Thoughts on Thermal Contact Resistance

Andreas Mussgiller

Tracker Upgrade Meeting 26/04/2013

Introduction

- so far only the actual module was modeled in FEA
- heat transfer from module to cooling blocks needs to be added
 - optimization of bridge and module side cooling contact alone might lead to the wrong conclusions
 - what is the best geometry when looking at the full picture
 - what heat transfer coefficient should be assumed / is achievable

Thermal Contact Resistance

thermal contact conductance can be approximated by (Yovanovich and others)

contact

$$h_c = 1.25\lambda_s \frac{m}{\sigma} (p/H_c)^{0.95}$$
$$\lambda_s = 2\lambda_1 \lambda_2 / (\lambda_1 + \lambda_2)$$

p	pressure
σ	effective RMS surface roughness
m	effective mean absolute asperity slope
H_c	surface microhardness
λ_s	harmonic mean thermal conductivity of interface
Y	effective gap thickness
M	gas parameter

Thermal Contact Resistance - Al-Al-Interface

- effective RMS surface roughness σ and surface microhardness H_c are fit parameters
- > fit is not really good → will use fit and interpolation in the following

Estimates for Module to Cooling Block Heat Transfer

- module is mounted with a M1.4 screw
 - slope 0.3mm per turn
- > screw is tightened with 1000 g x cm torque
 - 90% of torque is lost due to friction (40% in thread, 50% under head)

$$\tau \cdot 2\pi \cdot 0.1 = F \cdot 0.3 \text{ mm}$$
 $F = \frac{\tau \cdot 2\pi \cdot 0.1}{0.3 \text{ mm}} = 205 \text{ N}$

- module is mounted with a assumption: force is applied homogeneously to contact surface (circular shape)
 - has to be ensured by spring washer etc.

Estimates for Module to Cooling Block Heat Transfer

- (a) for a given torque/force contact pressure is calculated
- **(b)** thermal contact resistance R is taken from fit and interpolation for calculated contact pressure
- (c) temperature gradient of interface is calculated from R and contact area $\Delta T = R / A$
 - only weak dependence of ∆T on contact diameter/area present
- benefit of increasing the contact surface is negligible (for medium and smooth surface)

Temperature Gradient [K/W]

Summary

- when looking at the module alone a large cooling contact seems to be the best choice
- with respect to the heat transfer we do not benefit from the larger surface
 - in fact, ensuring an efficient usage of the contact surface will be become tricky for larger contact areas
- > increasing the force will not change the result
 - in any case we have to make sure that 3 out of 4 contacts can slide

