

Calibration Working Group and Calibration Infrastructure

Jola Sztuk-Dambietz (XFEL) on behalf of the Calibration Group

May, 27th 2013 14th Meeting of the XFEL Detector Advisory Committee European XFEL GmbH, Hamburg

Introduction

XFEL Outline

European

- Detector calibration group update
- Highlights from the last Calibration Meeting
- Infrastructure for detector calibration and tests at the XFEL status and plans
- Summary

XFEL Calibration Group – Organization

Calibration Working Group site @ Alfresco

- Alfresco (content management system) use for:
- Document management & storing
 - documents
 - engineer drawings,
 - reports
 - contracts, etc..
- Repository-level versioning
- Activities workflow

- With the second se
- Calibration site was created and access provided to calibration group members

https://docs.xfel.eu/share/page/site/calibration/dashboard

XFEL Calibration Concept & Infrastructure Requirements

- Requirements for calibration infrastructure were defined (X-ray sources, energies, intensities, etc..) \rightarrow see later in the talk
- Definition of common language (gain, QE, etc..)
- Proposal for parameters to be calibrated or characterized
- Definition of responsibilities

Final document reviewed by the detector **Consortia available on Alfresco**

uropean XFEL	European X Albert-Einste 22761 Hamb Germany	-Ray Free-Electron in-Ring 19 urg	Laser Facility Gmb	H
	REG	UIREM	IENT DO	DCUMENT
	Calik Calik	oration oration	Infrastr Concep	ructure ots
	WP-75 [Detector Dev	relopment	
	Decemb Europea	er 2012 an XEEL Gmb		
	Hambur	g, Germany	п	
	Revision 0.1 0.2 0.3 0.4 0.5 0.6	Date 30. March 2012 23. April 2012 24. April 2012 19.June 2012 05 Sep 2012 18 Sep 2012	Author J. Stui-Dambietz M. Kuster J. Stui-Dambietz M. Kuster M. Kuster	Comments Initial draft (structure of the document)
	Revision 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0	Date 30. Aero 3022 32. April 2012 32. April 2012 33. April 2012 35. April 2012 19 June 2012 05 Sep 3012 19 Get 2012 20 Oct 3012 25 Oct 3012 17 Dec 2012	Author J. Struk-Dambietz M. Kuster J. Struk-Dambietz M. Kuster J. Struk-Dambietz M. Kuster J. Struk-Dambietz J. Struk-Dambietz	Comments Initial draft (structure of the document) Revised requirement and parameter definition Revised version which includes some of the comments from the LPD (M. Hart), DS2 (G. Weidenspointner) Consortia and WP-75 group (final)
	Revision 0.1 0.2 0.3 0.4 0.5 0.7 0.8 0.9 1.0 Distribution: WP-75: A. Ko. WP76: C You	Date Dote 30. March 2012 23. April 2012 24. April 2012 28. April 2012 15 June 2012 10 Sep 2012 16 Sep 2012 12 Sep 2012 17 Dec 2012 25 Get 2012 ch, M. Kuster, M. Turcetic angmen, K. Wrong, B. He	Author J. Stuk-Dambietz M. Kuster J. Stuk-Dambietz M. Kuster J. Stuk-Dambietz J. Stuk-Dambietz J. Stuk-Dambietz J. Stuk-Dambietz S. Stuk-Dambietz, S. Ho Isere, A. Parenti	Comments Initial draft (structure of the document) Revised requirement and parameter definition Revised version which includes some of the comments from the DPI ML Harly SCG (G. Weidenspointner) Consortia and WP-75 group (final)

XFEL Calibration Group

Calibration Working Group meeting – April 2013

- Goal: Exchange information, discuss progress, next steps and open issues related to calibration
- **Participants:** Consortia, XFEL WP-75 and WP76 representatives
- Status of calibration activities in the consortia and XFEL:
- Status of the calibration activity (memory droop, non-linear gain conversion, etc..) from the detector consortia
- Potential use of proton beamline for high intensity/charge Si detector calibration
- Performance estimation for calibration processing software, Karabo release date, coding recommendations and policies
- Status of detector calibration infrastructure at the XFEL

Next meeting September/October 2013

European **XFEL** Highlights From the Last Calibration Meeting (I)

AGIPD (L. Bianco):

- Gain conversion using X-ray tube (Mo)
- Calibration using ASIC internal electrical sources proof of principle
- Work on software development for calibration is ongoing

More investigation on droop

XFEL Highlights From the Last Calibration Meeting (II)

DSSC (G. Weidenspointner):

DSSC prototype = pxd-7 prototype + ASIC prototype

Calibration of non-linear system gain (NLSG) for 1 keV photons

- Tests of calibration functionalities of MM3 ASIC prototype in progress
- Software development (Karabo-compatible) is ongoing in parallel to experiments and covers all calibration steps

XFEL Highlights From the Last Calibration Meeting (III)

LPD (M. Hart): Characterization of two-tile

Two-tile system available \rightarrow

delivered to XFEL in March

- > Fully independent standalone air cooled system
- Firmware development
- > Test bed for tile evaluation
- > Test calibration methodology
- > Analysis and control software development

Focus on beam test preparation (LCLS and PETRAIII) for May 2013 \rightarrow work in progress on the data evaluation & analysis

New firmware and software under development

LPD

• 100x

▲ 1x

Calibration of a V2 ASIC Pixel - 50pF mode

More details in the consortia talks at the general and closed sessions

XFEL Highlights From the Last Calibration Meeting (IV)

- Status of the test infrastructure at the XFEL \rightarrow see later in the talk
- Status of the XFEL software development for detector calibration (S. Hauf)
 - ➢ Work on the Karabo-framework which bundles distributed applications is ongoing → serves control framework and data analysis framework.
 - ➤ The first public Karabo release will be in summer 2013. → Karabo will be introduced within a workshop which will include user and developer training.
 - > Work on pipeline is ongoing:
 - Evaluation of different pipeline concepts (image-based, event-based, container types, concurrency models) in a minimized, controlled environment
 - The pipeline core, a mixed data-container (image + event-based), plotting and simplified I/O interface have been implemented. Dark image data can currently be processed

XFEL Highlights From the Last Calibration Meeting (V)

DEFEL (LABeC) proton beam line for silicon detector characterization (A.Castoldi)

- Motivation: calibration for high intensity regime (low gain)
- Solution: mono-energetic MeV protons \rightarrow energy \rightarrow absolute gain calibration !
- Main parameters of the facility
 - Energy 1-6 MeV
 - Position resolution of 10-100µm
 - Time resolution <1ns</p>
 - Ionization profile: from shallow (1 MeV p) to deep (6 MeV p)
 - Single shot up to 10 kHz rep rate

Target Depth

300 um

9.5 µm

uropean (FEL L	ab X-ray Source	es vs. Requiren	nents
Requirements	Radioactivie isotopes	X-ray source in DC mode	Pulsed multi- target X-ray source
Energy range 0.26 – 25 keV	Different isotopes/filters	Exchangeable X-ray tubes/filters	Anode with different target materials
 Pulsed X-rays Pulse length < 50 Δt = 220 ns or (4.5 MHz rep rate) 	ns 5		Pulsed electron source
 Intensity Adjustable 1- 10³⁻ photons/ pixel Instability < 1 % 	4	High-power micro- focusing X-ray tube	
Illumination - point-like d<= 20-50 - Line-like - Flat –field (homogein 10%)	μm pinholes, hity > collimators	Optics, pinholes, collimators	Optics, pinholes, collimators

EuXFEL WP-75 Detector Development

XFEL Modular Calibration Setup for vacuum operation

- Modular flexible device for multipurpose usage (filters, pin-holes, collimator, etc..)
- Interlock and PLC system

Housing was designed to be compliant to different types of sources and test stands

Status:

- Design of source housing ready \rightarrow production in progress
- First X-ray sources delivered to the XFEL: Fe-55 and Mini-X

\rightarrow Setup available in Summer 2013

XFEL Modular Calibration Setup for vacuum operation

- Modular flexible device for multipurpose usage (filters, pin-holes, collimator, etc..)
- Interlock and PLC system

Housing was designed to be compliant to different types of sources and test stands

Status:

- Design of source housing ready \rightarrow production in progress
- First X-ray sources delivered to the XFEL: Fe-55 and Mini-X

Manipulator Source chamber Mini-X Source holder **Filter holder**

\rightarrow Setup available in Summer 2013

→ Available in August 2013

XFEL Multi-purpose X-ray/electron Setup

Laboratory multi-purpose X-ray setup for detector characterization and calibration

- > on daily use
- use as electron source for direct electron illumination

Main components:

- Calibration source (electron or X-ray):
- X-ray optics (filters, focusing & collimating optics)

> monochromatic beam
$$\frac{\Delta E}{E} \approx 2 - 3 \cdot 10^{-2}$$

- beam spot down to 20-30μm
- collimated beam with size range from a few mm to a few cm
- Detector test chamber
- Chopper (optional)
- Reference detector \rightarrow pin diodes, SDD

Pulsed multi-target X-ray generator approach

Multi-target X-ray source

Pulse operation \rightarrow development is needed

- Design of the vacuum setup (source vessel)
- Design of the detector test chamber
- Optics, filters, chopper \rightarrow potential suppliers identified

XFEL Electron Gun for pulsed multi-target X-ray source

Discussion with Kimball Physics is ongoing \rightarrow Development is needed \rightarrow customized EGH 6210/ EGPS-6210 \rightarrow decision will be taken within next 6-8 weeks

Expected electron gun parameters (based on feasibility study from the company)

Can be operated in pulsed and DC mode

Parameter	Pulsed mode	DC mode
Electron energy Ee	1 - 50 keV (adjustable)	1- 50/60 keV (adjustable)
Electron beam current le	10μA - 20 mA (adjustable), Stability better than 1 %	10µA – 2(6)mA (adjustable), Stability better than 1 %
Beam diameter d _{beam}	0.15 – 10 mm (adjustable)	0.1-10 mm (adjustable)
Pulsed beam parameters	 Length: τ = 10-100 ns (adjustable) rise: 2 ns / fall: 3-4 ns Burst mode: rep. rate 4-5 MHz (2-10μs ON with high frequency bursts, followed by 200μs OFF gap) 	n.a.

Critical points/issues for the development

- Pulse generator which is able to produce short pulses with < 5 % jitter time
- Heat dissipation generated from 1kW beam power that will be dumped into the gun vacuum

KFEL Pulsed multi-target X-ray generator – Optics

- Polycapillary optics for wide energy range
- Potential suppliers were identified >
- Delivery time 4-6 weeks >
- Could be a full system with support \geq
- Energy range 1(3)- 30 keV and capture angle up to 0.2 rad \succ

Technical Parameters Collimating Polycapillary

		collimating large semi lens	collimating mini semi lens	collimating micro semi lens
	Source - entrance distance f, mm	> 40	> 10	> 5
2	Length L, mm	75 - 150	25 - 150	20 - 30
ופ	Entrance size D _{in} , mm	> 5	> 2	> 1
	Exit size D _{out} , mm	8 - 16	5 - 8	3 - 5
Ë	Capture angle Φ, rad	0.05 - 0.2	0.04 - 0.15	0.05 - 0.1
2	Exit divergence Δθ, ° (CuKα)	0.2 - 0.3	0.2 - 0.3	0.2 - 0.3
	Transmission coefficient K _{Tr} , % (CuKα)	10 - 60	10 - 60	10 - 60

19

Technical Parameters Focussing Polycapillary

	polycapillary large lens	polycapillary mini lens	polycapillary micro lens	
Source - entrance distance f ₁ , mm	> 40	> 40	> 30	
Length L, mm	150 – 300	50 - 300	40 - 60	
Exit - focus distance f ₂ , mm	> 40	> 10	5 - 25	
Entrance size D _{in} , mm	> 5	> 4	> 2	
Maximal size D _{max} , mm	< 16	7 - 9	4 - 5	
Exit size D _{out} , mm	> 5	> 2	> 1	
Capture angle Φ, rad	0.05 - 0.2	0.04 - 0.15	0.05 - 0.1	
Energy range, keV	1 - 30	3 - 30	3 - 30	
Optimal source size, μm	> 50	30 - 1000	30 - 50	
Focal spot size, µm	> 200	30 - 600	20 - 100	
Intensity gain	500 - 4000	1500 - 20000	1000 - 7000	

May 27th 2012, Hamburg

14th XDAC Meet..

XFEL X-ray Generator - GEANT4 Simulation

Intensity estimation using GEANT4 simulation toolkit

- Model for low energy EM-physics: Penelope (based on validation in an independent paper*)
- Simulation was done for:
- different target materials,
- different electron energies,
- different electron beam size,

20

EuXFEL WP-75 Detector Development Target material & e- energy dependences – X-ray Intensity – Bremsstrahlung

Simulation parameters:

- 40 M primary e-
- Ee = **30**,50,100 keV
- Target size: 5mmx100mm
- Target materials: C, Al, Cu, Mo, Ag, Au
- Target angle: $\alpha = 18^{\circ}$
- Spherical virtual detector → full angular range

Simulated number of Bremsstrahlung @ I_e = 20 mA & t_{pulse} = 50 ns

Target	С	AI	Cu	Мо	Ag	Au
e- energy	Z=6	Z=13	Z= 29	Z=42	Z=47	Z=79
30 keV	2.6 x 10 ⁶	4.2 x 10 ⁶	8.3 x 10 ⁶	1.1 x 10 ⁷	1.2 x 10 ⁷	1.7 x 10 ⁷
50 keV	4.7 x 10 ⁶	6.7 x 10 ⁶	1.4 x 10 ⁷	1.8 x 10 ⁷	1.9 x 10 ⁷	2.8 x 10 ⁷
100 keV	1.1 x 10 ⁷	1.4 x 10 ⁷	2.4 x 10 ⁷	3.3 x 10 ⁷	3.6 x 10 ⁷	5.4 x 10 ⁷

EuXFEL WP-75 Detector Development Target material & e- energy dependences – X-ray Intensity – Fluorescence

Simulation parameters:

- 40 M primary e-
- Ee = **30**,50,100 keV
- Target size: 5mmx100mm
- Target materials: C, Al, Cu, Mo, Ag, Au
- Target angle: $\alpha = 18^{\circ}$
- Spherical virtual detector → full angular range

Simulated number of fluorescence @ I_e = 20 mA & t_{pulse} = 50 ns

Target	С	AI	Cu	Мо	Ag	Au
e- energy	Z=6	Z=13	Z= 29	Z=42	Z=47	Z=79
30 keV	2.2 x 10 ⁷	4.3 x 10 ⁷	2.8 x 10 ⁶	1.7 x 10 ⁷	1.4 x 10 ⁷	1.0 x 10 ⁷
50 keV	1.7 x 10 ⁷	6.9 x 10 ⁷	1.2 x 10 ⁷	2.5 x 10 ⁷	2.0 x 10 ⁷	1.8 x 10 ⁷
100 keV	1.3 x 10 ⁷	9.5 x 10 ⁷	3.7 x 10 ⁷	4.5 x 10 ⁷	3.5 x 10 ⁷	3.2 x 10 ⁷

European XFEL

Intensity **estimation** based on simulation:

X-ray yield estimation for detector plane

Simulation parameters

- Ee= 50 keV
- Target: Cu 5mmx100mm
- Target angle: $\alpha = 18^{\circ}$
- Plane virtual detector
 20 cm x 20 cm x 0.5 cm
 IP detector 20 cm

Expected number of X-rays @ Ee=50keV, $I_e = 20 \text{ mA } \& t_{pulse} = 50 \text{ ns}$ 2 x 10⁶ \rightarrow 2 hits per pulse/pixel (200 µm x 200 µm) + Optics

Point-like illumination

Focusing optics (gain factor = 500 - 20000) \rightarrow > 1000 hits per pulse/pixel (200 µm x 200 µm)

Cluster illumination (~a few mm²)

- Collimating optics (gain factor > 10) \rightarrow
 - > 20 hits per pulse/pixel (200 µm x 200 µm)

XFEL Pulsed multi-target X-ray generator - schedule

	2012	2013	2014	2015	2016	2017
	Q1 Q2 Q3 Q4					
Infrastructure XFEL						
Laboratory Space	HE	RA South		Transition	Detecto	or Lab. XHQ
First Beam						

Pulsed multi-target X-ray source

Pulsed X-ray Source	
Requirements Definition	
Technical Design Report	
Components:	
Electron Source	
Anode	
Cooling	
Housing	
Optics	
Control System	
Integration	
Test chamber	
Definition	
Design	
Production/Installation	

Commissioning

EuXFEL WP-75 Detector Development

European

XFEL Pulsed multi-target X-ray generator - schedule

	2012	2013	2014	2015	2016	2017
	Q1 Q2 Q3 Q4					
Infrastructure XFEL						
Laboratory Space	HE	RA South		Transition	Detecto	or Lab. XHQ
First Beam						

Pulsed multi-target X-ray source

XFEL Summary

- Work on calibration is ongoing in the Consortia and XFEL → discussed during regular meetings
- Setup of the calibration infrastructure is ongoing → Fe-55 source and a portable X-ray tube setups will be available in Summer 2013
- Work on calibration software and simulation at the XFEL is ongoing
- X-ray generator concept being elaborated
 - \rightarrow simulation is available
 - ightarrow the potential components developers identified
 - \rightarrow TDR in preparation
- First 2D detector prototype @ XFEL
- First beam time at LCLS and PETRA

EuXFEL WP-75 Detector Development

XFEL Schedule

Calibration Infrastructure First X-ray **Requirements Definition** sources at XFEL Calib. Infrastructure at the XFEL: First Radioactive Sources Low-power X-ray Tube Setup High-power X-ray Tube Setup Multi-target X-ray Generator Setup Laser Setup Calibration Concept Data Base & Data Data Format & Data Base format ready for Data Format and Structure use Data Base Calibration Software Calibration Software XFEL Calibration Software AGIPD Def./R&D/Construction Calibration Software DSSC Integration of external sw in Calibration Software LPD Karabo started Calibration Software pn/FastCCD Ready to use Integ. of External Software in Karabo First lab. Prototype at the XFEL Lab Test Detector First lab. prototypes at the **XFEL** Commissioning

Calibration

EuXFEL WP-75 Detector Development

Backup slides

Structure of the group:

- Meetings: every 6 months
 - \rightarrow next meeting in September

29

XFEL X-ray Generator - GEANT4 Simulation

- Optimization of X-ray generator setup parameters using GEANT4 simulation*
 - ✓ target material and angles
 - filter material and thickness
 - beam current
 - geometry
- Estimation of beam intensity \succ
- Shielding definition
- Input to TDR

* Code validation based on arXiv:1205.1973

Work on simulation of X-ray source started \rightarrow first version of the software is ready

- 2-D Mpixel X-ray imaging detectors
 - High repetition rate detectors: AGIPD, DSSC, LPD

- Low repetition rate detectors: pn CCD, other CCDs
 - ..and more to come
 - ID detectors
 - Avalanche PhotoDiode (APD)
 - Silicon Drift Detector (SDD)
 - •

pn CCD

32

XFEL X-ray Generators - Requirements

X-ray source(s) for detector calibration & characterization purpose

- Photon energy: Energy range 0.2-25 keV, monochromatic
- Time structure:
 - **pulsed source** with repetition rate if possible up to 4.5MHz or at least two pulses delivered with $\Delta t=220 \text{ ns}$
 - short pulses < 50 ns
- Adjustable and stable intensity (1ph/pixel/pulse 10⁴ph/pixel/pulse)
- Two types of **illumination**:
 - **point-like illumination** (ideal case: possibility for one pixel illumination)
 - flat field illumination with homogeneity of the order of 10% (ideal case: size of the flat field compatible with the size of the full detector module: 20x20cm, or as large as possible)
- Well calibrated reference detector
- Vacuum/ambient compatibility

33

Anode with different materials coated/deposited on it

XFEL Pulsed multi-target X-ray generator – anode

Targ	et material	Emission Line Energy [keV]							
z	Symbol	K _{a1}	K _{a2}	K _{b1}	L _{a1}	L _{a2}	L _{b1}		
6	С	0.277							
12	Mg	1.25	1.25	1.30					
13	AI	1.49	1.49	1.56					
8 14	O Si	0.525 1.74	1.74	1.84					
22	Ti	4.51	4.50	4.93	0.452	0.452	0.458		
24	Cr	5.41	5.41	5.95	0.573	0.573	0.583		
26	Fe	6.40	6.39	7.06	0.705	0.705	0.719		
27	Со	6.93	6.92	7.65	0.776	0.776	0.791		
28	Ni	7.48	7.46	8.26	0.852	0.852	0.868		
29	Cu	8.045	8.027	8.905	0.929	0.929	0.950		
42	Мо	17.48	17.38	19.61	2.29	2.29	2.39		
47	Ag	22.16	21.99	24.94	2.98	2.98	3.15		
74	W	59.32	57.98	67.24	8.40	8.36	9.67		
79	Au	68.80	66.99	77.98	9.71	9.63	11.44		
	Makrolon	0.52	0.68	0.93	1.25	1.49	1.74		
	(ceramics)	2.62	3.31	3.59	6.40	7.06	8.04		

- Potential company which could design and deliver such kind of anode with most of the materials from the list was identified
 - Open points
 - → Heat load → Input from
 Kimball is needed
- Self-made anode

European

Kimball Electron guns – Pulsing

 Dual grid pulsing option, there are two grid power supplies built into the main power supply. A pulsing TTL (transistor-transistor-logic) signal switches rapidly between the two supplies, pulsing the beam on and off.

Beam blanking is a different type of pulsing that does not rely on grid cut-off and is used in some high current guns. Blanking deflects the electron beam to one side of the gun tube to interrupt the flow of electrons to the target without actually turning off the beam.

Efficiency of X-ray production ~ 0.2- 1.8 %

European

YEE

EuXFEL WP-75 Detector Development **Target material & e- energy dependences** – **X-ray angles** - θ

C@ 100kV 2.340e+04

Al @ 100kV 1.096e+05

Cu @ 100kV 6.140e+04

Mo @ 100kV 7.797e+04 Ag @ 100kV 7.094e+04 Au @ 100kV 8.562e+04

-100

Couts/mA*ns (all <u>X</u>-rays) 00

500

Ee=100 keV

100

foed) A

0

Simulation parameters

- 40 M primary e-
- Ee = 30,50,100 keV
- Target size: 5mmx100mm
- Target materials: C, Al, Cu, Mo, Ag, Au
- Target angle: α =18°
- Spherical virtual detector → full angular range

Couts/mA*ns (eBrem)

60

EuXFEL WP-75 Detector Development Target material & e- energy dependences – X-ray angles - ϕ

Couts/mA*ns (eBrem) 00 00

100

C @ 100kV 1.090e+04 Al @ 100kV 1.404e+04

Cu @ 100kV 2.448e+04 Mo @ 100kV 3.340e+04

Ag @ 100kV 3.643e+04 Au @ 100kV 5.356e+04

Ee=100 keV

Simulation parameters

- 40 M primary e-
- Ee = 30,50,100 keV
- Target size: 5mmx100mm
- Target materials: C, Al, Cu, Mo, Ag, Au
- Target angle: $\alpha = 18^{\circ}$
- Spherical virtual detector \rightarrow full angular range

