kpc (circ)

T
S
 = 150K (filled), OT (open)

E(B-V) cut = 
2mag (dark), 5mag (light)

|b| > 8 deg

z
h

R
h

E(B-V)T
S

• Evidence for a large halo from IC
– Depends on the assumed CR source

distribution, smaller effect for
distribution peaking close to GC.

• IC fit compensates for changes 
in gas densities
– Despite spatial and

spectral difference
between the two 
components

• Normalization factor of IC 
affected by uncertainties in 
both CR electrons and ISRF
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Residual Maps and their Differences

Model 44
Model 2

Model 93 Model 119

-

2-44 2-93 2-119

-0.1 0   0.1

-0.25    0 0.25

Same color scale 

Same color scale 

• Structure overall good to within ~10% 
– Exceptions are Fermi lobes (Su et al. 

2010 ApJ 724), Loop I, outer Galaxy
• Structure in lower maps due to variations of 

model parameters

Model details:
2: SNR, 4kpc, 20kpc, 150K, 5m
44: Lorimer, 6kpc, 20kpc, OT, 5m
93: Y&K, 10kpc, 30kpc, 150K, 2m
119: OB, 8kpc, 30kpc, OT, 2m 
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Residual Differences

• Only varying CR source distribution

• Only varying gas properties

• Gas properties clearly have a larger influence

Lorimer-SNR Lorimer-Y&KLorimer-OB

150K - OT 2mag - 5mag
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CR Propagation Parameters

• Determined from a fit to H, He, C, O, and B/C 
(error bars statistical only) 

– X
CO

 feedback from gamma-ray fit important

– Propagation parameters depend on ISM 
and CR source distribution

– Only X
CO

 determined from gamma-rays

z
h
 = 4kpc, 6kpc, 8kpc, 10kpc

R
h
 = 20kpc (sq), 30kpc (circ)

T
S
 = 150K (filled), OT (open)

E(B-V) cut = 
2mag (dark), 5mag (light)

z
h

R
h T

S E(B-V)
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The “Conventional” Model

• CR injection spectra and propagation 
parameters adjusted so model 
matches CR observations
– Secondary/primary ratio 

determines D
0
/z

h
 ratio

– Radioactive/stable ratio 
determines z

h

– Injection spectra adjusted to fit 
observed spectra

• CR source distribution cannot be 
determined

• Halo size not well constrained

• Limited by solar modulation at low 
energies

Credit: Moskalenko, I. V.
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