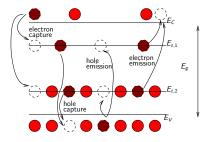
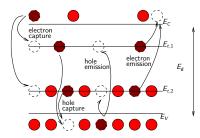
Recombination Processes in Diamond Steps towards a description of long-time trapping

Jannis Fischer

DESY Zeuthen

April 15th, 2013

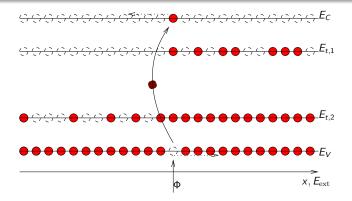




3 Recombination: Unirradiated Diamond

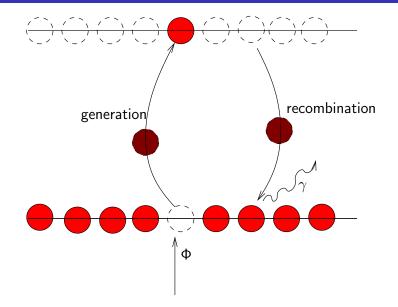
- Need long time space charge for build up of electric field \Rightarrow Traps
- Statistics of filled traps usally described by Shockley-Read-Hall statistics
- Much depends on energy level of trap within bandgap

Recombination mechanisms Shockley-Read-Hall (Phonon)

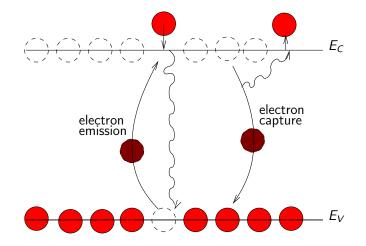

Note:

- Levels below *E_F* are filled with electrons in the neutral crystal
- Position in bandgap determines which carrier type is trapped
- Recombination most probable at mid-bandgap
- Else: trapping of charges
- Depth of trap determines lifetime of trapped carriers: Carriers in shallow traps can easily be thermally rexcited.

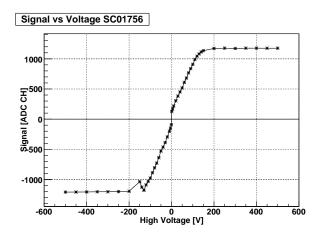
Recombination mechanisms Shockley-Read-Hall: Polarization


Hypothesis

Polarization is a result from filled deep traps. Deep means around $E_V + \frac{1}{4}E_g$ or $E_C - \frac{1}{4}E_g$. Carriers trapped in mid-bandgap will most likely recombine. Carriers trapped closer to E_C or E_V will be thermally released in short time.



Recombination mechanisms


Direct Recombination (Photon)

Energy/momentum is transferred to third particle (also possible for holes)

- Wide-bandgap (diamond): n, p usually small
- Thus, SRH should dominate

- What happens before saturation? \rightarrow recombination
- $\bullet~$ But it's undamaged...still SRH? $\rightarrow~$ traps in undamaged crystal?

Recombination Unirradiated Diamond

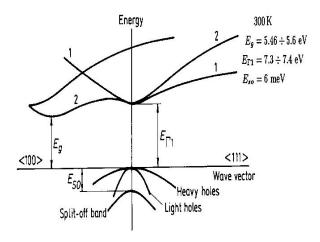


Figure: from: New Semiconductor Materials. Characteristics and Properties, http://www.ioffe.ru/SVA/NSM/

Recombination Unirradiated Diamond

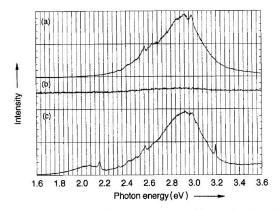


Fig. 12. CL spectra of (a) as-deposited sample, (b) as-implanted sample, (c) as-H $_2$ plasma annealed sample

Figure: H. Yagzu, phys. stat. sol. (a) 154, 305 (1996)

Recombination Unirradiated Diamond

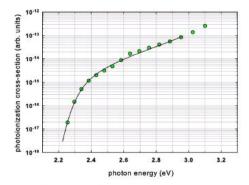


FIG. 5. (Color online) Photoionization cross-section by the dominant deep defect measured using the method described in the text.

Figure: Isberg, J. and Tajani, A. and Twitchen, D. J., Phys. Rev. B 73, 245207 (2006)

- Which recombination mechanism to implement?
- What measurements possible?
- \bullet SRH: nice because describes trapping \rightarrow polarization. If not, what else?
- Optical, Auger recombination negligible?