Adventures with ANSYS

Andreas Mussgiller
Tracker Upgrade Meeting
12/04/2013

Introduction

- all FEA studies so far were done with I-DEAS
 - ,official design CAD files are maintained by CERN
 - import into I-DEAS via STEP files
 - preparation of FE model from STEP file is rather work intensive
 - complicated geometries often requires new I-DEAS parts and assembly
 - workflow is not very efficient
- > I-DEAS lacks a few features
 - thermo-mechanical optimization studies
 coupling of a thermal and a structural analysis with variation of design parameters
 in principle possible but requires a new FE model for each parameter step
 - ,real' sensor power → temperature dependent thermal loads needed for thermal runaway studies
- > ANSYS is available at ZM1 (version 14.5)
 - guest PC available for test purposes

ANSYS Workbench

- graphical user interface as front-end
- generates APDL text file as input to solver

boundary conditions

Preliminary I-DEAS vs. ANSYS Comparison

- > I-DEAS FE model based on a **copy** of CERN STEP file
 - a few details are different e.g. bridges have been slightly simplified
 - swapped DCDC converter and LP-GBT
- ANSYS FE model based on CERN STEP file

Preliminary I-DEAS vs. ANSYS Comparison

- > I-DEAS FE model based on a copy of CERN STEP file
 - a few details are different e.g. bridges have been slightly simplified
 - swapped DCDC converter and LP-GBT
- ANSYS FE model based on CERN STEP file

,Real' Sensor Power Consumption

- power consumption is a function of temperature
- what we want/need a load with temperature dependent power consumption per finite element
- both I-DEAS and ANSYS don't have such a feature
- In ANSYS one can treat the sensor like a resistor
 - temperature dependence of power consumption is modeled via temp. dependence of resistivity
 - one ,silicon' material definition per irradiation

10

Leakage Current [mA]

10

Coupling of Thermal and Structural FEA

Design Optimization

- optimization of support block on rod
 - variation of L1 and L2

Design Optimization - \Delta T vs. Mass

Design Optimization - Sensitivity

Summary

- ANSYS has quite a few advantages over I-DEAS
 - sensor power consumption can be modeled more realistically
 - allows for study of thermal runaway
 - better integration of CAD tools
 - faster turn-around
 - automated optimization options
 - workflows are typically more user friendly and more efficient
- > ZM1 is currently negotiating new license terms
 - three additional licenses requested by DESY groups

