Diagnostics Use Case Examples in different form factors - MTCA.4, ATCA and PXIe

Stefan Simrock, ITER

Outline

- ITER Control System Overview
- Instrumentation Needs
- Fast Controller Standards
- Diagnostics Use Case Examples
- Needs from Industry

- The objective of the ITER project is to demonstrate the feasibility of commercial production of fusion energy
- ITER is based on magnetic confinement of the plasma using a "Tokamak" as opposed to inertial confinement
- ITER is an international project with seven members (China, Europe, India, Japan, Korea, Russia and USA)
- ITER is based on IN-KIND procurement arrangements, where the members mainly provide systems/components, not money

ITER Control System Overview

Control System Overview

Central I&C

Plant system I&C

Network Interfaces

- ✓ Plant Operation Network (PON): Industrial Ethernet
- ✓ Synchronous Databus Network (SDN): UDP multicast on 10 Gb Ethernet
- ✓ Time Communication Network (TCN): PTP, IEEE 1588
- ✓ Audio-Video Network (AVN): 10 Gb Ethernet
- ✓ Data Archiving Network (DAN): 10 Gb Ethernet
- ✓ Central Interlock Network (CIN): Industrial Ethernet
- ✓ Central Safety Network (CSN): Industrial Ethernet + Hard Wires

Fast Controller Standard

Different Grades of Fast Controllers

High Demands on Instrumentation and Controls for ITER:

- 1. High Performance DAQ (ADC, Camera)
- 2. Data Processing (FPGA, CPU, GPU)
- 3. Data Streaming (Real-time, Archiving)

- ~ 15.000 channels
- ~ Gigaflops
- ~ 1ms , ~ 100 GB/sec

Demonstrated industrially available solutions:

PXIe MTCA.4 ATCA

Main Challenge: Integration

1 & C DAQ Perf. Grade DAQ PCIe - MTCA.4/µRTM ATCA w/ Extns. for PCIe - PXIe I/O Interconnect **Physics** Technology PCIe - PXIe I/O PCIe - cRIO I/O (product range coverage) Demanding Slow Controller Fast Control Diagnostics Diagnostics, I&C and **Data Acquisition** (PLC) I&C I&C and Interlock tasks application (ex. Magnetics) Interlock (ex. Plasma Control range (ex. ICH) System) Control loop frequency, Processing power Network capacity, Real-time constraints, Complexity, Price, Availability

Fast Controller Boards

- IO chassis (~12 slot)
- PCle-uplink
- Power supply
- MCH
- ADC 1 (32 ch.,1 MHz, 18-bit):
- ADC 2 (16 ch., 10 MHz, 16-bit)
- ADC 3 (10 ch. 100/250 MHz, 16-bit)
- ADC 4 (4 ch., 1-2 GS/s, 12/14-bit)

- CAM 1 (Camera-link)
- CAM 2 (Coax-press)
- CAM 3 (Other)
- TCN (IEEE1588)
- Other
 - FMC carrier / modules
 - RTM (pre-amp, chopper, downconverter, VM)

Examples from Catalog (1)

5.1 I&C Grade PICMG 1.3 PC 4U Computer

Manufacturer's Reference	Short Form Description	ITER Reference and Datasheets
ID01549-A-001/ITER	PICMG 1.3 (PCIe 3.0), 2 x Xeon = 8 cores, 8 GB DRAM, 2xSSD(RAID-1)	BKLT5Z
ID01549-B-001/ITER	Same as above but with 16 GB + NVIDIA Quatro 400 GPU + Drive bay (w/o extra disks)	

Support	SOFTWARE	SIG.IF	CABLE	THERM	RELBTY	MAGFLD	RADFLD
Availability	CCS	N/R	N/R	PLAN	PCDH	PLAN	N/R

5.2 DAQ Grade PICMG 1.3 PC 4U Computer

Manufacturer's Reference	Description	ITER Reference and Datasheets
ID01550-A-001/ITER	PICMG 1.3 (PCIe 3.0), 2 x Xeon = 16 cores, 24 GB DRAM, 2xSSD(RAID-1)	BNXX8V
ID01550-B-001/ITER	as above but 32 GB + NVIDIA GTX680GPU(Kepler)	

Support	SOFTWARE	SIG.IF	CABLE	THERM	RELBTY	MAGFLD	RADFLD
Availability	CCS	N/R	N/R	PLAN	PCDH	PLAN	N/R

Examples from Catalog (6)

8.4 DAQ Grade MTCA.4 I/O Boards and Bundles

Manufacturer's Reference	Description	ITER Reference and Datasheets
SIS8300 04075 / SIS8900	10 x AI (16-bit) 125 MS/s	C8TB4C
	w/ single-ended RTM-module	
ADQ412-3G-MTCA	2/4 x AI (12-bit) 3.6 GS/s	
	2 GHz	
SIS8300 04075 / RTM 7201	10 x Al (16-bit) 125 MS/s	
	10 kHz – 1 MHz Chopper Integrator	
	4 channels ±5V / ±50V (50 ms)	
	1 kΩ, int.error < 200μVs / 1000 s	
TAMC640-12R / FMC-200	FPGA / Image Acquisition Bundle	
	Camera Link (7.14 Gb/s)	
	85 MHz pixel clock	

+

Support	SOFTWARE	SIG.IF	CABLE	THERM	RELBTY	MAGFLD	RADFLD
Availability	ALPHA	PCDH	PCDH	PCDH	PCDH	PCDH	PLAN

Standardization of Device Support

Nominal Device Support (NDS)

 A C++ "base class" from which device-specific drivers are to be derived

- Templates
 - makeBaseApp.pl
 - EPICS database
 - Example device driver
- Documentation
 - User's manual
 - Test plan
- Based on the C++ asynPortDriver

Instrumentation Needs

Scientific computing for ITER Operation

Diagnostics Type	Data Acquisition ADC / Camera	Data Rate for Archiving	Signal Processing complexity / resource	Algorithms
Magnetics	(0.1 – 1) MS/s	Moderate	Moderate, FPGA, CPU	Integrators, Magnetic reconstruction
Neutronics	100 Ms/s	Medium	Medium, distributed, FPGA, CPU	Pulse analysis
Optical	1 GS/s	High (peak)	Medium, FPGA, CPU	Pulse analysis
Optical Spectrometers	1 Mpixel (50 Hz)	High	Medium, FPGA, CPU	Spectral analysis
Microwave systems	1 GS/s	High (peak)	High, FPGA, CPU, GPU	Complex filtering, Bottollier-Curtet
Imaging systems	1 Mpixel (1 kHz)	High	High, FPGA, CPU, GPU	compression, reflection removal, event detection

Basic Diagnostic Needs for I&C

- Data Acquisition
 - 1 MS/s ADCs (16+ bit resolution, 10 ch.)
 - 10 MS/s ADCs (16+ bit resolution, 10 ch.)
 - 100 MS/s ADCs (14+ bit resolution, 10 ch.)
 - 1 GS/s (12 bit resolution, 4 ch.)
 - (Digital) Frame Grabber for Cameras (full CameraLink)
- Signal Processing
 - FPGA
 - DSP
 - CPU
 - GPU
- Communication Links
 - PCI express (PCIe)
 - Gigabit Ethernet (GbE)

Note: Covers most diagnostics fast controller needs

Summary of ITER Fast Controller Needs

- ~15000 fast ADC (1 MS/s 1 GS/s) channels
- ~ 300 camera interfaces
- ~ 10000 digital IO
- ~ 500 timing receivers
- ~ 250 real-time network interfaces
- ~ 250 archiving network interfaces
- FPGA, GPU and CPU processing of data
- ~ 500 IO chassis with PCIe uplink to external CPU
- Formfactor PXIe, ATCA, MTCA.4
- Installed in ~ 350 racks in diagnostics building

Note: For slow IO (< 100 Hz) needs ITER will use Siemens S7 PLCs. However some channels will be implemented in fast controller for cost optimisation

Diagnostic Use Case Examples

Background of Diagnostics I&C Use Case Example

Why Diagnostic I&C Use Case Examples:

- 1. Produced on demand by DAs for examples
- Provide incentives to follow PCDH by simplifying work from design to commissioning i.e. reduce cost).
- 3. Verify I&C can be be implemented in PCDH standards.

Note: Basic functionality represents only a fraction of each diagnostics I&C.

Benefits:

- The diagnostics use case examples provide a framework in which domestic agencies can immediately start deploying their applications
- Examples cover basic functions of many plant systems.
- Demonstrate usage of components from fast controller catalog using supporting software.
- 4. Documentation templates provided. .

Products:

Documentation Products:

- System Requirement Specification (SRS)
- System Design Specification (SDS)
- System Manufacturing Specification (SMS)
- System Test Plan/Reports (STP)
- System Operation / Maintenance Manual (OMM)
- Diagrams in DB based repository

HW and SW Products:

- Complete working example system with basic functions.
- HW in fast controller catalog
- SW in SVN: Linux Driver and EPICS device support
- Automation (PSOS, COS)
- Network Interfaces (TCN, DAN, SDN...)

Design Deliverables for Plant I&C

Selection of Use Cases

- Neutronics Diagnostics (MFC)
- Image acquisition (VIS/IR)
- Microwave Reflectometry
- Magnetics Integrator

100 MHz ADC
Mpixel / kHz framerate
1-2 GS/s ADC
Signal Conditioning

Estimate of ADC channels and Data

Estimate of Cameras and Data

MFC - SRS Example

MFC - SDS Example

Implementation

Cubicles in Technical Room

Imaging Diagnostics UC

Imaging Diagnostics UC

Imaging Diagnostics UC

Neutronic Diagnostics UC

Neutronic Diagnostics UC

NDS RIO device function implementation

Function Description	NDM Function	Implemented	Notes
Get device state	getState	No	
Read FlexRIO temperat		Yes	Board temperature in Celsius Deg
ure sensor			
Read serial number	getSerial	Yes	String with FlexRIO card SN and and FAM SN
Read Hardware Revision	getHardwareRevision	Yes	FlexRIO Firmware identification label
Read firmware version	getFirmwareVersion	Yes	Mayor and minor number version of LabVIEW VI for programming the FPGA
Read Software verison	getSoftwareVersion	Yes	String with mayor and minor identificatio of NDS RI O (1.0)
Read input coupling	setCoupling	Yes	NI 5761 could be AC or DC coupled. Products with different part numbers, software cannot det ect this.
Read channel state	setChannelState	No	
Set/Read sample rate	setClockFrequency	Yes	Same rate for 4 AI channels
Configure trigger		No	Digital trigger (start trigger)
Configure filter	setFilter	No	3 dB point, lowpass filter only
Calculate mean		No	
Read raw data	getBuffer	Yes	Waveforms PVs for 4 analog inputs channels
Start point		No	
Number of elements	BufferSize	No	Set the NELM field. Now, constant to 4096
Set decimation factor	setDecimationFactor	Yes	

NDS RIO device function implementation

Function Description	NDM Function	Implemented	Notes
Read events/s	N/A		Every 1 ms – Various counting mod es
Read events/s array	N/A		1000 values every 1 s - Various counting modes
Read calibrated count s/s	getValueInt32	Yes	Pulses detected in 1 ms
Read calibrated count s/s array	N/A		1000 values every 1 s - Various counting modes
Read (electronic) cali brated counts/s	N/A		Every 1 ms – Various counting mod es
Read (electronic) cali brated counts/s array	N/A		1000 values every 1 s - Various counting modes
Read (energy) calibrat ed counts/s	N/A		Every 1 ms – Various counting mod es
Read (energy) calibrat ed counts/s array	N/A		1000 values every 1 s - Various counting modes
Provide calibration constants to FPGA	N/A		Various counting modes

Using NDS in Neutronic Diagnostics Use Case

- NI FPGA design v1.0
- Starting NDS RIO:
 - EPICS st.cmd:
 - ndsCreateDevice "ndsRIO", "RIO0", "N_AI=4,N_AO=0,N_DI=0,N_DO=0,N_DIO=0,N_auxDI=3, N_auxDO=3, N_auxAI=1, N_auxAO=2, RIOMODEL=PXIe-7966R, RIOSERIAL=0177A2AD, RIOVI=TESTCOUNTMFCV2"
- Test signal applied to AI0 (NI5761)

Generated with NI PXIe 5442 (62.5MS/s)

21 pulses/1 ms

US

ms

Neutronic Diagnostics UC

What Industry must provide

- Commercially available hardware
- Linux Driver (with function required by diagnostics)
- EPICS Device support (according to NDS)
- Help Desk (all IO countries, all languages)
- Marketing in domestic agencies
- Alternative solutions
- Good documentation
- Compliance with standards

Ability to deliver integrated systems with CODAC Core System and use case examples installed and tested

Summary

- ITER's instrumentation needs are identified
 - Data acquisition
 - Data Processing
 - Real time control
 - Data Streaming
- Most fast controllers are required by diagnostics
- PXIe, ATCA, MTCA.4 platform technically adequate for these needs
- Diagnostics use case implementation help to promote the standards
- Commercial availability of MTCA.4 still limited
- Only minimal software support

Back-up Slides

Fast Controller Catalog – New items needed

Fast Controller Catalog – Total Cost of Ownership

