





### Sensor WP – general remarks

### Status of the PXD-8 Production run

Future plans

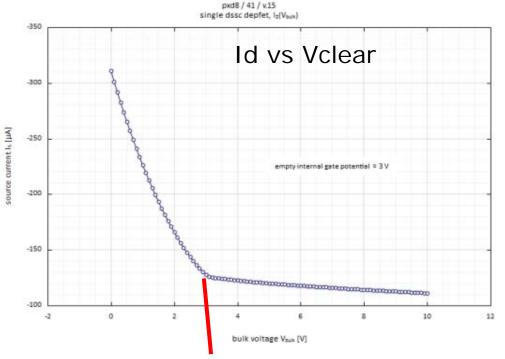
(R. Richter)







- Personal changes: Peter Lechner (WP leader) left the project (replaced by R. Richter)
- Structural changes: HLL of MPI's was transferred to HLL of MPG (staff 16 people + 4)
- Separation from PNSensor (personal and organization)
- Clean room activities are not affected (key persons got contracts with MPG-HLL)
- Much of processing was done by PNSensor
- 3 new technologists were hired (training on test projects)


• Lack of man power for test (see below)



# **PXD8** Production Status



- By end of 7. semester (Nov. 2012) 2nd Metalization finished
- Peter presented nice measurements on single DEPMOS structures
- 7 PXD8 wafers got BCB + litho (ILD for the Cu Layer)
- PXD8 left the main Clean room (hand over to the Copper Lab. HLL staff – as originally planned)
- Splitting of the batch go ahead with 2 wafers (faster and safer)

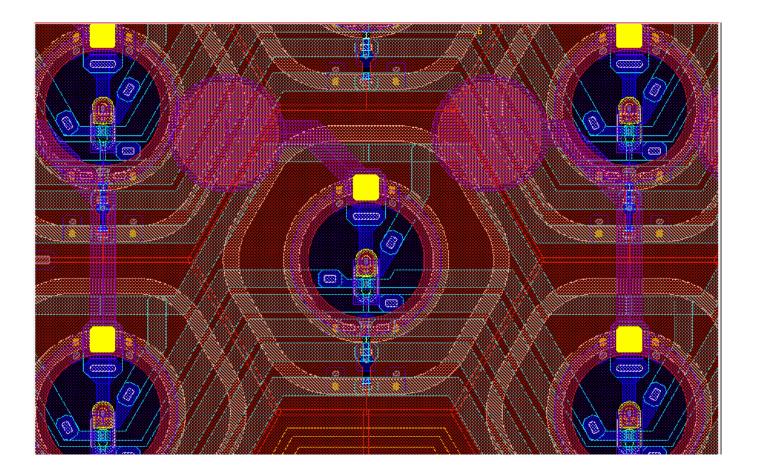


Pinch off at 3V Potential of the empty int. Gate



Long and intense processing comes to to an end (25 mask steps, 11 implanations)

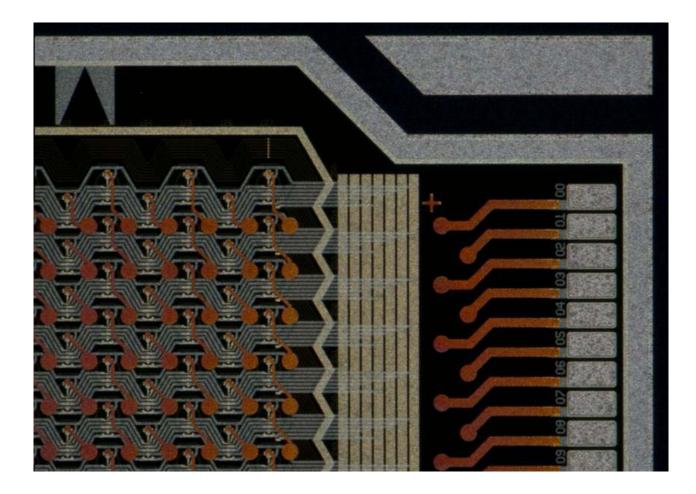
#### Backend process:


- 1. BCB deposition (inter-dielectric) and lithography (all wafers)
- 2. Descum (removal of BCB relicts by plasma etching)
- 3. Sputtering of Ti barrier layer and Cu seed layer (2 wafers)
- 4. Lithography (3rd metal layer) and copper electro-plating

in line measurements

- 5. BCB deposition and lithography (passivation layer, solder stop)
- 6. Wafer dicing (1 wafer), waiting for Descum etch equipment (1 wafer)



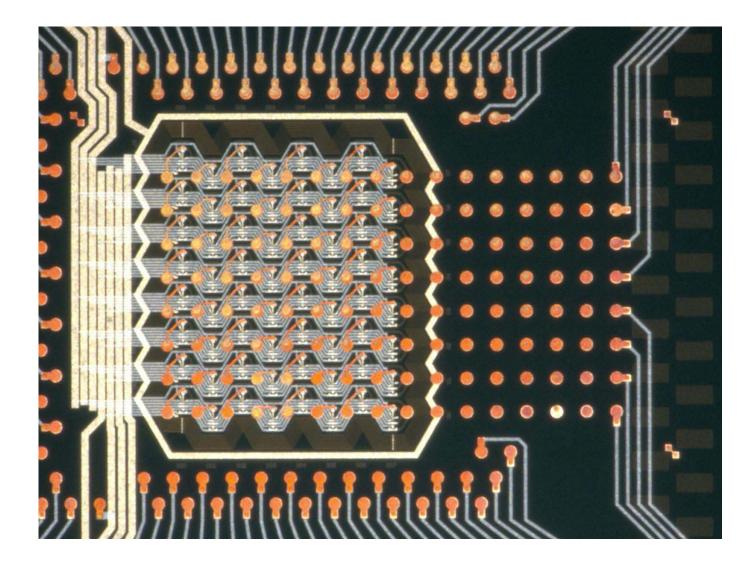







## 128 x 256 Matrix






6



8x8 Matrix





7



#### Test activities



- One wafer will be cut (beginning of June)
  - single DEPFETs and small matrices available (wire bonded)
  - static and dynamic measurements of the different design flavors
  - determine of voltage operation windows
  - Iater: Dedicated pixel-wise yield test of big matrices (Input for next design and production)
- Who is doing the tests?
- PNSensor test activities are not contracted anymore; a way for continuation or alternative solutions must be found

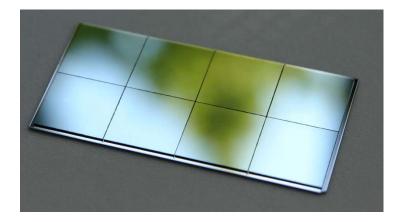


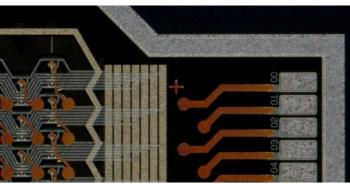


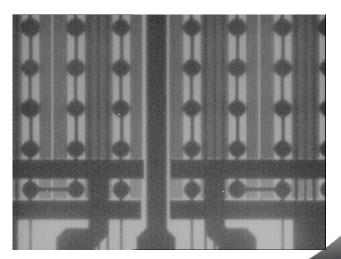
- Within the Sensor WP we have to digest changes in terms of persons and structures
- Copper processing of PXD8 will be finished by HLL staff (as planned)
- Test activities on wafer and chip level have to be reorganized






### Interconnections – Sensor/ASICs


## (L. Andricek)


10



- Status at the last XDAC Meeting
  - full Cu-lithography installed at HLL
  - Tests of SF6/O2 process on diodes finished (test-xfel-3)
  - Installation and commissioning of basic FC bonder (first 128x64 modules)
- The last six months ...
  - Copper on PXD 8 → sensor work package
  - Qualification of final passivation layer (solder stop)
  - Installation of remaining FC options (formic acid..)
  - Assembly of first full sized half-ladder samples
  - Options for macro-assembly on FC bonder ordered



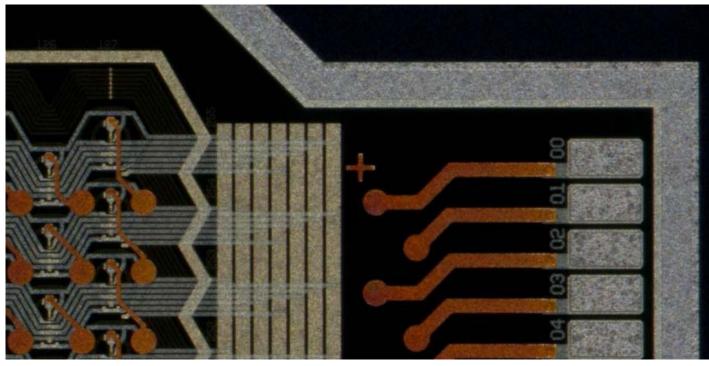




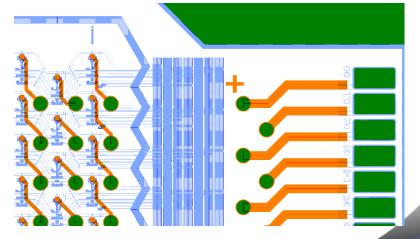
11





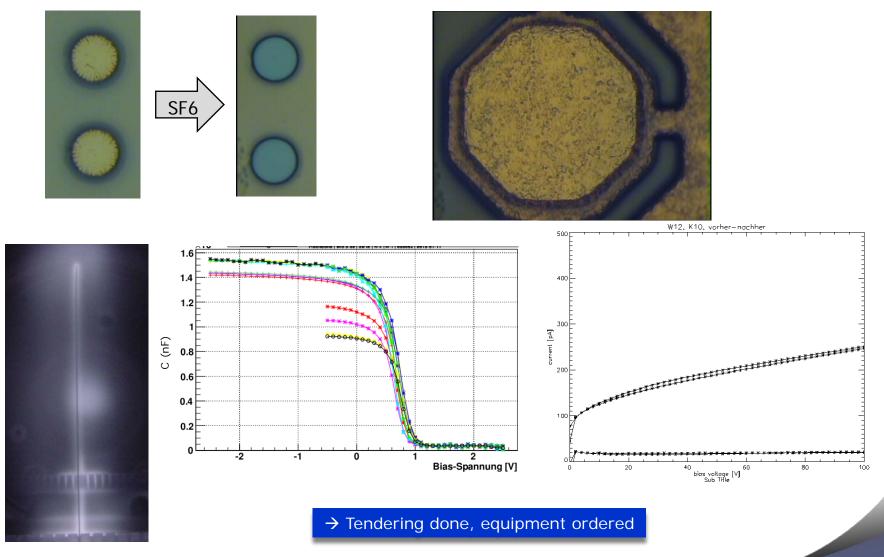

- Development started late 2009
  - Since then many(!) metal samples, simple test diodes, and "sensor-like" diode structures produced
  - Developments focused on back-side free processes (compatibility with low-energy entrance window)
- Status: first two pxd8 wafers finished, "solder mask" final passivation still to be done

| Process Step                          | 2009 | 2010       | 2011               | 2012 <del>→</del> final |
|---------------------------------------|------|------------|--------------------|-------------------------|
| Process Up to LM (AI2) and ILD2 (BCB) | HLL  | HLL        | HLL                | HLL                     |
| BCB SF6/O2 dry etch                   | n/a  | n/a        | IZM and Siemens CT | HLL                     |
| Ti:W/Cu seed sputtering               | CNM  | Siemens CT | Siemens CT         | Siemens CT              |
| Cu lithography                        | CNM  | Siemens CT | Siemens CT         | HLL                     |
| Cu ep, seed layer removal             | CNM  | HLL        | HLL                | HLL                     |
| Annealing after Cu                    | CNM  | n/a        | ATV                | HLL                     |
| BCB solder mask on Cu                 | n/a  | n/a        | n/a                | HLL                     |
| BCB SF6/O2 dry etch on Cu             | n/a  | n/a        | n/a                | Siemens CT→ HLL         |
| Bumping (if applicable)               | CNM  | CNM        | CNM                | PacTech (→IBM)          |




#### need for solder mask






- Potential problem at pads with lateral Cu contact
  - → Solder creeps along Cu trace
  - → Stress on UBM!!
- need for solder mask → add BCB layer on Cu





- :- technological problem:
  - a thin (~tens of nm) layer cannot be avoided in the BCB process  $\rightarrow$  expect problems during FC



14



#### FC equipment at HLL

- Semi-automated FC bonder Finetech "Fineplacer femto", installed July 2012
- Since November 2012 in the final configuration:
  - Formic acid in the process chamber
  - Macro assembly setup (dispenser, handler..)
- ATV SRO reflow oven with formic acid, forming gas, and vacuum, installed April 2012
- Metrology & QA: IR microscope, shear tester, prep. of cross sections, X-Ray at IFIC Valencia





15

XDAC DSSC, 28.5.13



#### test vehicles



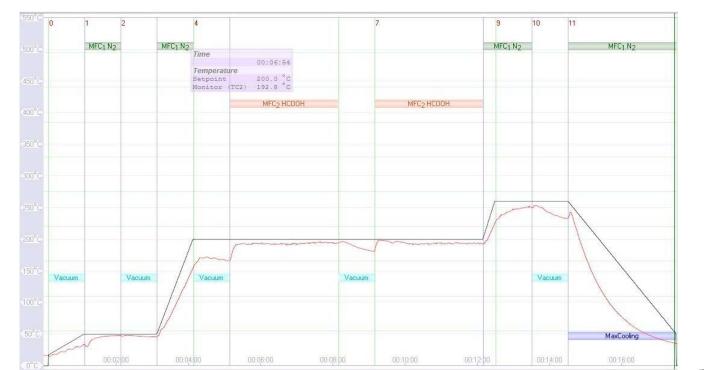
Bumped chips with daisy chains:

- :- AI-BCB-Cu (~4µm) technology
- :- SAC305 bumps, ~200  $\mu m$  pitch, ~4000 bumps/chip
- :- 1.4x1.5 cm<sup>2</sup>

Test substrates:

- : landing pattern for chips, daisy chains
- :- Al-BCB-Cu (~4µm) layer, no solder stop
- :- two chips/substrate, 128x64 bumps
- :- half ladders, 8 chips/substrate, 128x256 bumps




Substrate supported only at 1mm wide strip at the sides, in a hollow jig

16

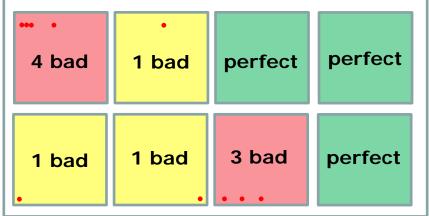


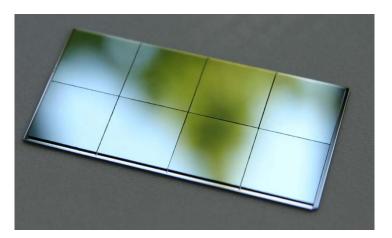
#### FC procedure

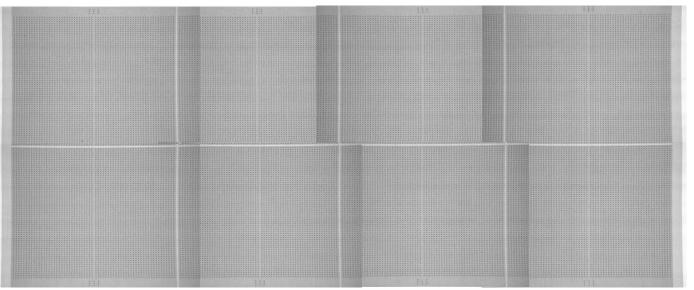
- 1. Clean chips and substrates in IPA/DI and formic acid vapour at 200  $^\circ\text{C}$
- 2. Place substrate manually into jig on hotplate
- 3. Automatic pick-up of the 1<sup>st</sup> chip (face down)
- 4. Automatic alignment chip/substrate
- 5. Tack-bond of 1<sup>st</sup> chip (minimal pressure, 20g/chip) at 250 °C in N2/HCOOH atmosphere
- 6. Automatic pick-up of 2<sup>nd</sup> chip, alignment
- 7. Tack-bond of 2<sup>nd</sup> chip
- 8. Repeat 6. and 7. until all eight chips are placed
- 9. Manually remove substrate in jig from hotplate and place in reflow furnace
- 10. Run reflow profile including N2/HCOOH purge and vacuum



17


XDAC DSSC, 28.5.13



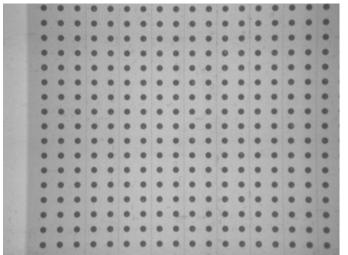


results

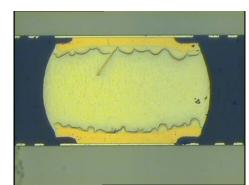


- 5 full half-ladders assembled
- Different process parameters (temp., gas flow, time ..)
- Best result, but not yet optimal .....

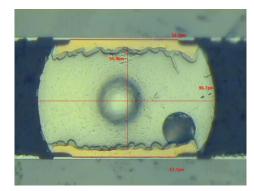


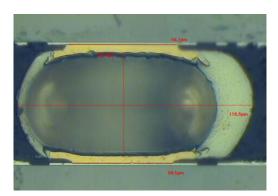






18




#### Results II



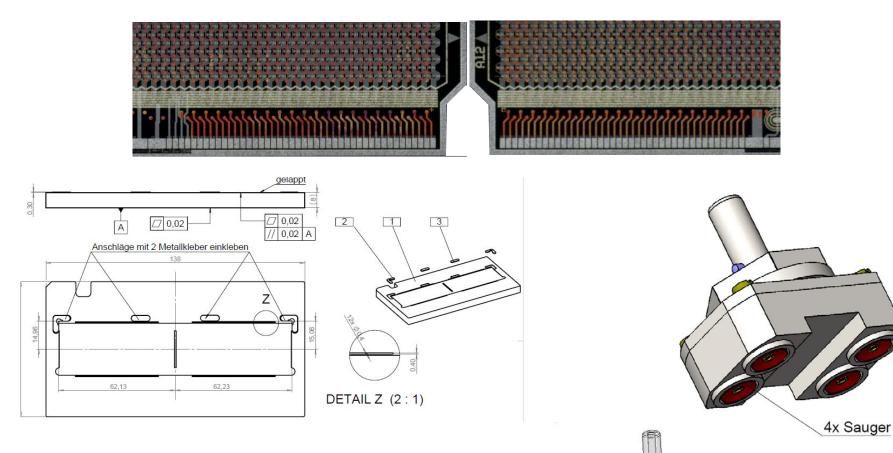












→ FC of full half-ladder works (sort off...) even with minimal pressure in hollow jig
→ We are getting closer but are not yet there
→ Optimize process and maybe process chamber of Finetech machine

19



#### macro assembly





→ Jigs and tools are ordered

→ Practice macro assembly in summer

20







Cu on PXD8 done on first two wafers

- Last process (descum) step to be installed in summer 2013
- $\rightarrow$  see sensor work package
- FC Bonder fully installed and operational
  - Optimization of process ongoing
- Tools and jigs for macro assembly ordered
  - Work on procedure during summer





## **ASIC** Progress

F. Erdinger for the ASIC groups

XDAC, DESY, 28.5.2013

22



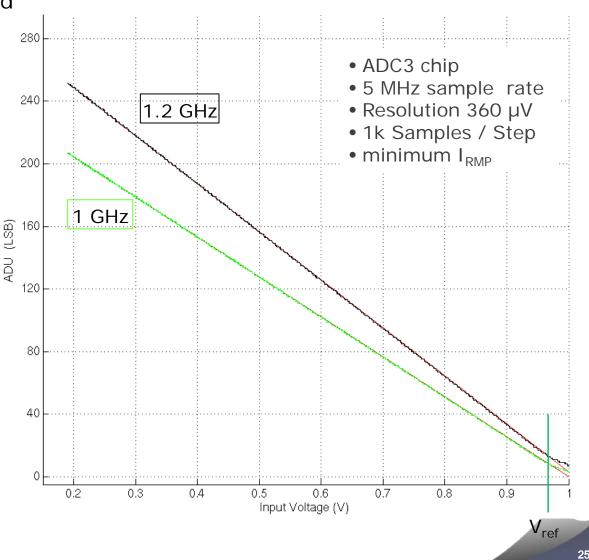
- Further Characterization of Test Chips ADC\_3 and MM3
  - ADC properties
  - Variation of Ramp current and Delay step
  - Operation of pixel-internal injection
  - Operation with PXD-7 sensor
- Preparation of F1 submission
  - Design of remaining blocks (Clock delay, Injection DAC)
  - Optimization of available blocks (ADC, Reference, Digital Part)
- Test Setups
  - Commissioning of 'standard' setup
  - Design of new setup to test full readout chain
- Time / Submission Plans





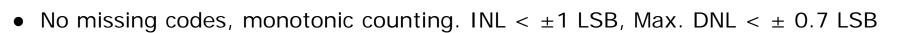


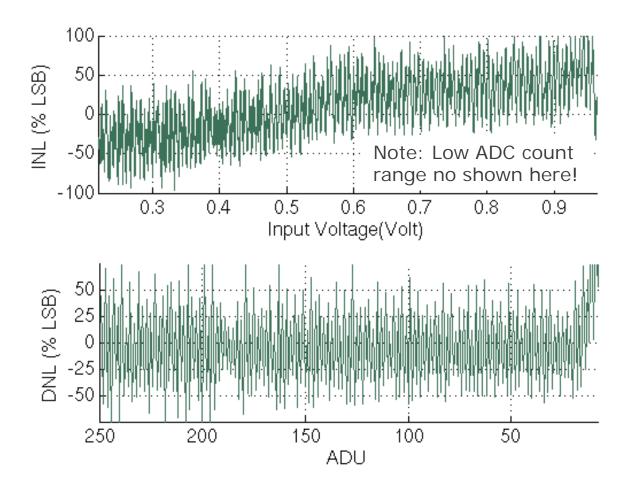
### **MEASUREMENTS**


24



#### ADC at High Speed



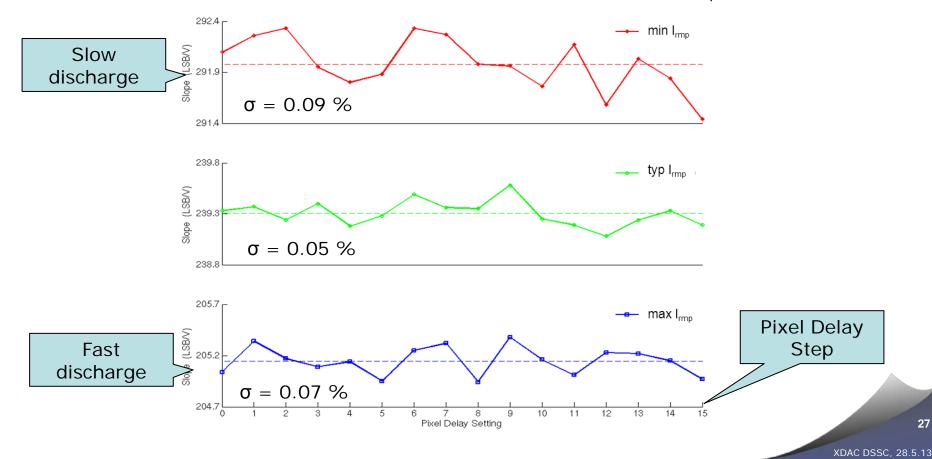


- Increase nominal clock speed from nominal 700-800 MHz to 1/1.2 GHz (!) (bin width 500/417 ps)
- GCC (standard cells) still operates
- BW of TX / CPWG / RX ok!
- Still very nice curves!!
  - Kink for small ADC codes not yet understood
- This is another 'knob' to globally change ADC gain





DNL/INL @ 1.2 GHz






• Even faster speed probably limited by IO pads





- Previous data analysis indicated a correlation between the ADC ramp current  $I_{rmp}$  and the offset setting = pixel delay
- Detailed studies on ADC3 and MM3 showed NO (significant) effect
- Example: Ramp slope (fit over full characteristic) for fixed I<sub>rmp</sub> vs. Pixel Delay:







- On MM3, delay steps  $(1\rightarrow 2,..)$  were measured (@ Hit Out) as a function of  $I_{rmp}$
- No systematic effect visible within measurement resolution



• There are still some correlation effects in analysis of available data. We need to find out if this are analysis artefacts, for instance from systematic effects in the determination of the bin boundaries

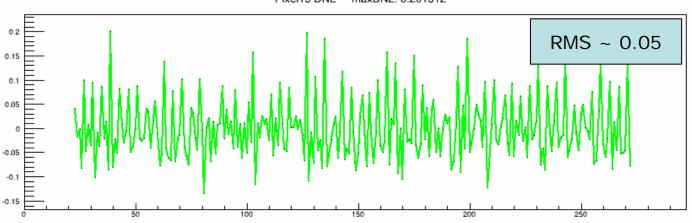


### Delay Bin Size

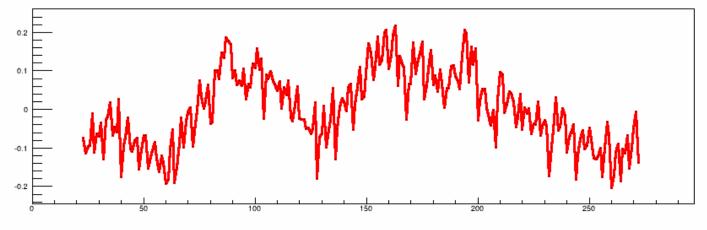
- Can set delay step to 'coarse' (~120 ps) or 'fine' (~60 ps) in every pixel
  - Compromise between resolution and range
- Ratio between coarse and fine range ~ 1.89,  $\sigma = 0.1$  (design: ~2.0)



#### **Coarse Delay Factor**


• Some outliers must be understood. Yield?

29






- Measured with GCC counter via GCC start value (no ramp effect!)
- Similar to DESY results on ADC\_3 chip

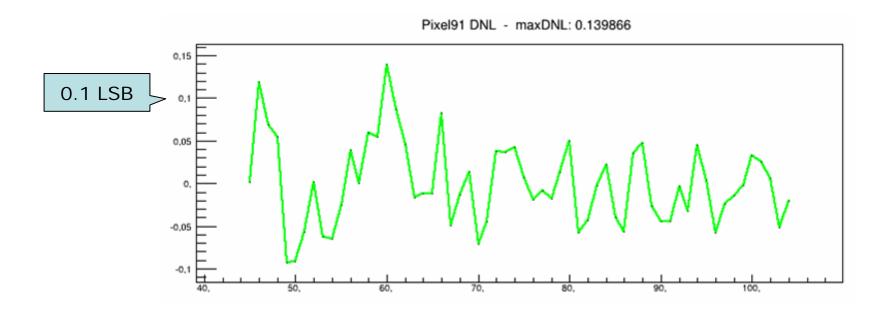


Pixel15 INL - maxINL: 0.218304



Pixel15 DNL - maxDNL: 0.201312



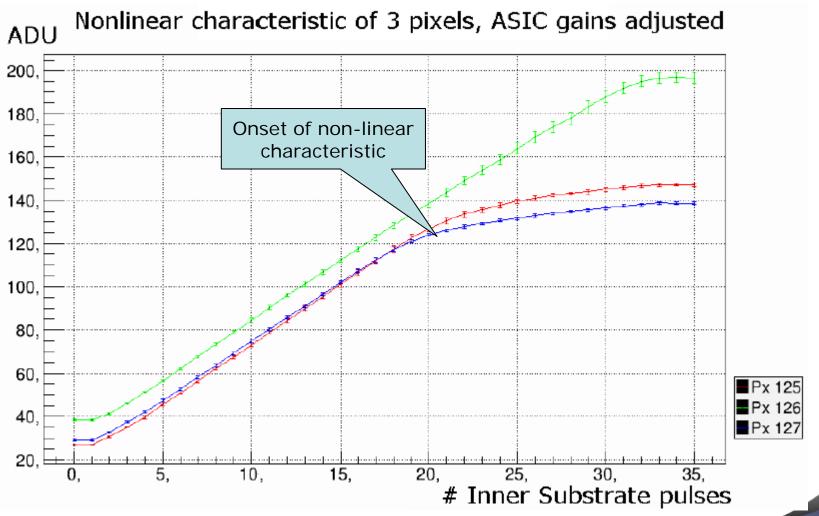



- Each pixel has two sample and hold (S&H) capacitors for double buffering.
- As only one set of trim values is available for both capacitors, their matching is important.
- By separating the ramp slope measurements into odd and even events, corresponding to C<sub>SH1</sub> and C<sub>SH2</sub>, the relative capacitor values can be determined.
- Measured mismatch is < 0.14 % which is negligible in this application





- Delicate operation (supply voltage dependence). Cause not yet understood
- Good pixels show *excellent* DNL in working range



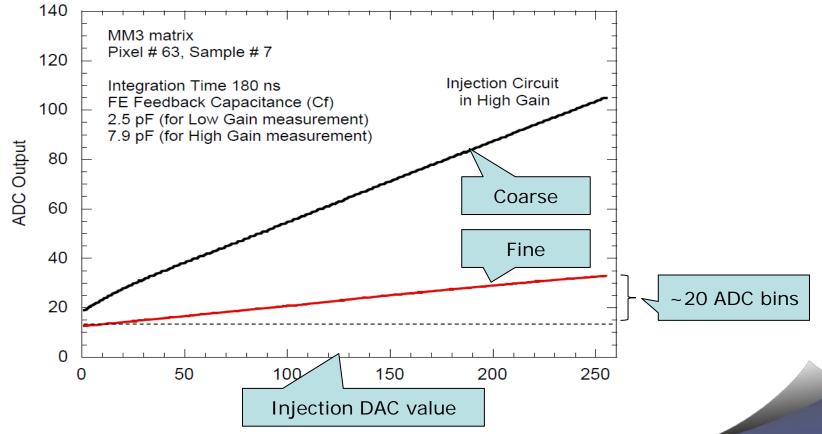

• Will pursue this path in parallel in new test chip





- A new PXD7 DEPFET is available as a Hybrid
- This is operated in MM3 setup using inner substrate pulsing




XDAC DSSC, 28.5.13

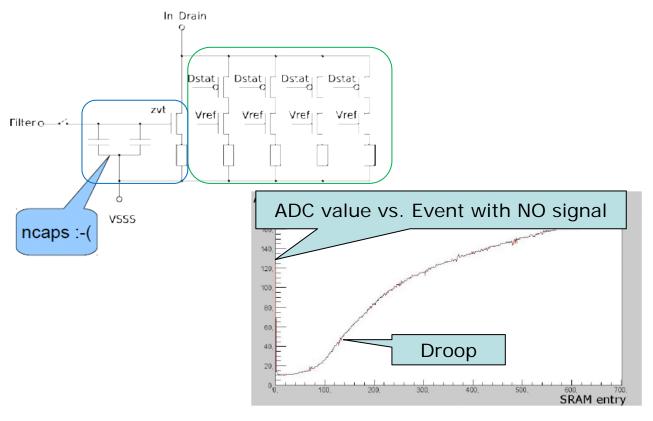
33



#### **Pixel Injection**

- The Pixel Injection Circuit is now integrated in every pixel and is operational
- It offers
  - a *fine* mode (~20 Injecti Bins per ADC bin) to study the linear part
  - a coarse injection mode (~ 10 x fine) to inject large signals.




XDAC DSSC, 28.5.13

34





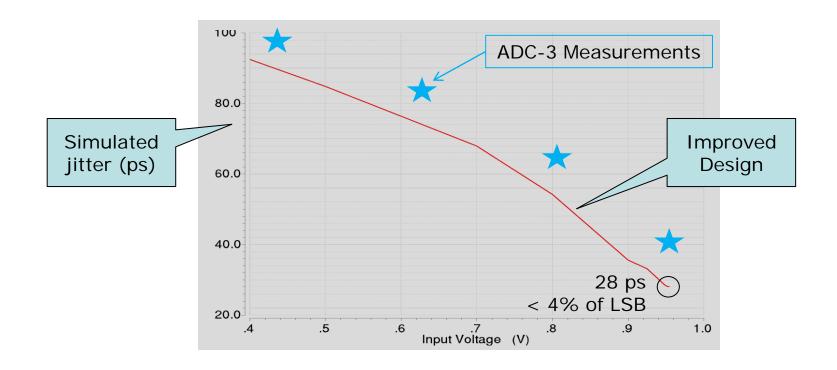
- The DEPFET Drain Current is absorbed by
  - a current DAC (coarse value)
  - A dynamically adjusted current source with Sample & Hold cap (residual)
- This cap has been changed from MiM  $\rightarrow$  ncap (space reason) and is now leaky!
  - Must replace it by dgncap in next chips



35





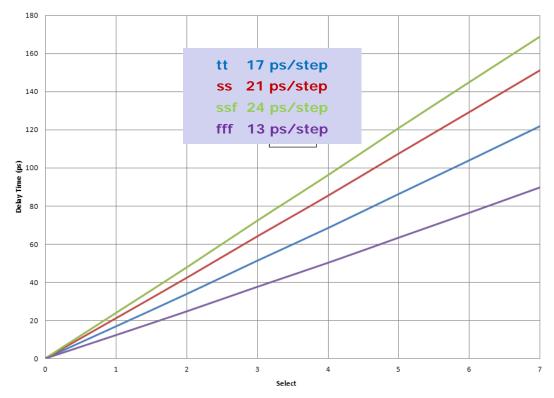

## WORK ON BUILDING BLOCKS

36



 $\bullet$ 

- ADC Comparator current is doubled (to 24  $\mu$ A, 130 $\mu$ W) to reduce Jitter from
- 30 ps to 18 ps.
- The Full ADC has now simulated 28 ps jitter at small amplitudes.
- Bias generation is shifted to reference, design is area neutral.



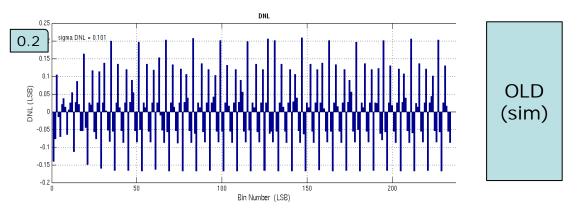

European



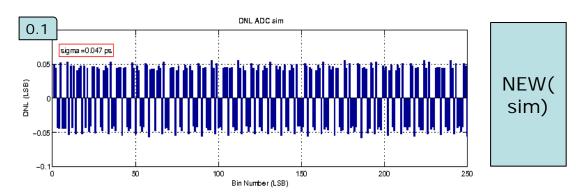


- A new *Delay Line Circuit* allow to adjust edges of clock and inverse clock going to the GCC. This can be used to minimize DNL.
- Implementation uses inverters loaded with variable # of caps
  - less variation across corners than inverters
- 3 Bits / side, Step is ~ 20ps.




Delay Behavior

38

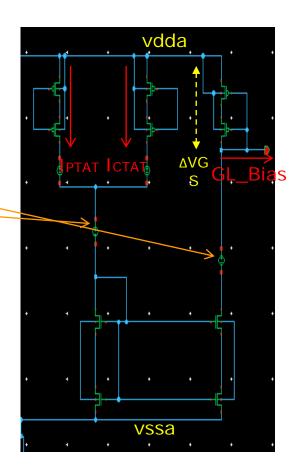





 The interface GCC → TX has been modified (two clocks are merged) to remove observed periodic DNL (of period 16).



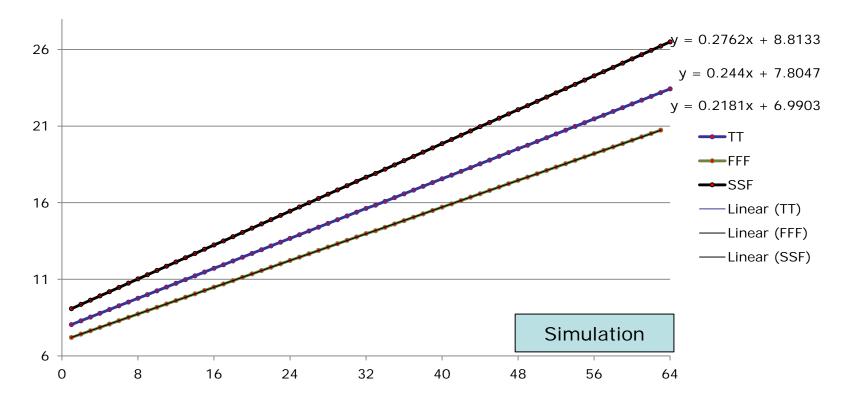
• Now simulated DNL is 0.05 LSB:




Simulation @ ss case, last pixel 800 MHz clk, bin width 625 ps





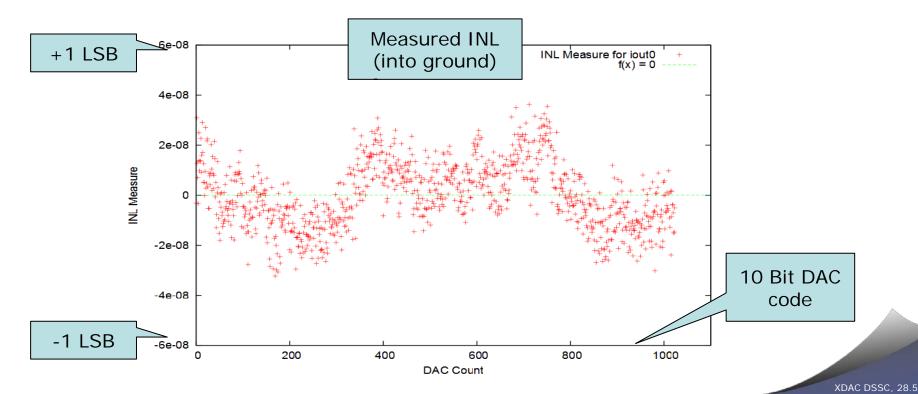

- Reference block (@ chip sides) has been simplified.
- Only one signal transported to pixels (PTAT and CTAT merged in periphery)
   Variation (1.1 ... 1.4V):
   0.5% in ref, 1.5% after current mirror \_
- No more buffer of distributed signal
  - Slightly slower turn on, but no offset







- Linearity has been improved
  - Use low power MOS and different scheme to add voltages






- ADC tests in Laboratory often use a precise voltage source
- → Have decided to integrate a high resolution (static) voltage DAC on F1 and distribute signals via monitoring lines to all pixels

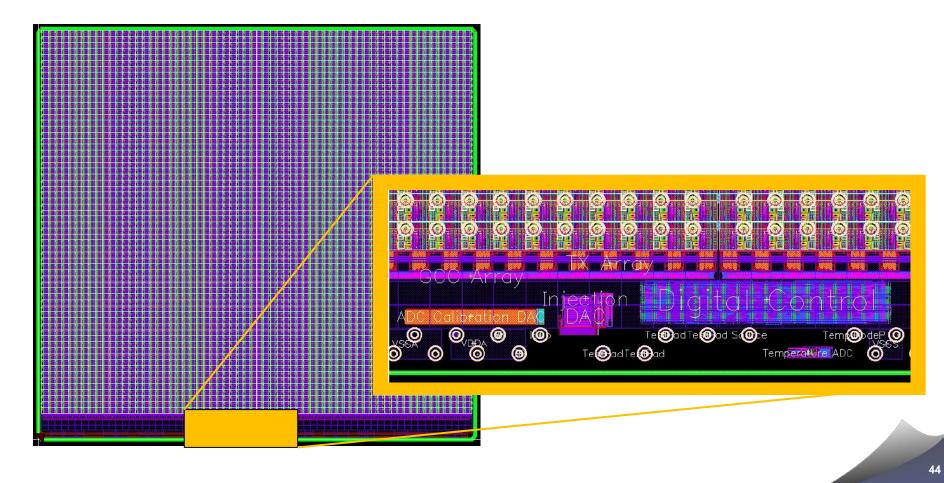
European

- DAC is based on already prototyped 10 Bit Current DAC with INL <  $\pm 0.5$  LSB
  - It uses segmented unit current sources & thermometer encoder
- 4 of these DACs will drive in parallel into a resistor to provide 12 bit Voltage





### Further Blocks




- Pixel
  - RAM size has been increased from  $640 \rightarrow 720$
  - All new block versions will be integrated
  - Will use GCC ADC
- Digital Verilog Code (Global Part):
  - Some small bugs have been removed (sequencer, veto)
  - Additional state in Main FSM has been added to pulse reference @powerup
  - Readout is extended to full matrix
  - Some test features (check sum, ...) will be added to burst trailer
- Temp. ADC is available (voltage tests successful, temp. tests soon)





- Peripheral part is much smaller than space reserved (early on...)
- Plenty of space for power busses & decoupling caps (?)







## **TEST SETUPS**

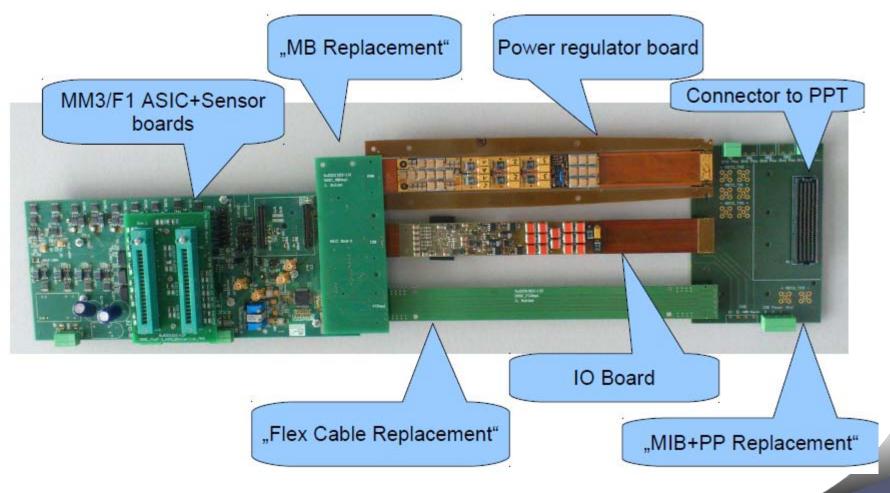
45





- Additional test setups are now operated in
  - Munich
  - DESY
  - Bergamo

after (usual) initial setup problems (Linux Versions,...)


• Training workshops have been held to increase number of knowledgeable users







- New test setup replaces custom FPGA board by a collection of final components.
- IOB, Reg. Board and interface to PPT connected via multiple PCBs
- Control & data readout will be via PPT







## **SUBMISSION PLANS**

48



### **Possible Reticle**

European

- $mm^2$ Reticle Size @ IBM: 21.0 × 19.5  $mm^2$ ~ 15.0 F1 Size: 14.904 × 14.005 x 14.0  $mm^2$
- Mini Matrix (MMx) Size: 3.2 × 4.8 •

- Reticle has space for lacksquare
  - 1 x F1
  - 'long test Chips' Lx
    - » ADC alternatives
  - Mini Matrix Chips MMx
    - MM4 with improved power busses ≫
    - MMx ≫
  - Test Chips Tx
    - ADC4 (DESY) ≫
    - (Milano) ≫

| T1 T2 | MM | MM | N | /M | N | 1M |
|-------|----|----|---|----|---|----|
|       | F1 |    |   | L1 |   | _2 |





- Still not really fixed
- F1 should be back 30.8 according to present time plan
- We think it is sufficient to get the chip back *end of this year* to be ready to start full sensor size tests
- Later submission leaves more time to make 'cost neutral' test chips
  - ADC variations
  - Improved MM4 matrix (no power snake) for simplified sensor tests
  - Front-End Versions

● → Submission targeted *latest* End of August





## THANK YOU

51

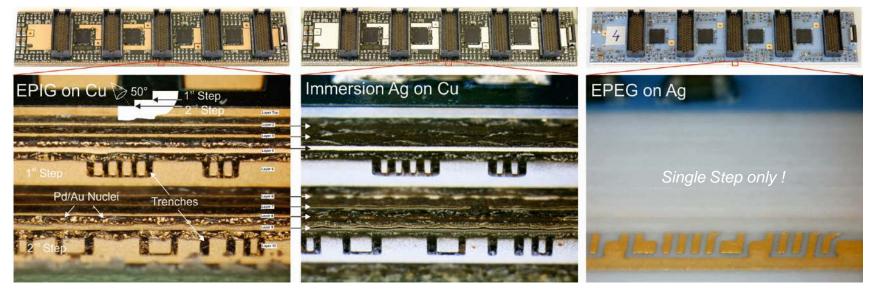




# **Module Construction**

Karsten Hansen

- 1. Main Board & Frames
- 2. Focal-Plane Setup
- 3. Electrical Tests




## Component Status: Main Board



#### FR-4 Main Boards





#### Difficulty 🙁

- Finishing  $\rightarrow$  Pd Nuclei
- Laser  $\rightarrow$  Trenches
- Cutting from Frame
- E-Test w/o Bond Pads

#### **Remedial Actions**

- Special Rinsing (tbd)
- Laser-Direct Structuring (tbd)
- Test after Assembly

#### Difficulty 😐

- Tarnishing  $\rightarrow$  Bonding
- Laser  $\rightarrow$  Trenches
- Cutting from Frame
- E-Test w/o Bond Pads

#### **Remedial Actions**

- Surface Activation (tbd)
- Laser-Direct Structuring (tbd)
- Test after Assembly

#### Difficulty 🙂

• Clamping for Assembly

#### **Remedial Action**

• Soft Materials



## Component Status: Frames



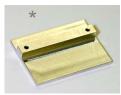
#### Main-Board Frames



Cu99.1Cr0.8Zr0.1



#### **Difficulty**


• 300-µm Frame-to-Device Distance too small

#### **Remedial Actions**

- reshape Frame
- increase Gap Size to 500 µm (HV Safety)

#### **Regulator Board**







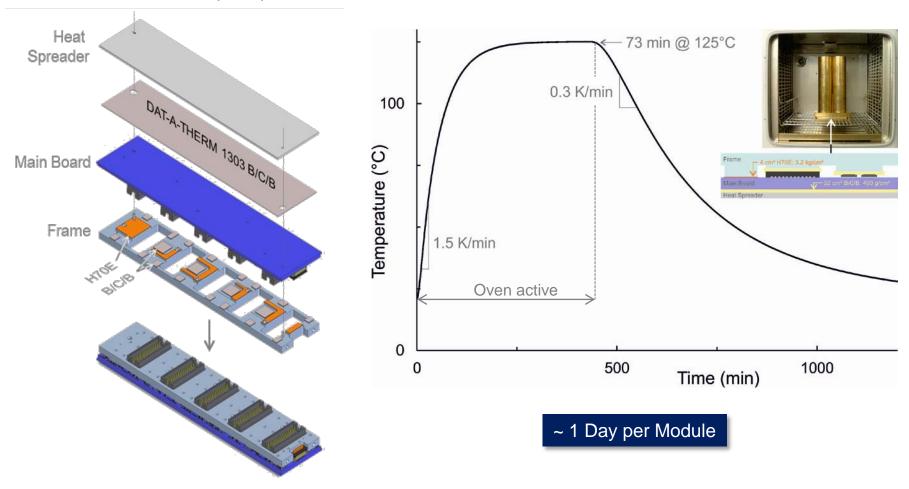
# NAMES I

#### <u>Difficulty</u>

• Hot Spot

#### Remedial Actions

• reshape Frame Part \*

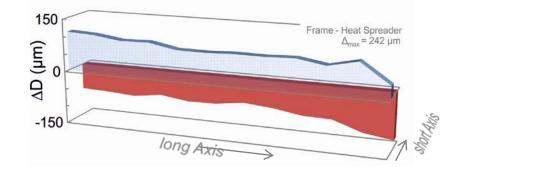


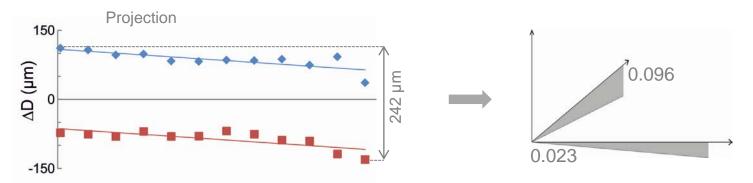

## Focal-Plane Package Setup: 1<sup>st</sup> Step



1<sup>st</sup> Setup Step







XDAC DSSC, 28.5.13





#### Frame-to-Heat Spreader Height Profile (old Parts)

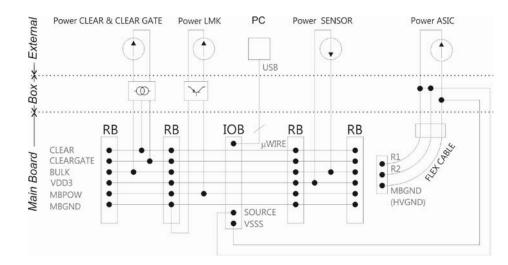




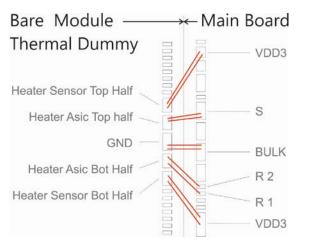
#### **Preliminary Result**

- very small Tilt with old Parts
- *large Height Differences between ASICs & Heat Spreader*
- Therm-A-Gap 579 instead of B/C/B
- use Gimbal Tool or only Placement (2<sup>nd</sup> Setup Step w/ Femto)






## Thermal Imaging: Main-Board Test Setup




#### Test Setup

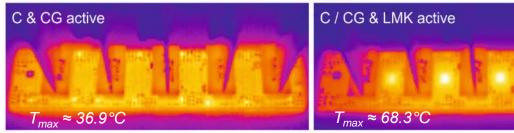




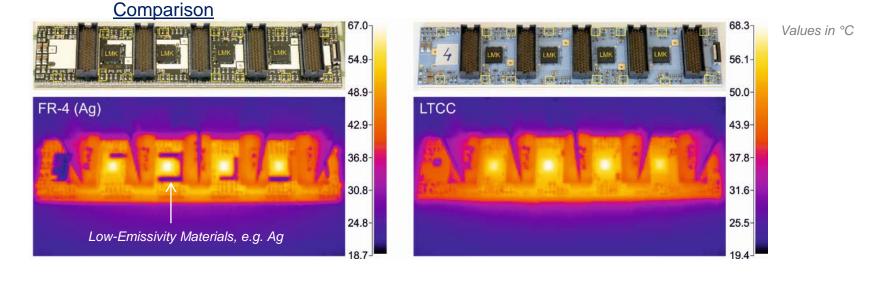
#### Wire Bonding



### <u>Result</u>


- thermal Tests with real Main Boards
- only PC & 4 Power Supplies needed
  - visible Assembly Layer




## Thermal Imaging: Results MB



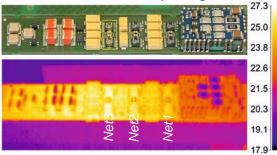
#### Clock Distribution & Clear-Pulse Generation (LTCC MB)

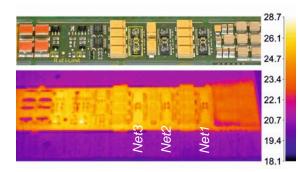


Free Convection



#### Result

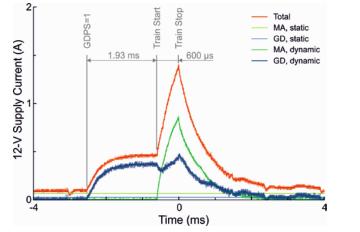

- *MB* shows highest Temperatures
- FR-4 MB behaves very similar to LTCC MB

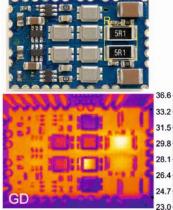


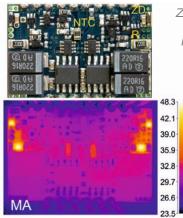

## Thermal Imaging: Results RB, GD & MA



#### Power Cycling





#### Result:

 moderate Temperatures
 Hot Spots caused by Resistors of Net-3 Current Limiters

#### **Clear-Pulse Generation**







ZD.....Zener Diode R.....Resistor NTC..Thermistor

#### Result

- activate Resonant Converter 1.9 ms before Train Start
- Hot Spots on MA caused by On-Board Supply-Voltage Generation
  - Hot Spot on GD caused by 5-Ω Clear-Output Resistor



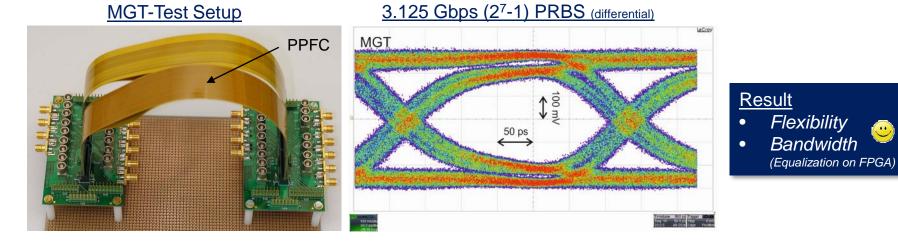


| Compon | ent                | Mean P | ower (W) | T <sub>max</sub> - T <sub>Ambient</sub> (K) | Device                    | Sensor |
|--------|--------------------|--------|----------|---------------------------------------------|---------------------------|--------|
| МВ     | Clock Distribution | 3.2    | 234      | 48.9                                        | LMK                       | n, a,  |
| IVID   | Line Termination   | 1      | 408      | 31                                          | R <sub>clear</sub>        | п. а.  |
| RB     | Power Cycling      | 0.4    | 496      | 11                                          | <b>R</b> <sub>Limit</sub> | n.a.   |
|        | GD                 | 0.3    | 555      | 13.6                                        | R <sub>clear</sub>        | п. а.  |
| MIB    | MA                 | 0.     | 788      | 24.8                                        | R <sub>Zener</sub>        | NTC    |
| IOB    |                    | 2.     | .97      | n. a.                                       | n. a.                     | IC     |
| ASIC   |                    | 0.097* | 0.149**  | n. a.                                       | -                         | n. a.  |
| Sensor |                    | 0.056* | 0.228**  | n. a.                                       | -                         | 16 Ds  |
| Ladder |                    | 13.1*  | 16.5**   | n. a.                                       | -                         | /Cs*** |

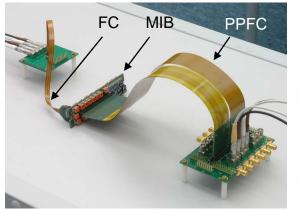
\*: typical-case estimation; \*\*: worst-case estimation; \*\*\*: Cooling system incl. vacuum sensor

#### <u>Result</u>

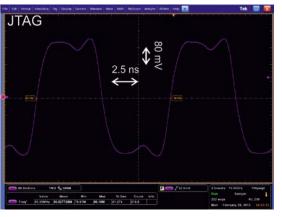
٠


- total Camera Power well below 400 W 🙂
  - 73 Temperature Sensors & 1 Vacuum Sensor per Quadrant
- To Do: Slow-Control Concept incl. Interlock for Power & Cooling




## Electrical Tests: MGT & JTAG




•



#### JTAG-Test Setup



#### 80-MHz CLK (single-ended)



#### Result 2 *Mb* / 99.4 *ms* ≈ 21 *Mbps* (32 bit / Pixel x 64k Pixel / Ladder)

- 80 Mbps ٠
- Train-wise Parameter ۲ Setting

61

 $\bigcirc$ 





#### Test Environment for MB & full Ladder

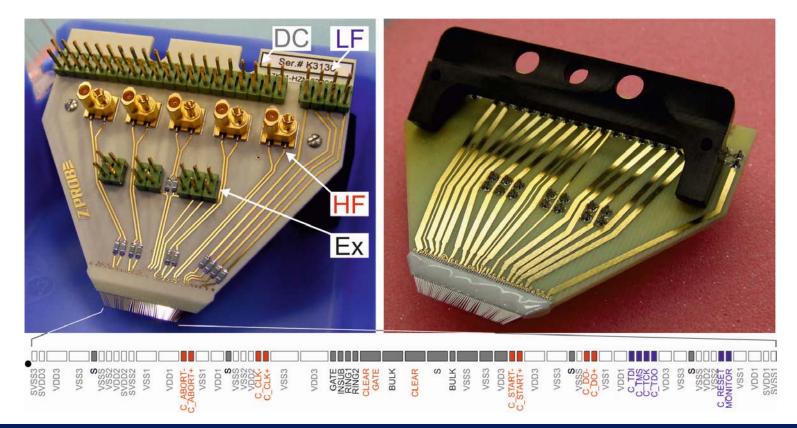


#### Ladder-Test Mechanics



#### Result

۲


- 🔹 Cabling & Cameras 🙂
- DUT Rotation very critical → duplicate Setup !!!

62



## PM 5 Probe Station: 62-pin Z Probe





#### <u>Result</u>

- High-Performance Connectivity of all Pads (Section of 64-10) 64 Pixel)
  - Connectivity possible for Piggy Back with

discrete Devices & Sensor Dummies  $\rightarrow$  Test Chips  $\rightarrow$  F1/2  $\rightarrow$  F1/2 + Baby Sensol



## Summary & Outlook



|              |                  |      | 1       2       3       4       5       6       7       8       9       10       11       12       13       14       15       16       17       18       19       20       21       22       23       24       25       26       27       28       29       30       31       32       33       34       35       36       37       38       39 |     |       |      |     |      |     |     |               |      |      |       |      |       |       |     |      |        |      |      |      |      |      |     |     |     |     |     |     |    |     |     |      |      |     |    |       |     |            |     |       |      |    |    |
|--------------|------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------|------|-----|------|-----|-----|---------------|------|------|-------|------|-------|-------|-----|------|--------|------|------|------|------|------|-----|-----|-----|-----|-----|-----|----|-----|-----|------|------|-----|----|-------|-----|------------|-----|-------|------|----|----|
|              | # Month          | 1    | 2                                                                                                                                                                                                                                                                                                                                               | 3   | 4     | 5    | 5   | 6    | 7   | 8   | 9             | 10   | 11   | 12    | 13   | 14    | l 15  | 1   | 16   | 17     | 18   | 19   | 20   | 21   | 22   | 2 2 | 3 2 | 4   | 25  | 26  | 27  | 28 | 29  | 30  | ) 3  | 31 3 | 32  | 33 | 34    | 3   | 5 3        | 36  | 37    | 38   | 39 | 40 |
|              | Year             | 2012 |                                                                                                                                                                                                                                                                                                                                                 |     |       |      |     |      |     |     | 2013          |      |      |       |      |       |       |     |      | 2014   |      |      |      |      |      |     |     |     |     |     |     |    |     |     | 2015 |      |     |    |       |     |            |     |       |      |    |    |
|              | Month            | J    | Α                                                                                                                                                                                                                                                                                                                                               | S   | 0     | N    | J   | D    | J   | F   | М             | Α    | Μ    | J     | J    | A     | S     | (   | 0    | N      | D    | J    | F    | М    | A    | N   | 1.  | J   | J   | Α   | S   | 0  | Ν   | D   |      | J    | F   | М  | Α     | Ν   | <b>N</b> . | J   | J     | А    | S  | 0  |
| XFEL Task 51 |                  | Re   | ed. &                                                                                                                                                                                                                                                                                                                                           | Pro | od. N | ΛIB, | RB, | IOE  | 3&1 | MB  |               |      |      |       |      |       |       |     |      |        |      |      |      |      |      |     |     |     |     |     |     |    |     |     |      |      |     |    |       |     |            |     |       |      |    |    |
| XFEL Task 52 |                  |      |                                                                                                                                                                                                                                                                                                                                                 |     |       |      |     |      |     |     | Ev            | alua | tion | of La | adde | er Pr | rotot | ype | e -  | $\geq$ | Мо   | un   | ting | g fo | or p | xd  | 8 C | )en | nor | nst | rat | or |     |     |      |      |     |    |       |     |            |     |       |      |    |    |
| XFEL Task 53 |                  |      |                                                                                                                                                                                                                                                                                                                                                 |     |       |      |     |      |     |     |               |      |      |       |      |       |       | S   | erie | s Pr   | rodu | ctio | n &  | Tes  | t of | Qua | dra | nt  |     |     |     |    |     |     |      |      |     |    |       |     |            |     |       |      |    |    |
| XFEL Task 54 |                  |      |                                                                                                                                                                                                                                                                                                                                                 |     |       |      |     |      |     |     |               |      |      |       |      |       |       | E   |      |        |      |      |      |      |      |     |     |     |     |     |     |    | Pro | duc | tio  | n of | Fra | me | s, Se | etu | р&         | Ser | ies ' | Test |    |    |
|              |                  |      |                                                                                                                                                                                                                                                                                                                                                 |     |       |      | 0   | ld I | IO  | 3 – | $\rightarrow$ | ł    |      |       |      |       |       | ł   |      |        |      |      |      |      |      |     |     |     |     |     |     |    |     |     |      |      |     |    |       |     |            |     |       |      |    |    |
|              | (to be modified) |      |                                                                                                                                                                                                                                                                                                                                                 |     |       |      |     |      |     |     |               |      |      |       |      |       | Ŀ,    |     |      |        |      |      |      |      |      |     |     |     |     |     |     |    |     | ъ.  |      |      |     |    |       |     |            |     |       |      |    |    |

#### <u>Achievements</u>

- FR-4 Main Board available
- Flex Cables passed Performance Tests
- Patch-Panel Design started
- 62-Pin Probe available
- Main-Board & Regulator-Board Frames available
- 1<sup>st</sup> Setup Step of Focal-Plane Package passed with old parts
- Thermal Imaging completed

#### <u>Future</u>

- Finalize Probe-Station Setup
- Evaluation of Ladder Prototype
- Setup upper Focal-Plane Module Part with Frame, Main Board & Heat Spreader
- Design of Patch-Panel Prototype

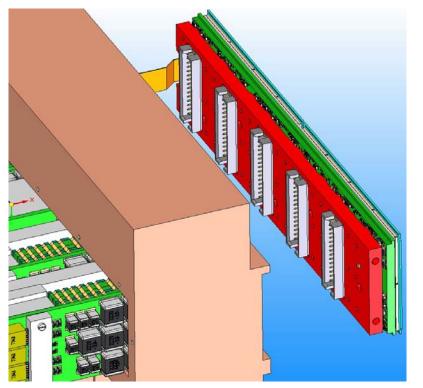
providing that we can fill open Positions





# Mechanical Thermal WP

- > Cooling the cooling block
- > Ladder-Size Prototype System
- > Approaches to movable quadrants

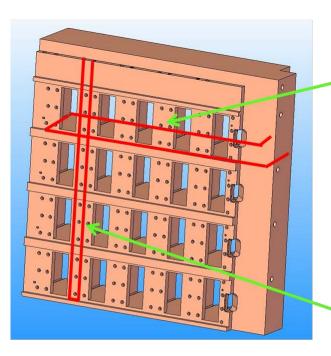

Cornelia Wunderer DESY Photon Science Division Detector Group cornelia.wunderer@desy.de

# DSSC

## 2<sup>nd</sup> Generation Mechanics and Cooling

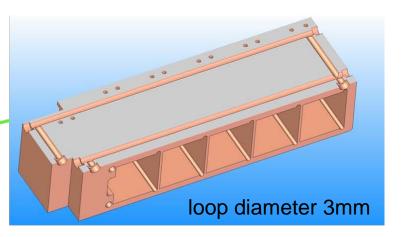


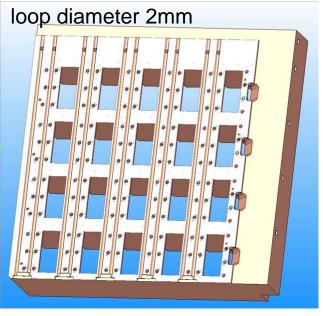
- Single "half-height" frame is narrow enough to give wire bond access
- Attachment to cooling block at "island" positions using a total of 34 screws / ladder
- Vertical boards inserted after tightening




Mechanical & thermal access on 2 sides of each quadrant




## Liquid Cooling Loops in Quadrant Block






Two cooling loop groups:

- through the MB frame attachment areas, and
- through the "vertical walls" of the cooling block separating the different ladders' electronics







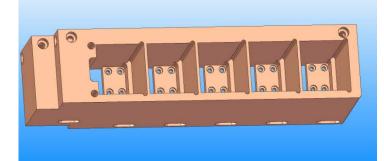


# Ladder-Size Prototype

68

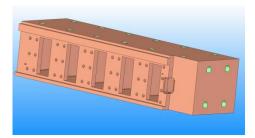


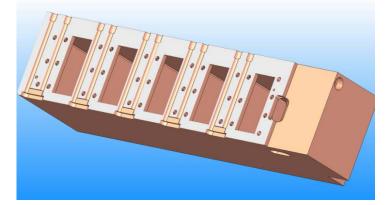


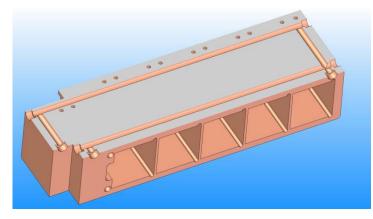

Why not immediately a full quadrant?

- Making the complicated shape of the cooling block is not cheap, and cost (almost) scales with size in this case
- A full quadrant block we'd want to be able to keep using and eventually integrate into the 1M, and therefore we would avoid the modifications needed to enable working with both liquid and "solid attachment" cooling paths
- Experiences should scale up
- Thermal mock-up tests as well as first "live" sensor tests will involve single ladders only
- Last but not least, smaller object easier to do good FSM thermal models on




## The prototype cooling block






- "tightest spots" of the full quadrant for cooling loop placement represented
- Includes drill holes for "solid" cooling attachment
- In hand



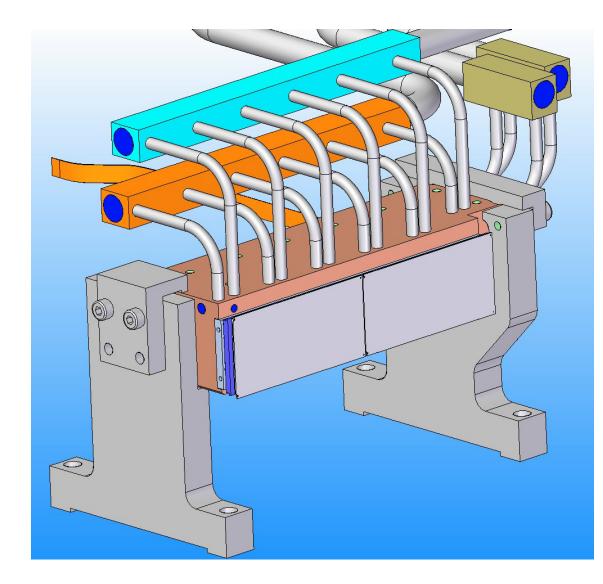






70



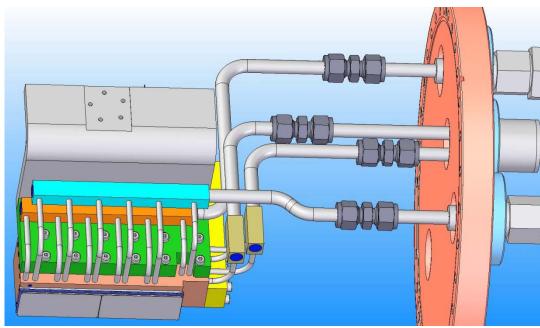







## Liquid coolant operation





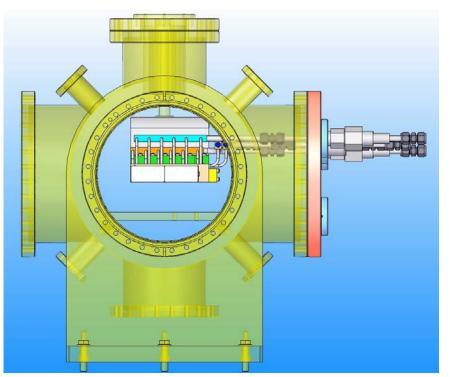

- The 2 coolant loops can be fed separately
- > This enables testing with either one or both coolant loops
- > PEEK mechanical supports
- > MB Assembly with sensor shown



#### The Prototype in the Vacuum chamber

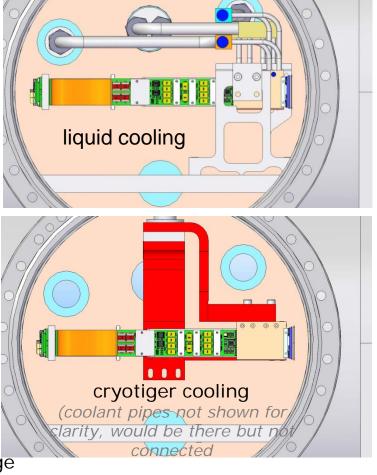





Both liquid path and cryotiger attachment (green plate and bent gray element) shown, only one would be used at a time

- We anticipate working with the liquid coolant loops
- In case of difficulties, running the coolant through a less-intricately-machined interface block, plus a "solid attachment", would be the backup solution.
- In this test setup, we have a cryotiger for the "solid attachment" option.
  - We have one
  - For debugging/comparing with simulations, it takes out the liquid-block interface
  - "solid attachment" option implemented in the prototype setup primarily for simulation cross-checks (2 different cooling situations)
- 2 different liquid coolant feed-throughs implemented for testing on the two coolant loops XDAC DSSC. 28.5.13

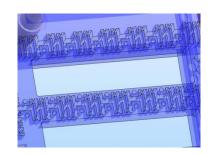



#### The prototype in the vacuum chamber





- Chamber layout made such that
  - Sensor views one large, otherwise unused flange
  - Opposing flange available for DSSC readout electronics feed-through


#### Most pieces already in-house, assembly in the coming weeks







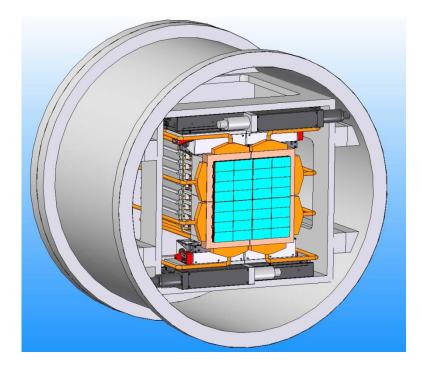
- Turbulent flow of coolant yields much better heat exchange with the cooling block
- If one WANTS to achieve laminar flow, this is very difficult
- Simulations performed at DESY FS-DS indicate that with the slow(ish) coolant flow and high coolant viscosity we have, we might just have managed to get there ... resulting in less effective cooling
- We try out the cooling with this prototype. If we get good cooling (and thus turbulent flow) we're good
- Should the behavior of the prototype indicate laminar flow, a more elaborate design of the cooling paths (meandering route to enforce turbulence) would be required. This is doable, just more expensive.



Possible meandering coolant path: courtesy of J. Becker & S. Rah






# Moving the Quadrants

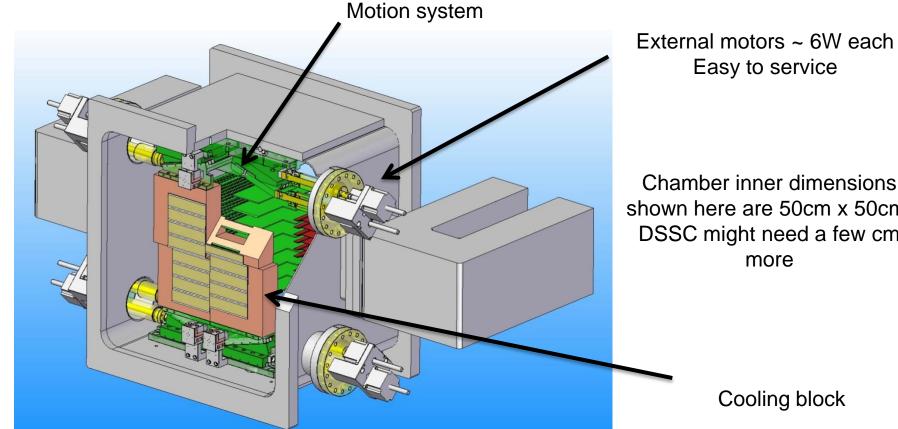
76



# Benchmarks of the rough idea outlined in 2011

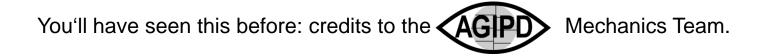





- > This would work
- > It's a BIG chamber
- Lots of actively moving parts on the inside -> no fun to service

- Chamber inner diameter 80 cm
- Commercially available in-vacuum lift tables and translation stages
- This system is the basis of our mechanical accuracy (in particular: 1M planarity) infos to XFEL to date
- Completely independent X and Y stages for each quadrant
- Lift up to 1.3 cm, linear motion could be larger (but limited by flex cables anyhow)




#### An alternate approach: outside motors



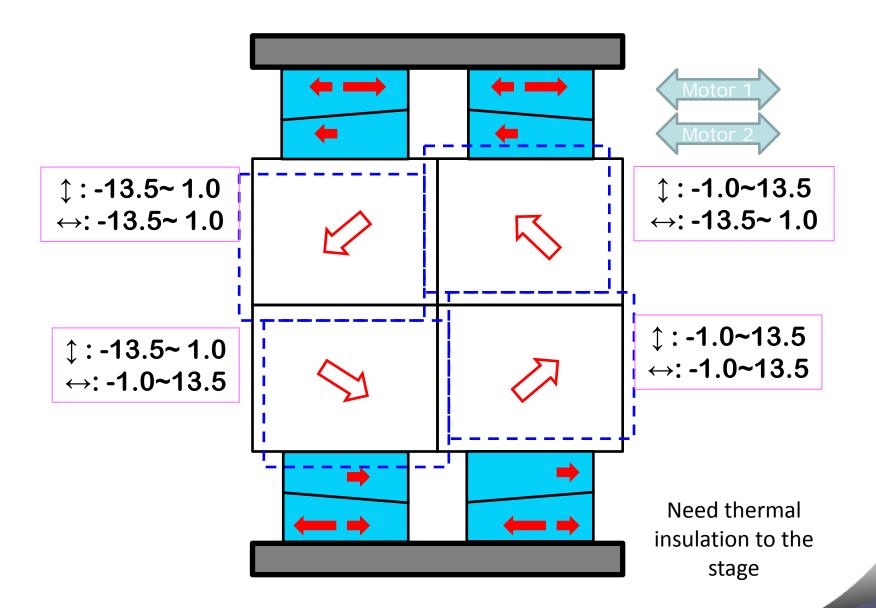


Chamber inner dimensions shown here are 50cm x 50cm, DSSC might need a few cm more

Cooling block



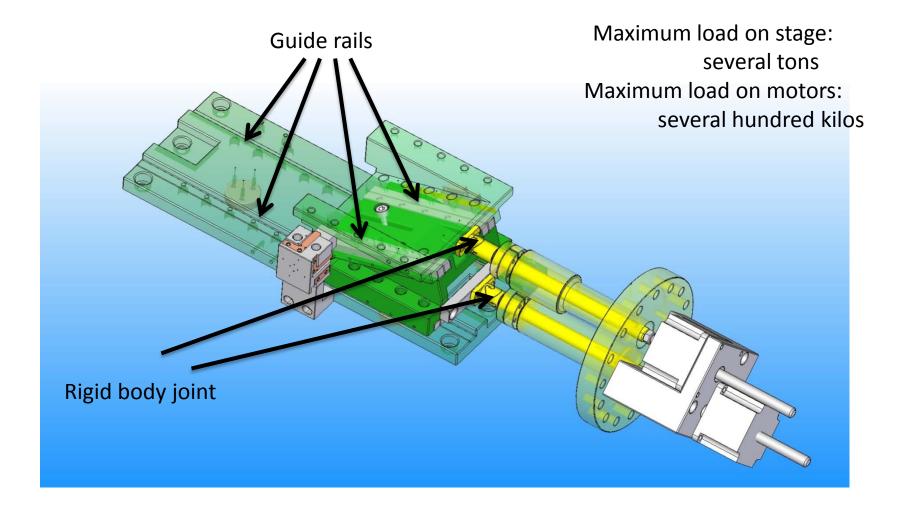





- Less moving parts on the inside, and a smaller chamber, should appeal to the XFEL detector and beamline scientists
- Two detector systems using identical XY translation approaches should appeal to those at XFEL worrying about integration and maintenance
- Obvious streamlining within the mechanics teams at DESY, "all pulling on the same string" to implement and debug this approach

We plan to baseline using a copy / slight modification of AGIPD's moving quadrant approach. The "old" standard-commercial-parts solution becomes a backup approach.

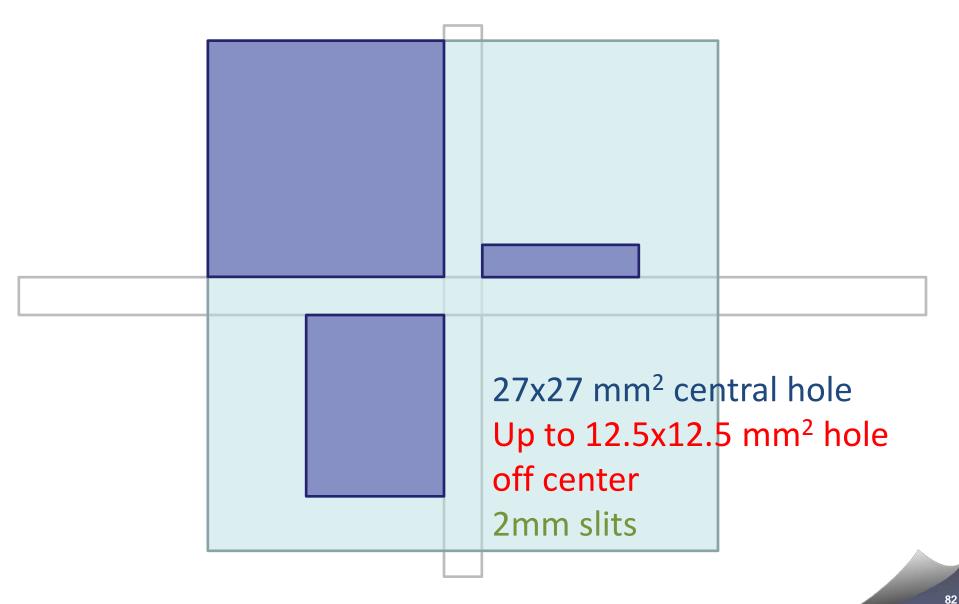
DSSC






XDAC DSSC, 28.5.13








81











- Finish assembly of single-ladder test setup
- Thermal tests with mock-up MB assembly
  - Verification of modeling
  - Exploration of liquid cooling performance
  - (solid-state cooling for comparison of models and as back-up approach)
- Detailed XY movement design
- Settling of chamber geometry
- Detailed definition of back-end arrangement

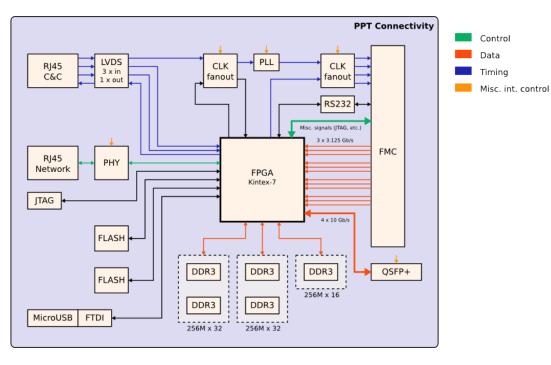




## DSSC DAQ

## A. Kugel, M. Kirchgessner, J. Soldat, T. Gerlach\*

84






- Design and status of patch panel transceiver PPT
  - Design process
  - Selected details
  - Implementation status
  - Initial Firmware
- Status redesign IOB
- Test Preparations



- Specification document started 2012-11-28
- Block diagram •
- Detailed description of all functional units





Interfaces

XFEL

UNIVERSITÄT HEIDELBER

- Layout guidelines
- Input to schematic design •
  - Started 2012-12-06
  - Finished 2013-01-30

86



DSSC

Prepared by

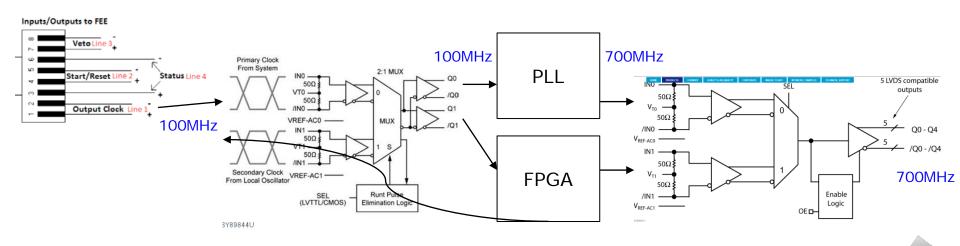
March 2013

....

XFEL DSSC PPT Design



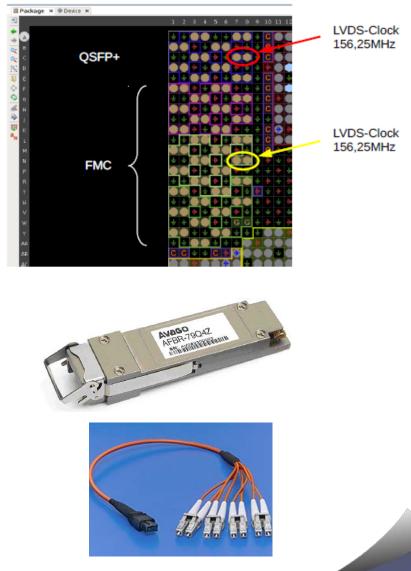



- PPT serves 4 IOBs
- Interface signals run through FMC connector
- 4 groups of signals
  - JTAG (ASIC, IOB)
  - Clocks
  - IOB Control
  - Serial data
  - Spares and Power

| Signal    | IO_STD        | Anschluss an      | FMC-Pins Gruppe 1   2   3   4                 |  |  |
|-----------|---------------|-------------------|-----------------------------------------------|--|--|
|           |               | Gruppen           | 1-4                                           |  |  |
| TDO_IOB   | LVCMOS_2.5V   | FPGA              | H7   H10   H13   H16                          |  |  |
| TCK_IOB   | LVCMOS_2.5V   | FPGA              | H8   H11   H14   H17                          |  |  |
| TMS_IOB   | LVCMOS_2.5V   | FPGA              | G6   G9   G12   G15                           |  |  |
| TDI_IOB   | LVCMOS_2.5V   | FPGA              | G7   G10   G13   G16                          |  |  |
| TDO_ASIC  | 15V           | FPGA, Bank 18     | F31   F28   F25   F22                         |  |  |
| TCK_ASIC  | 15V           | FPGA, Bank 18     | F32   F29   F26   F23                         |  |  |
| TMS_ASIC  | 15V           | FPGA, Bank 18     | E30   E27   E24   E21                         |  |  |
| TDI_ASIC  | 15V           | FPGA, Bank 18     | E31   E28   E25   E22                         |  |  |
| CNTR      | LVCMOS_1.5V   | FPGA, via 100R    | F34   F35   F37   F38                         |  |  |
| RESET     | LVCMOS_1.5V   | FPGA, via 100R    | E33 E34 E36 E37                               |  |  |
| PPTCLOCK+ | LVDS 2.5V     | FPGA              | H25   H28   H31   H34                         |  |  |
| PPTCLOCK- | LVDS 2.5V     | FPGA              | H26 H29 H32 H35                               |  |  |
| CLK+      | LVDS_2.5V     | Clk Fanout-Buffer | C10 C14 C18 C26                               |  |  |
| CLK-      | LVDS_2.5V     | Clk Fanout-Buffer | C11   C15   C19   C27                         |  |  |
| PPTDATA+  | LVDS 2.5V     | FPGA              | G21   G24   G27   G30                         |  |  |
| PPTDATA-  | LVDS 2.5V     | FPGA              | G22   G25   G28   G31                         |  |  |
| MGT TX0 N | LVDS          | FPGA MGT          | B29   A31   B37   B25                         |  |  |
| MGT_TX0_P | LVDS          | FPGA MGT          | B28 A30 B36 B24                               |  |  |
| MGT_TX1_N | LVDS          | FPGA MGT          | A23   A35   B33   B17                         |  |  |
| MGT_TX1_P | LVDS          | FPGA MGT          | A22 A34 B32 B16                               |  |  |
| MGT_TX2_N | LVDS          | FPGA MGT          | A27   A39   A19   B13                         |  |  |
| MGT_TX2_P | LVDS          | FPGA MGT          | A26 A38 A18 B12                               |  |  |
| MGT TX3 N | LVDS          | Nichtbenutzt      | A3  A7  B5 B9                                 |  |  |
| MGT_TX3_P | LVDS          | Nicht benutzt     | A2 A6 B4 B8                                   |  |  |
|           |               | Comn              | 1071                                          |  |  |
| RS232_TX  | +/112V        | FPGA              | G36                                           |  |  |
| RS232 RX  | +/112V        | FPGA              | G37                                           |  |  |
| PRSNT     | Static signal | GND               | H2                                            |  |  |
|           |               | Reser             | ve                                            |  |  |
| Rsv3.3    | LVCMOS_3.3V   | FPGA 3.3V Bank    | J6, J7, J9, J10, J12, J13, J15, J16, J18, J19 |  |  |
| Rsv2.5_F  | LVDS 2.5V     | FPGA 2.5V Bank    | D8 D11 D14 D17 D20                            |  |  |
| Rsv2.5_N  | LVDS_2.5V     | FPGA 2.5V Bank    | D9 D12 D15 D18 D21                            |  |  |
|           | . –           | Power/C           |                                               |  |  |
| 12V_main  |               | 12V               | C35, C37 (über Shottky Diode)                 |  |  |
| 12V_aux   |               | 12V               | B1, B40 (über ShottkyDiode)                   |  |  |
| Viob      | 15V           | 1.5V              | K40, J39 (über OR Widerstand)                 |  |  |
| GND       |               | GND               | Alle GND Pins gemäß Abbildung 14              |  |  |





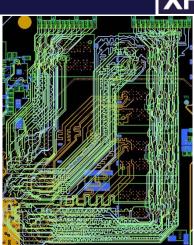

- 100MHz (99MHz) reference clock from C&C system via RJ45
- Drives PLL ADF4351 (upgrade from current ADF4350). Output 700MHz to IOB
- Alternative input from FPGA (100MHz)
- Alternative output from FPGA (700MHz)

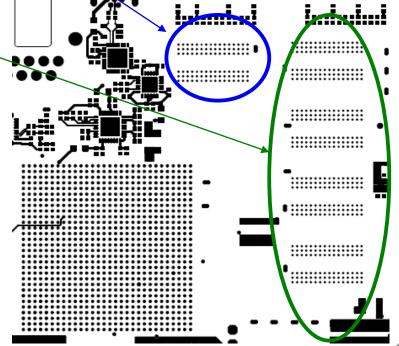






- FPGA provides 16 links up to 10Gbps
- 4 needed for QSFP+ output (10Gbps)
- . 12 remaining for detector data
- 3.125Gbps/lane limited by IOB
- 3 lanes per IOB sufficient

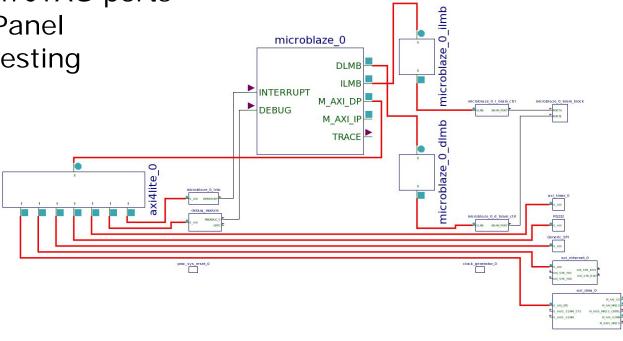





# External memory for embedded processor

- Single chip, 2Gb, 400MHz, 16 bit
- and data buffer
  - Four chips, 2Gb, 800MHz, 64 bit
  - 100Gbps nominal bandwitdh
  - 2\*40Gbps (dual-ported) required

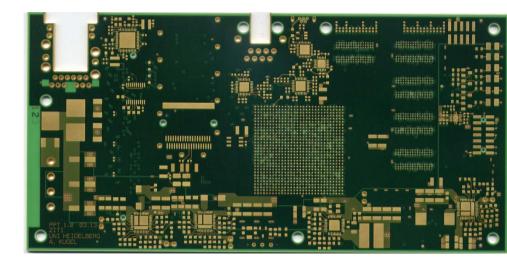


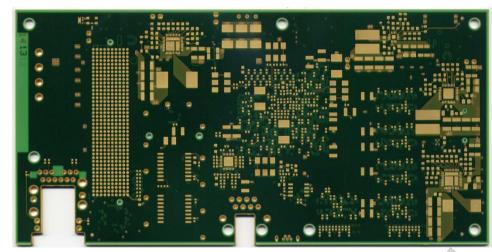







- . Core control item is embedded FPGA processor (Microblaze)
- Linux-capable
- On-board configuration from FLASH
- GE port to control network
- Access to telegram encoding/decoding in FPGA
- Access to UDP DMA engines
- Access to downstram JTAG ports
- Serial port to PatchPanel
- USB serial port for testing



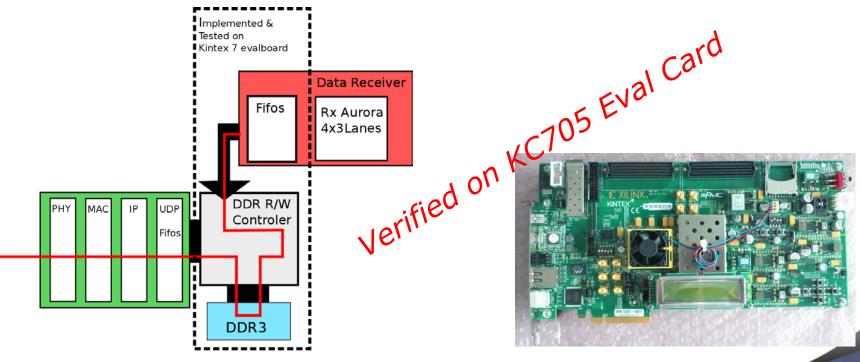




#### Implementation



- 14 layer PCB, 80\*160mm, micro-vias
- Layout started (external: GED) 2012-01-22, finished 2013-03-19
- PCB finished, assembly in progress
- Prototypes expected ~2013-05-17







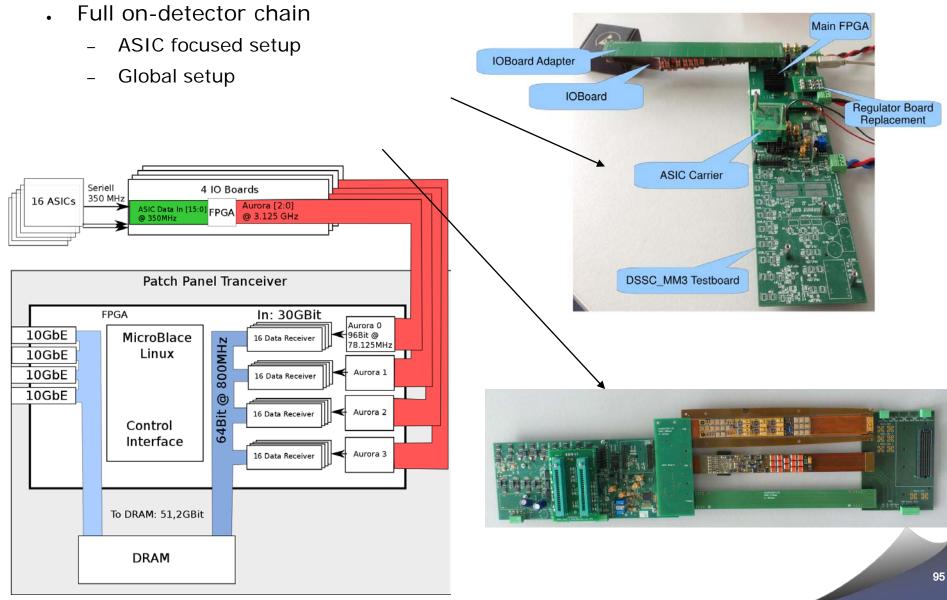



- . Initial Datapath
  - Aurora-RX
  - DDR3 dual-ported
  - 10GMAC

Initial Controller Microblaze embedded system Linux Simple test application








- IOB redesign/re-layout finished by Thomas Gerlach late 2012
- Production delayed due to PPT activity
- Also late (March 2013) design change: temerpatur sensor. Implemented.
- Currently under "design-for-manufacturing" layout revision
- Expect to place PCB order end of May

| C AFEL SIGC L/O Based<br>Tot 1.4<br>101, exclusion<br>101, exclusion processing<br>101, exclusion processing | Befestigungsochrungen fuar fushtrahven<br>(frei jositionierbar) | 0 |                                                                         | Ö      |
|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|---|-------------------------------------------------------------------------|--------|
|                                                                                                              |                                                                 |   | GNG: (SGING<br>SIIC: SGING<br>CND: CRD: R<br>SIIC: SGING<br>SIIC: SGING | -      |
|                                                                                                              |                                                                 | 0 |                                                                         | 0      |
| Starri <mark>U</mark><br>Flavi                                                                               | Top<br>Starr2                                                   | _ | F1ex2                                                                   | Starr3 |











## CALIBRATION AND SYSTEM SIMULATION

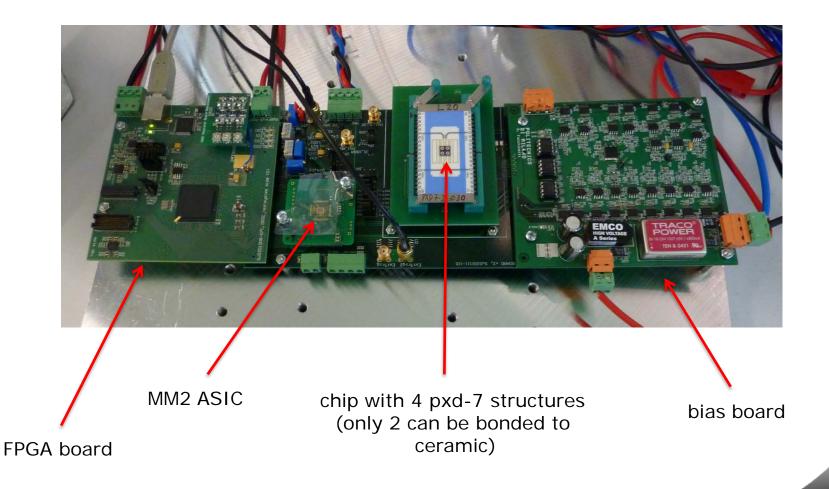
(G. Weidenspointner)

96



#### European XFEL

#### Focus of recent activities:

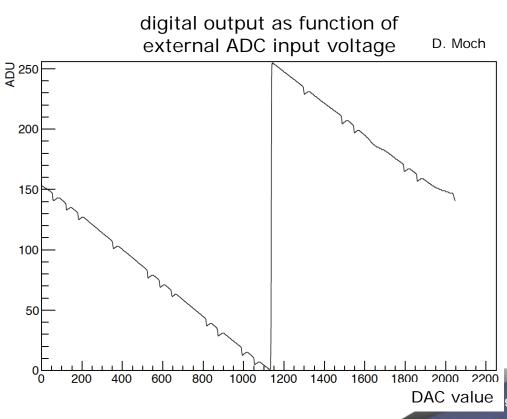

- Experimental calibration of non-linear system response (digital output as function of charge collected in DEPFET) of prototype DSSC system (pxd-7 DEPFET and MM2 ASIC)
- Experimental study of calibration properties of new (improved) MM3 ASIC prototype





#### **Definition**:

#### DSSC prototype = pxd-7 prototype + ASIC prototype

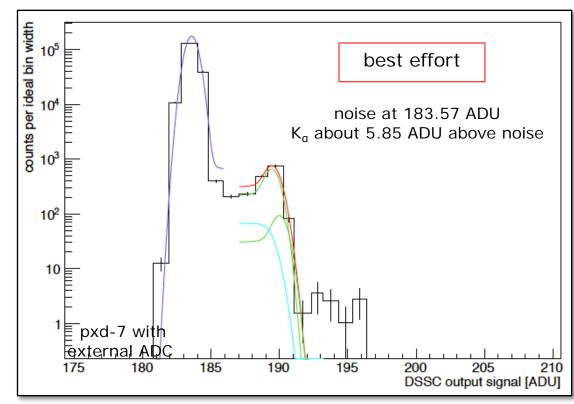







#### Some MM2 ASIC caveats:

- not all functionalities of final ASIC available in MM2
- some implemented functionalities are limited (e.g. dynamic range)
- ADC with known (and corrected in MM3) deficiencies
  - backward counting
  - o DNL



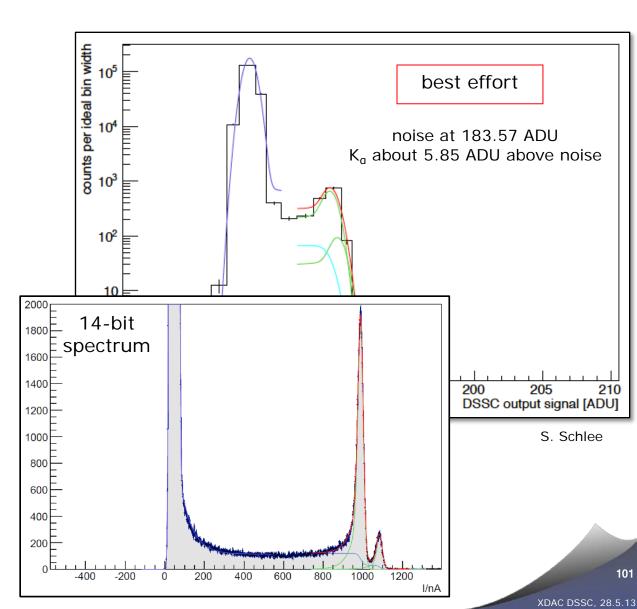





#### First step: single photon counting

- set ASIC offset and gain to count photons of given energy
- offset & gain: <sup>55</sup>Fe (noise & X-ray lines)
- fit of <sup>55</sup>Fe spectrum: spectral model from high resolution 14-bit spectra
- best setting from grid search
- so far: calibration for 1 keV photons



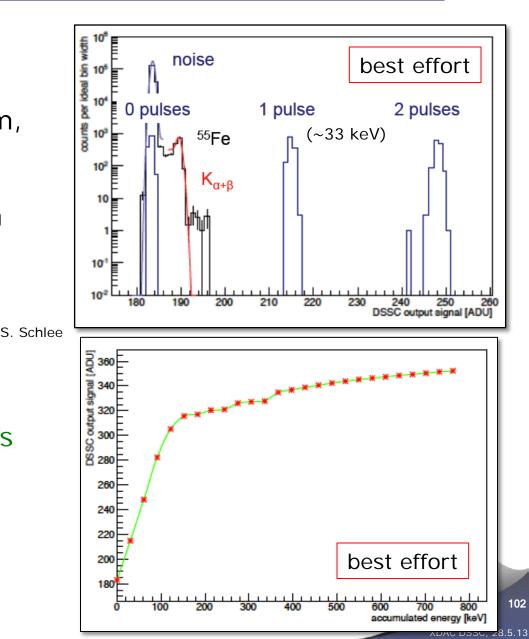

S. Schlee





#### First step: single photon counting

- set ASIC offset and gain to count photons of given energy
- offset & gain: <sup>55</sup>Fe (noise & X-ray lines)
- fit of <sup>55</sup>Fe spectrum: spectral model from high resolution 14-bit spectra
- best setting from grid search
- so far: calibration for 1 keV photons






#### European XFEL

#### Second step: non-linear region

- scan dynamic range of system, linear and non-linear region, by pulsed charge injection
- used internal charge injection via inner substrate contact
- calibrate charge injected per pulse by comparison to <sup>55</sup>Fe signal
- ⇒ non-linear system response (NLSR), i.e. digital output as function of input charge (or equivalent energy)







#### Next steps:

- repeat using new (improved) set-up with MM3 ASIC prototype
- simultaneous calibration of all 7 pxd-7 pixels with MM3
- calibrate single pxd-8 pixel with MM3

103



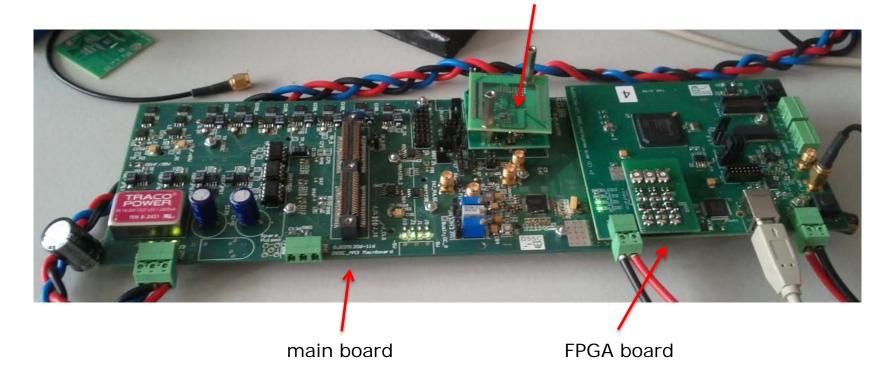


#### **Studied properties include:**

- accuracy of ADC bin boundary determination
- ADC functionalities for fine tuning offset and gain
- gain dependence on front end filter integration time
- gain dependence on ADC sample-and-hold capacitance
- pulsed charge injection
- measurement of <sup>55</sup>Fe spectra

• ...

Calibration strategy depends on ASIC calibration properties...


104

XDAC DSSC.



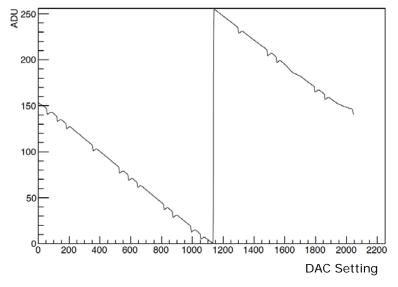


MM3 ASIC (below cover)



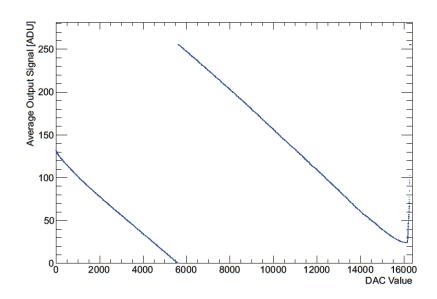
Until recently, set-up(s) still at Mannheim University for testing, optimization, operation and documentation.

Since two weeks: set-up and MM3 ASIC operated at HLL.






#### MM3:


ADC characteristic not always
 monotonous

**MM2**:



- all channels: ADC with GCC
- limited settings for offset and gain

• monotonous ADC characteristic



- 50/50: channels with GCC and in-pixel counter
  - settings for offset and gain close to final

⇒ MM3 significant improvement⇒ more accurate calibration tests





- measurement procedures and data formats established
- calibration software updated
- work in progress:

optimization of set-up and MM3 ASIC operation

#### Next step:

systematic and detailed study of calibration properties

XDAC DSSC. 28.5





# BACKUP SLIDES

108





#### Only to MB frame, EXCLUDING inaccuracies in glued assembly

- Single Ladder (relative to drawings):
  - Maximum error in X (cooling block to MB Frame) ~ 24 um
  - Maximum error in Y (cooling block to MB Frame) ~ 36 um
  - Expect ~ 20 um or so error in a single ladder's position
- Ladder-to-Ladder:
  - Expect ~40 um or so error ladder-to-ladder
- The above values are for initial assembly, and valid at RT.
- Repeat assembly FROM IDENTICAL PARTS is better, for single ladder
  - Maximum error in X given as 4 um, maximum error in Y given as 16 um
  - Expect ~ 10 um or so deviation from previous position in a single remounted ladder





#### Only to MB frame, EXCLUDING inaccuracies in glued assembly

"z variation" = deviation from drawings

For the fixed hole versions, the measures stop at the common mounting plate for the full 1M system. For the variable hole versions, we assume the mounting fixtures for the first part of the XY translation systems are perfect in space.

• 1<sup>st</sup> Generation, fixed hole:

z variations 70 micrometers (20 of which from non-planarities of the back mounting plate, so adjacent ladders would see similar situation)

o 1<sup>st</sup> Generation, variable hole:

z variations max. 110 micrometers, 60 of which would be common to the 4 ladders making up one quadrant.

- 2<sup>nd</sup> Generation, fixed hole: z variations max. 50 micrometers (20 of which from non-planarities of the back mounting plate, so adjacent ladders would see similar situation)
- 2<sup>nd</sup> Generation, variable hole:

z variations max. 80 micrometers, 60 of which would be common to the 4 ladders making up one quadrant.





Investigations of cooling path options within the vacuum chamber have commenced. At this early stage, 3 options are being considered:

1. Liquid coolant flow to a (non-moving) interface within the vacuum, rigid (fixed-hole) or braided (movable quadrants) Cu paths to the cooling blocks.

To achieve reasonable heat transfer, for a flexible solution on the order of 20 1.5cm-diameter Cu braids would be required per quadrant.

- Liquid coolant flow to a "cooling end piece" inside the vacuum, requiring flexible hoses inside the vacuum in case of movable quadrants. This "end piece" is then attached to the cooling block.
- 3. Liquid coolant perfusion of the cooling block itself.

This should give best temperature uniformity at the sensor, but also requires added complexity of the cooling block itself and may well require flexible hoses even for a fixed-hole solution.

111

XDAC DSSC



### Current baseline acquired: JULABO FPW91-SL + Pump upgrade

- Cooling bath design (slow but stable)
- 2.7 kW cooling power at -40° C
- 1.5 kW cooling power at -60° C
- 350 W at -80° C
- Up to 3 bar pressure / 30 l/min (upgraded)
- Compact design (85x76x116 cm)
- 320 kg (empty, 22l coolant volume)
- PDMS (silicone oil) coolant
- Power consumption ~13 kW plant, ~1 kW pump -> about 1.1 kW dissipated to air, rest to cooling water



This cooling plant is probably overspec'd.

For first trials, shared with AGIPD.

