The better NMSSM:

Naturaleness and enhanced diphoton rates at Fermi and the LHC

Kai Schmidt-Hoberg

based on

1205.1509, 1208.1683, 1211.2835

DESY Theory Seminar

 \bullet Higgs finally found! \Rightarrow the hierarchy problem exists.

- Higgs finally found! ⇒ the hierarchy problem exists.
- ... still many reasons to like SUSY ...
 - Hierarchy problem: stabilizes the electroweak against the Planck scale

- Higgs finally found! ⇒ the hierarchy problem exists.
- ... still many reasons to like SUSY ...
 - Hierarchy problem: stabilizes the electroweak against the Planck scale
 - If lightest SUSY particle stable
 - ⇒ Dark matter candidate

- Higgs finally found! ⇒ the hierarchy problem exists.
- ... still many reasons to like SUSY ...
 - Hierarchy problem: stabilizes the electroweak against the Planck scale
 - If lightest SUSY particle stable
 ⇒ Dark matter candidate
 - Gauge coupling unification

- Higgs finally found! ⇒ the hierarchy problem exists.
- ... still many reasons to like SUSY ...
 - Hierarchy problem: stabilizes the electroweak against the Planck scale
 - If lightest SUSY particle stable
 ⇒ Dark matter candidate
 - Gauge coupling unification
 - The Higgs mass is 125 GeV!

- Higgs finally found! ⇒ the hierarchy problem exists.
- ... still many reasons to like SUSY ...
 - Hierarchy problem: stabilizes the electroweak against the Planck scale
 - If lightest SUSY particle stable
 ⇒ Dark matter candidate
 - Gauge coupling unification
 - The Higgs mass is 125 GeV!

However:

- Haven't seen SUSY!
- Higgs mass rather large for natural MSSM...
- What about the μ problem, proton decay, ...

- ◆ Higgs finally found! ⇒ the hierarchy problem exists.
- ... still many reasons to like SUSY ...
 - Hierarchy problem: stabilizes the electroweak against the Planck scale
 - If lightest SUSY particle stable
 ⇒ Dark matter candidate
 - Gauge coupling unification
 - The Higgs mass is 125 GeV!

However:

- Haven't seen SUSY!
- Higgs mass rather large for natural MSSM...
- What about the μ problem, proton decay, ...

Renewed interest in the NMSSM

The gauge-invariant superpotential terms of the MSSM include

$$\mathcal{W} = \mu H_{u} H_{d} + \kappa_{i} L_{i} H_{u}$$

$$+ Y_{e}^{ij} H_{d} L_{i} E_{j}^{c} + Y_{d}^{ij} H_{d} Q_{i} D_{j}^{c} + Y_{u}^{ij} H_{u} Q_{i} U_{j}^{c}$$

$$+ \lambda_{ijk}^{(0)} L_{i} L_{j} E_{k}^{c} + \lambda_{ijk}^{(1)} L_{i} Q_{j} D_{k}^{c} + \lambda_{ijk}^{(2)} U_{i}^{c} D_{j}^{c} D_{k}^{c}$$

$$+ \kappa_{ij}^{(0)} H_{u} L_{i} H_{u} L_{j} + \kappa_{ijk\ell}^{(1)} Q_{i} Q_{j} Q_{k} L_{\ell} + \kappa_{ijk\ell}^{(2)} U_{i}^{c} U_{j}^{c} D_{k}^{c} E_{\ell}^{c}$$

The gauge-invariant superpotential terms of the MSSM include

$$\begin{split} \mathcal{W} &= \frac{\mu}{\mu} H_{u} H_{d} + \kappa_{i} L_{i} H_{u} \\ &+ Y_{e}^{ij} H_{d} L_{i} E_{j}^{c} + Y_{d}^{ij} H_{d} Q_{i} D_{j}^{c} + Y_{u}^{ij} H_{u} Q_{i} U_{j}^{c} \\ &+ \lambda_{ijk}^{(0)} L_{i} L_{j} E_{k}^{c} + \lambda_{ijk}^{(1)} L_{i} Q_{j} D_{k}^{c} + \lambda_{ijk}^{(2)} U_{i}^{c} D_{j}^{c} D_{k}^{c} \\ &+ \kappa_{ij}^{(0)} H_{u} L_{i} H_{u} L_{j} + \kappa_{ijk\ell}^{(1)} Q_{i} Q_{j} Q_{k} L_{\ell} + \kappa_{ijk\ell}^{(2)} U_{i}^{c} U_{j}^{c} D_{k}^{c} E_{\ell}^{c} \end{split}$$

• μ problem: $\mu \sim M_{\text{EW}} \ll M_{\text{P}}$

The gauge-invariant superpotential terms of the MSSM include

$$\begin{split} \mathcal{W} &= \mu \, H_{u} \, H_{d} + \kappa_{i} L_{i} \, H_{u} \\ &+ Y_{e}^{ij} H_{d} \, L_{i} \, E_{j}^{c} + Y_{d}^{ij} H_{d} \, Q_{i} \, D_{j}^{c} + Y_{u}^{ij} H_{u} \, Q_{i} \, U_{j}^{c} \\ &+ \lambda_{ijk}^{(0)} \, L_{i} L_{j} E_{k}^{c} + \lambda_{ijk}^{(1)} \, L_{i} Q_{j} D_{k}^{c} + \lambda_{ijk}^{(2)} \, U_{i}^{c} \, D_{j}^{c} \, D_{k}^{c} \\ &+ \kappa_{ij}^{(0)} \, H_{u} \, L_{i} \, H_{u} \, L_{j} + \kappa_{ijk\ell}^{(1)} \, Q_{i} \, Q_{j} \, Q_{k} \, L_{\ell} + \kappa_{ijk\ell}^{(2)} \, U_{i}^{c} \, U_{j}^{c} \, D_{k}^{c} \, E_{\ell}^{c} \end{split}$$

- μ problem $\mu \sim \textit{M}_{\text{EW}} \ll \textit{M}_{\text{P}}$
- No stable dark matter candidate

The gauge-invariant superpotential terms of the MSSM include

$$\begin{split} \mathcal{W} &= \mu \, H_{u} \, H_{d} + \kappa_{i} L_{i} \, H_{u} \\ &+ Y_{e}^{ij} H_{d} \, L_{i} \, E_{j}^{c} + Y_{d}^{ij} H_{d} \, Q_{i} \, D_{j}^{c} + Y_{u}^{ij} H_{u} \, Q_{i} \, U_{j}^{c} \\ &+ \lambda_{ijk}^{(0)} \, L_{i} L_{j} E_{k}^{c} + \lambda_{ijk}^{(1)} \, L_{i} Q_{j} D_{k}^{c} + \lambda_{ijk}^{(2)} \, U_{i}^{c} \, D_{j}^{c} \, D_{k}^{c} \\ &+ \kappa_{ij}^{(0)} \, H_{u} \, L_{i} \, H_{u} \, L_{j} + \kappa_{ijk\ell}^{(1)} \, Q_{i} \, Q_{j} \, Q_{k} \, L_{\ell} + \kappa_{ijk\ell}^{(2)} \, U_{i}^{c} \, U_{j}^{c} \, D_{k}^{c} \, E_{\ell}^{c} \end{split}$$

- ullet μ problem $\mu \sim M_{\rm EW} \ll M_{\rm P}$
- No stable dark matter candidate
- Proton decay

R parity

Standard symmetry in the MSSM:

 \mathbb{Z}_2 R parity Farrar & Fayet; Dimopoulos, Raby, Wilczek

$$\mathcal{W} = \mu H_{u} H_{d} + \kappa_{i} L_{i} H_{u}$$

$$+ Y_{e}^{ij} H_{d} L_{i} E_{j}^{c} + Y_{d}^{ij} H_{d} Q_{i} D_{j}^{c} + Y_{u}^{ij} H_{u} Q_{i} U_{j}^{c}$$

$$+ \lambda_{ijk}^{(0)} L_{i} L_{j} E_{k}^{c} + \lambda_{ijk}^{(1)} L_{i} Q_{j} D_{k}^{c} + \lambda_{ijk}^{(2)} U_{i}^{c} D_{j}^{c} D_{k}^{c}$$

$$+ \kappa_{ij}^{(0)} H_{u} L_{i} H_{u} L_{j} + \kappa_{ijk\ell}^{(1)} Q_{i} Q_{j} Q_{k} L_{\ell} + \kappa_{ijk\ell}^{(2)} U_{i}^{c} U_{j}^{c} D_{k}^{c} E_{\ell}^{c}$$

- Experiment: $\kappa_{ijk\ell} < \frac{10^{-8}}{M_{\rm P}}$
- By far not suffient to make the proton stable!
- ullet does not solve the μ problem...

NMSSM

- MSSM plus extra singlet S
- Standard symmetry for the NMSSM: global \mathbb{Z}_3 + R parity

$$\mathcal{W}_{\text{NMSSM}} = \mathcal{W}_{\text{MSSM}}^{\mu=0} + \lambda \, \frac{1}{3} \kappa \, \frac{1}{3}$$

• Original motivation: Solve the μ problem: $\mu_{\text{eff}} = \lambda \langle S \rangle$

Nice feature:

Additional tree-level contribution to Higgs mass:

$$M_Z^2 \cos^2(2\beta) + \frac{\lambda^2}{\lambda^2} v^2 \sin^2(2\beta) + \text{radiative corrections}$$

- Upper bound only...
- perturbativity bound:
 λ ≤ 0.7

Problems:

- $\bullet \ \mathbb{Z}_3$ symmetry spontaneously broken once the Higgs fields acquire a vev
- domain wall problem Abel, Sarkar & White

Problems:

- $\bullet \ \mathbb{Z}_3$ symmetry spontaneously broken once the Higgs fields acquire a vev
- domain wall problem Abel, Sarkar & White
- need terms which explicitly break this symmetry
- global symmetry not necessarily respected by gravity - Planck suppressed operators?

Problems:

- ullet \mathbb{Z}_3 symmetry spontaneously broken once the Higgs fields acquire a vev
- domain wall problem Abel, Sarkar & White
- need terms which explicitly break this symmetry
- global symmetry not necessarily respected by gravity - Planck suppressed operators?
- problem with dimension 5 proton decay
- tadpole problem (e.g. from $(H_uH_d)^2$ operator)

 Abel

Problems:

- ullet \mathbb{Z}_3 symmetry spontaneously broken once the Higgs fields acquire a vev
- domain wall problem Abel, Sarkar & White
- need terms which explicitly break this symmetry
- global symmetry not necessarily respected by gravity - Planck suppressed operators?
- problem with dimension 5 proton decay
- tadpole problem (e.g. from $(H_uH_d)^2$ operator)

 Abel

The \mathbb{Z}_3 symmetric NMSSM is (basically) excluded!

Need another underlying symmetry!

\mathbb{Z}_N^R symmetries

arXiv:1009.0905 arXiv:1102.3595

Ν	\mathcal{W}	<i>9</i> ₁₀	$q_{\overline{5}}$	q_{H_u}	q_{H_d}	q_S
4	2	1	1	0	0	2
8	2	1	5	0	4	6

The \mathbb{Z}_4^R case: MSSM part

$$\mathcal{W} = \underbrace{H_{u} H_{d} + \kappa_{i}}_{0} \underbrace{L_{i} H_{u}}_{1}$$

$$+ Y_{e}^{ij} \underbrace{H_{d} L_{i} E_{j}^{c} + Y_{d}^{ij}}_{2} \underbrace{H_{d} Q_{i} D_{j}^{c} + Y_{u}^{ij}}_{2} \underbrace{H_{u} Q_{i} U_{j}^{c}}_{2}$$

$$+ \underbrace{\lambda_{ijk}^{(0)}}_{3} \underbrace{L_{i} L_{j} E_{k}^{c} + \lambda_{ijk}^{(1)}}_{3} \underbrace{L_{i} Q_{j} D_{k}^{c} + \lambda_{ijk}^{(2)}}_{3} \underbrace{U_{i}^{c} D_{j}^{c} D_{k}^{c}}_{3}$$

$$+ \kappa_{ij}^{(0)} \underbrace{H_{u} L_{i} H_{u} L_{j} + \underbrace{L_{ijk\ell}^{(1)}}_{2} \underbrace{Q_{i} Q_{j} Q_{k} L_{\ell} + \underbrace{L_{ijk\ell}^{(2)}}_{0} \underbrace{U_{i}^{c} U_{j}^{c} D_{k}^{c} E_{\ell}^{c}}_{0} }$$

The \mathbb{Z}_4^R case: MSSM part

$$\begin{split} \mathcal{W} \; &= \; \frac{1}{M_{P}^{2}} \underbrace{\langle \mathcal{W} \rangle H_{u} \, H_{d}}_{2} + \underbrace{\kappa_{i}^{i}}_{1} \underbrace{L_{i} \, H_{u}}_{1} \\ &+ \; Y_{e}^{ij} \underbrace{H_{d} \, L_{i} \, E_{j}^{c}}_{2} + Y_{d}^{ij} \underbrace{H_{d} \, Q_{i} \, D_{j}^{c}}_{2} + Y_{u}^{ij} \underbrace{H_{u} \, Q_{i} \, U_{j}^{c}}_{2} \\ &+ \; \lambda_{ijk}^{(0)} \underbrace{L_{i} L_{j} E_{k}^{c}}_{3} + \lambda_{ijk}^{(1)} \underbrace{L_{i} Q_{j} D_{k}^{c}}_{3} + \lambda_{ijk}^{(2)} \underbrace{U_{i}^{c} \, D_{j}^{c} \, D_{k}^{c}}_{3} \\ &+ \kappa_{ij}^{(0)} \underbrace{H_{u} \, L_{i} \, H_{u} \, L_{j}}_{2} + \underbrace{\frac{1}{M_{P}^{4}}}_{2} \underbrace{\langle \mathcal{W} \rangle \, Q_{i} \, Q_{j} \, Q_{k} \, L_{\ell}}_{2} + \underbrace{\frac{1}{M_{P}^{4}}}_{2} \underbrace{\langle \mathcal{W} \rangle \, U_{i}^{c} \, U_{j}^{c} \, D_{k}^{c} \, E_{\ell}^{c}}_{2} \end{split}$$

- need $\langle W \rangle \sim m_{3/2} M_P^2$ to cancel cosmological constant
- ullet $\mu \sim \langle \mathcal{W} \rangle / M_{
 m P}^2 \sim m_{3/2}$
- ullet proton decay operators suppressed by $\langle \mathcal{W} \rangle/M_{P}^4 \sim 10^{-15}/M_{P}$
- matter parity exact

Singlet part

ullet Allowed superpotential terms for $\mathbb{Z}_{4/8}^R$

$$\mathcal{W}_{\mathbb{Z}_{4/8}^R} = \mathcal{W}_{\text{MSSM}}^{\mu=0} + \lambda \, \frac{S}{S} \, H_u \, H_d + \kappa \, \frac{S^3}{M^2 \, S}$$

 \mathbb{Z}_4^R : reintroduces hierarchy problem if $M \gtrsim M_{EW}$

Singlet part

ullet Allowed superpotential terms for $\mathbb{Z}_{4/8}^R$

$$W_{\mathbb{Z}_{4/8}^R} = W_{\text{MSSM}}^{\mu=0} + \lambda \, \frac{S}{S} \, H_u \, H_d + \kappa \, \frac{S^3}{M^2 \, S}$$

 \mathbb{Z}_4^R : reintroduces hierarchy problem if $M\gtrsim M_{EW}$

• assume only trilinear couplings in $\mathcal W$ and intermediate VEVs $\langle \phi \rangle$ in hidden sector

- However: linear term can also be generated radiatively
- divergent tadpoles arise from even (odd) terms in the super (Kähler) potential Abel
- ⇒ Hierarchy problem not reintroduced

The GNMSSM

What about the domain wall problem?

$$\langle \mathcal{W}
angle \sim m_{3/2} M_{
m P}^2 \sim 10^{13}~{
m GeV}$$

⇒ corresponding domain walls inflated away

$$\begin{split} \Delta \mathcal{W}_{\mathbb{Z}_4^R} &= \langle \mathcal{W} \rangle + \langle \mathcal{W} \rangle^2 \, \text{S} + \langle \mathcal{W} \rangle \, \text{S}^2 + \langle \mathcal{W} \rangle \, H_u \, H_d \\ &\sim m_{3/2} \, M_{\text{P}}^2 + m_{3/2}^2 \, \text{S} + m_{3/2} \, \text{S}^2 + m_{3/2} \, H_u \, H_d \end{split}$$

$$\mathcal{W}_{\text{GNMSSM}} = \mathcal{W}_{\text{NMSSM}} + \frac{\mu}{\mu} H_u H_d + \frac{1}{2} \frac{\mu_s}{\mu_s} S^2$$

• Phenomenological implications?

The GNMSSM

- Upper bound on the lightest Higgs mass same as in NMSSM
- Difference? Look at naturaleness
- Correct electroweak symmetry breaking requires (MSSM case):

$$m_Z^2 = -2(m_{h_u}^2 + |\mu|^2) + \mathcal{O}(1/\tan\beta^2)$$

- Cancellations of unrelated parameters required
- Standard definition of fine-tuning Ellis et al; Barbieri, Giudice

$$\Delta \equiv \max \mathsf{Abs}\big[\Delta_{p}\big], \qquad \Delta_{p} \equiv \frac{\partial \ln v^{2}}{\partial \ln p} = \frac{p}{v^{2}} \frac{\partial v^{2}}{\partial p}$$

p is 'fundamental' parameter of the theory

- Outcome depends on what is the 'fundamental' theory, i.e. what is assumed for SUSY breaking
- Simplest case: 'CGNMSSM' with $m_{1/2}, m_0, A_0, \tan \beta, \lambda, \kappa, v_s, \mu_s$.
- Full 'state of the art' evaluation with SPHENO

- Outcome depends on what is the 'fundamental' theory, i.e. what is assumed for SUSY breaking
- Simplest case: 'CGNMSSM' with $m_{1/2}, m_0, A_0, \tan \beta, \lambda, \kappa, v_s, \mu_s$.
- Full 'state of the art' evaluation with SPHENO

- Pheno: MSSM like with heavier Higgs, singlets rather heavy.
- stau coannihilation region for relic abundance

• Other option - allow for non-universal gaugino masses with $M_1 = a \cdot m_{1/2}, M_2 = b \cdot m_{1/2}, M_3 = m_{1/2}$

• Other option - allow for non-universal gaugino masses with $M_1 = a \cdot m_{1/2}, M_2 = b \cdot m_{1/2}, M_3 = m_{1/2}$

- more freedom in neutralino sector: DM and compressed spectra
- Low fine-tuning requires small $\tan \beta$ and large λ !
- What are the implications for the Higgs sector?

Enhanced diphoton rate

- Two easy options to enhance the di-photon rate
 - suppress partial width into bb to increase BR
 - **light** charged particles in the loop to increase partial width into $\gamma\gamma$

- only option in MSSM: 'light stau scenario' Carena et al
- needs very large $\mu \cdot \tan \beta \Rightarrow$ unnatural, danger of CCB vacuum
- what about H^{\pm} or χ^{\pm} ?

Enhanced diphoton rate

- Two easy options to enhance the di-photon rate
 - suppress partial width into bb to increase BR
 - **light** charged particles in the loop to increase partial width into $\gamma\gamma$

- only option in MSSM: 'light stau scenario' Carena et al
- needs very large $\mu \cdot \tan \beta \Rightarrow$ unnatural, danger of CCB vacuum
- what about H^{\pm} or χ^{\pm} ?

Enhancemant via charginos requires (small) singlet component

Full Analysis

- ullet Potentially very large effects for large λ
- Use low energy variables to see what is possible
- take into account the Higgs mass, production cross section, ...

Full Analysis

- Potentially very large effects for large λ
- Use low energy variables to see what is possible
- take into account the Higgs mass, production cross section, ...

- Enhancement of the diphoton signal by a factor 2 with SM like WW, the correct Higgs mass etc. possible
- main enhancement due to light charginos (higgsinos)...

Dark matter indirect detection

- Indirect detection experiments look for the products of DM annihilation in regions of high DM density (e.g. the galactic center)
- Photons particularly interesting - preserve spatial information
- Photon line would be smoking gun for DM

Fermi LAT

• DM annihilation seen by Fermi?

Weniger

Significance of the signal: around 4 σ Inferred dark matter properties:

- $m_\chi \sim$ 130 GeV (135 GeV)
- \bullet large annihilation cross section into photons, $\langle \sigma v \rangle \sim 10^{-27} \ \text{cm}^3/\text{s}$
- Any particle physics models?

Fermi LAT and GNMSSM

GNMSSM: charginos show up in similar diagrams as before...

- Picture: mainly singlino neutralino, mainly singlet CP odd Higgs
- NOT possible in the usual NMSSM! Das, Ellwanger
- GNMSSM: possible to realise 130 GeV DM with correct $\langle \sigma v \rangle_{\gamma\gamma}$
 - with correct relic abundance
 - consistent with continuum photon flux
 - consistent with direct detection constraints
 - consistent with electroweak observables
 - 125 GeV Higgs with slightly enhanced diphoton rate

How fine-tuned?

• how much on resonance exactly?

- No cancellations required for singlet like CP odd scalar
- Observational picture...

SUSY Summary

- 125 GeV Higgs makes MSSM singlet extensions very interesting
- ullet \mathbb{Z}_3 -symmetric NMSSM (basically) excluded
- Interesting NMSSM like structure with additional mass terms based on discrete R symmetry
- Reasonable fine-tuning for measured Higgs mass, correct relic density,...
- Small fine-tuning corresponds to large λ
- Large λ allows for significant enhancement of $h \to \gamma \gamma$ while keeping $h \to WW$ SM like
- Also allows for a simultaneous explanation of the Fermi line

Still work to be done - join in!

Dark matter in CDMS-Si?

Recently at the direct detection front...

- CDMS-Si has observed three events with a background estimate of < 0.62 events 1304.4279
- ullet Interpretation in terms of dark matter preferred with about 3 σ
- In tension with bounds from XENON10/100

Dark matter in CDMS-Si?

- We find significantly weaker bounds from XENON10 1304.6066
- In contact with the XENON collaboration...

 Take home message: There is a dark matter signal which is not ruled out even with standard assumptions

Dark matter in CDMS-Si?

- We find significantly weaker bounds from XENON10 1304.6066
- In contact with the XENON collaboration...

 Take home message: There is a dark matter signal which is not ruled out even with standard assumptions

Thank You!