Status of MTCA.4 Standards & SLAC Overview

2nd MTCA.4 Workshop for Industry & Research Ray Larsen SLAC National Accelerator Laboratory December 11, 2013

DESY 2nd MTCA.4 Workshop

Outline

- I. Brief Status of MTCA.4 Standards, Guidelines, Roadmaps, New Tasks
- II. SLAC MTCA.4 New Developments & Goals
- III. Conclusion
- IV. Acknowledgments
- V. Appendix: Additional Slides

I. Status – xTCA for Physics TC's

- Technical Committees: (KAVI PICMG members website)
 - Physics Timing & Synchronization (HWG)
 - R. Downing, D. Somes, V. Pavlicek
 - Software Architecture & Protocols (SWG)
 - S. Simrock, A. Lowell, Zhen'An Liu
 - xTCA for Physics (CC, Coordinating Committee)
 - R. Larsen
 - New: Physics xTCA for Physics Roadmap Group (PICMG request)
 - R. Larsen
- Workshops
 - 2007 (FNAL), 2008 (NSS-MIC Dresden), 2009 (IHEP Beijing), 2010 (Real Time IPFN Lisbon), 2011 (NSS-MIC Valencia), 2012 (DESY MTCAWS 1), 2013 (DESY MTCAWS 2), 2014 (Real Time Nara Japan)

DESY 2nd MTCA.4 Workshop

Technical Committees (WGs)

- Original Goals: Extend PICMG Standards
 - ATCA RTM Standard: PICMG 3.8
 - ATCA Clocks, Gates & Trigger Guideline: PDG0 R09
 - MTCA Rear I/O & Precision Timing: MTCA.4
 - Develop guidelines for Software-Firmware systems

• Progress

- 2 Standards, completed, reviewed, issued in 2011
- Design Guide ATCA clocks, gates triggers in 2013
- HW Group finished Statement of Work; new group & SOW needed
- Significant progress on SW Guidelines; none issued to date
- SW now urgent to achieve interoperability goals See Talk 44

WIP

*MTCA.4 *PICMG 3.8 *PDG 0 R09

Advanced TCA®		
PICMG® 3.8 Draft 1.0k for Revision 1.0	Micro TCA TM	
AdvancedTCA Rear Transition Module Zone 3A	PICMG® Specification MTCA.4 R 1.0 Draft 0.9xi	Physics Design Guide
26 July 2011	MicroTCA Enhancements for Rear I/O and	for Clocks, Gates & Triggers in
PICMG	Precision Timing 18 July 2011	Instrumentation
Open Modular	For Member Review Only - Do Not Claim Compliance To or Distribute This Draft Specification	22 March 2013
Computing Specifications		
	Open Modular Computing Specifications	PICMG
		NOTE: This Design Guide is not a specification. It is intended to aid in using PICMG specifications to implement systems used in Physics research apparatus and machine control.

--Available from <u>www.picmg.com</u> (free copies for members)

Dec 11, 2013 DESY 2nd MTCA.4 Workshop

xTCA Software Extensions for Physics

- Committee Purpose:
 - Facilitate inter-operability/interchangeability between facilities and projects
 - Facilitate availability of COTS solutions, interoperability at applications level
 - Reduce software development time and cost
- Goals:
 - Define common techniques, interfaces, and modules for software development
 - Create guidelines and examples for those who must create/interact with module management software to make as easy as possible
 - Extend some standardization into the application space
- Status
 - See presentation 44, A. Lowell and D. Makowski, 17:30 Dec 12/13.

DESY 2nd MTCA.4 Workshop

Roadmaps – New Hardware Goals

- µRTM Interface management, I/O standards
 - Basic RTM IPMI, power interface defined but raise new management issues to be solved
 - Standardizing I/O connectivity for classes of modules, e.g. ADC-DAC, generic FPGA, for various adapter modules
 - Achieve complete interface *interoperability* between labs designs, vendor AMCs & RTMs
- Major Goals
 - Simplification of user implementation of IPMI interface with standard *Reference Designs, I/O configuration, COTS availability*
- Interoperability
 - Achieve highest level of AMC-RTM interface standardization for most successful lab-industry interoperable products
 - Interface standardization does not compromise Intellectual Property of core vendor products (min. 2 COTS sources of key products PICMG rule)

DESY 2nd MTCA.4 Workshop

Interoperability Goals: Lab Infrastructure Workshops

- Reduce infrastructure startup complexity for all
 - Historically IPMI & Power Systems testing of COTS products
 - Heavily ATCA, AMC industry-driven
 - Success of xTCA collaboration lies in adapting IPMI as major tool; alleviating demanding startup complexity
 - New system-level collaboration needed (Rehlich-Simrock-Larsen)
- Proposed Actions xTCA Coord. Committee
 - Organize Lab-Industry Interoperability Workshops 2/yr. at Labs
 - Test COTS Physics products plus new lab designs
 - Full AMC-RTM IPMI management + clock/timing products, configurations
 - Note: Test results private to participants! (Identify, fix problems; retest; claim PICMG compatibility for products)

DESY 2nd MTCA.4 Workshop

Roadmaps – New Standards/Guidelines

- Hardware Examples
 - Basic HW reference design AMC, RTM with IPMI, FRU support
 - RF Backplane Distribution for Local Oscillator
 - RF Generator Module in Rear IO non-payload slot
 - Zone 3 I/O for Generic AMCs to Custom RTMs
 - *High speed ADC-DAC* to LLRF Down-mixer, BPM RTMs
 - FPGA to Analog Front End RTM, e.g. Toroid, Interlocks RTMs
 - Industry Pack Adapter to external Device Interface, e.g. Temperature, Digital I/O, Motor driver RTMs etc.
 - I/O standards enhance HW/SW interoperability, do not threaten proprietary core circuitry or SW.

DESY 2nd MTCA.4 Workshop

Roadmaps – SW & Protocols Guidelines

- Software Examples Pending, Proposed
 - Common Hardware API
 - Common Process Thread Model
 - Common I/O Device Model
 - Data Transport Protocol
 - Synchronization Protocol
 - Command Control Protocol
 - Component Management/Failover/Update Protocol
 - Common FPGA configuration register assignment
 - Common FPGA architecture/download protocol
 - See talk 44- Lowell/Makowski

DESY 2nd MTCA.4 Workshop

Standards Summary: Collaboration

- Hardware Rear I/O & Precision Timing
 - Basic MTCA.4 specification working well; more challenges to fully demonstrate
 - New initiatives: Per PICMG rules group needs to be reformed around new statement of work, goals
- SW Architecture & Protocols
 - Much work done but committee needs more workers to complete, consider further extensions; more labs & industry partners needed
- Collaboration Essential to Grow
 - Labs, Industry have large investment which now needs completion of original goals, new extensions
 - Committees need new people, leadership to maximize return on investment, achieve ultimate interoperability HW, SW, FW

Dec 11, 2013

DESY 2nd MTCA.4 Workshop

III. Collaboration Requirements 2

- Industry
 - Working to achieve next level of I/O compatibility at base level of IPMI interoperability mandatory
 - Compatibility at next level of RTM Zone 3 highly desirable; will increase market overall; reduce development costs for new designs
 - Standardizing I/O should not compromise vendor's Intellectual Property at embedded design or hardware device level

II. SLAC MTCA.4 Developments & Goals

DESY 2nd MTCA.4 Workshop

II. SLAC MTCA.4 Developments & Goals

- LCLS-II Injector
 - LLRF System for 6 RF Stations; 15 BPMs lab-operational
 - Program halted to switch to 1MHz CW Superconducting machine
 - Injector systems to be installed later for High Energy machine R&D, Plasma Wakefield acceleration etc.
- New Superconducting CW Linac
 - 0.5 km high power beam, 1 MHz pulse rate, 1.3 GHz RF
 - No pulsed modulators; IOT RF sources
 - LLRF controls, BPMs very similar to xFEL requirements; higher continuous data rates (MTCA.4 Backplane bandwidth ideal)
- Upgrade SLAC Legacy CAMAC Controls
 - Plans submitted to replace all legacy CAMAC in Linac with MTCA.4

DESY 2nd MTCA.4 Workshop


RTM-AMC Lab-Industry Family

A. SLAC RF RTM + Industry AMC ADC-DAC

B. SLAC BPM RTM + Industry ADC-DAC

C. Fast-Slow Interlock ADC RTM + Industry FPGA AMC

D. Industry AMC 3-Industry-Pack Adapter + Industry RTM

ATCA Summit 2012

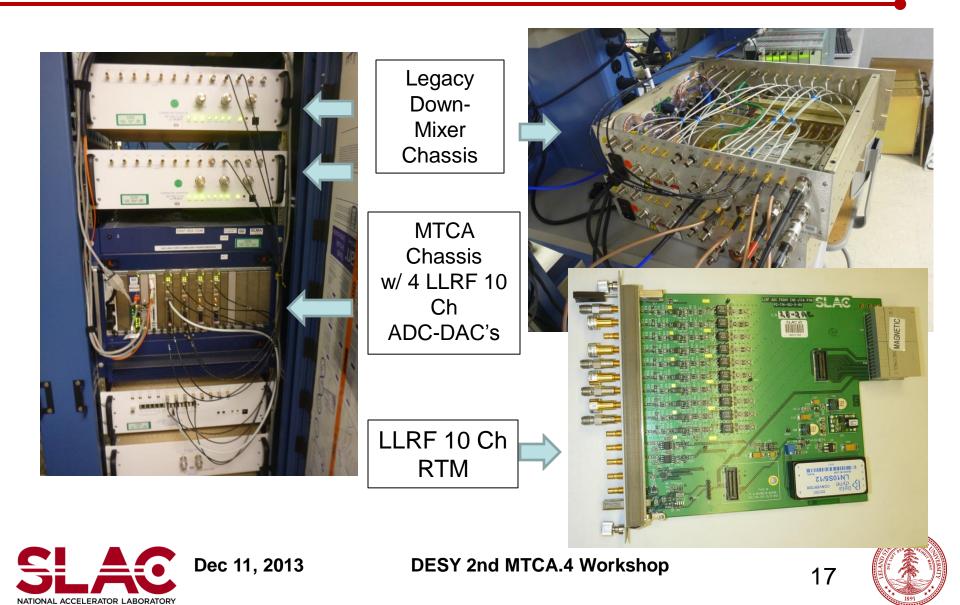
BPM Development

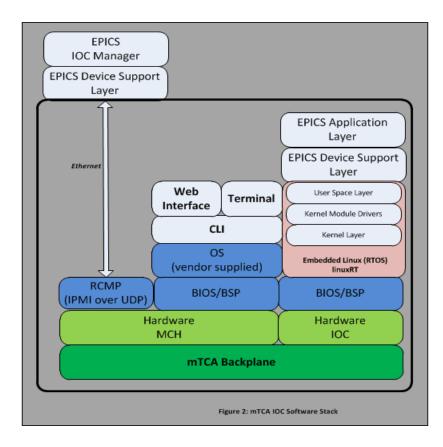
MTCA.4 12 Slot Crate 8 - SIS8300 Struck ADC-DAC AMCs 2 Crates in Injector System

Stripline BPM RTM 4 Ch gain, BP Filter, Calibration Pulser

DESY 2nd MTCA.4 Workshop

See A. Young et al Presentation


16


Dec 11, 2013

LLRF Development

SLAC Infrastructure Developments

- Major efforts on LLRF, BPMs, Infrastructure
 - Testing COTS Crates, Power & Cooling, MCH, Processors
 - Developed EPICS SW, IPMI, Firmware
 - Timing solution using DESY-Stockholm model – started testing, not yet implemented, workaround chassis for small systems to date
 - See Appendix slides for more Infrastructure details
 - Also see talk 52 on Real Time Performance of Linux-MTCA, Dec 12 1715 hrs. by K. Kim, SLAC.

DESY 2nd MTCA.4 Workshop

III. Conclusions

- Laboratory interest in MicroTCA growing
 - Architecture proven to perform well in very low noise high accuracy LLRF, BPM applications
 - Few generic modules adaptable to multiple applications
 - Several new labs planning to use, collaborating with labs leading developments
 - Industry benefiting from lab programs esp. DESY MTCAWS initiative
- Infrastructure needs more collaboration work
 - IPMI learning curve is steep; more standard solutions needed to make it easy
 - Hardware-Software-Firmware standardization key to products easily adapted and shared among labs and industry, short time to market

DESY 2nd MTCA.4 Workshop

IV. Acknowledgments

• xTCA for Physics Lab-Industry TC's

Far too many to name! Special mention to Kay Rehlich & DESY team, R. Downing, S. Simrock, Gus Lowell, Dariusz Makowski, Vince Pavlicek, Zhen'An Liu, J. Sousa, J-P Cachemiche, Industry team members from Elma, Schroff, Struck, NAT, TEWS, Hytek, Vadatech, Wiener, Telkoor, others

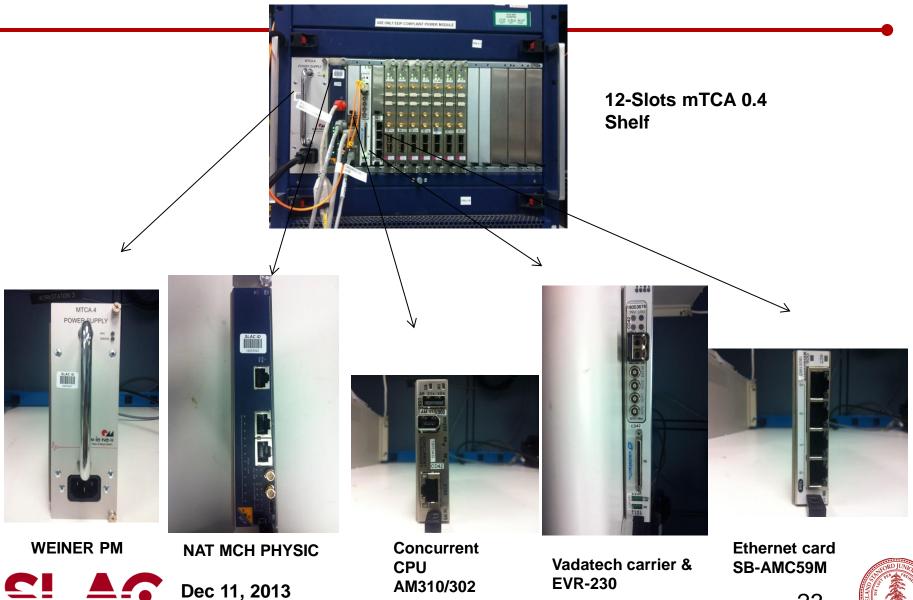
SLAC µTCA Team

D. Anderson, S. Condamoor, J. Dusatko, T. Himel, B. Hong, S. Hoobler, K. Kim, D. Rogind, T. Straumann, T. Vu, D. van Winkle, E. Williams, C. Xu, C. Yee, A. Young

DESY 2nd MTCA.4 Workshop

Appendix – Additional Slides Lab Applications & Infrastructure Examples

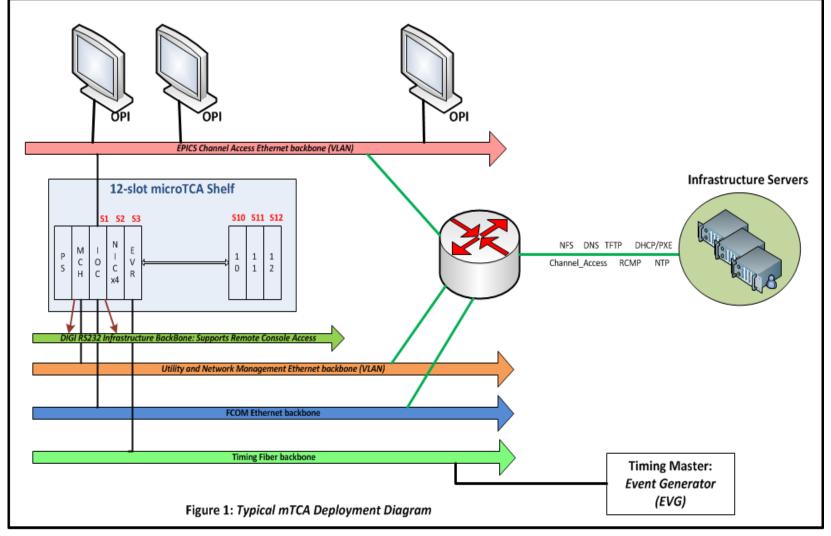
DESY 2nd MTCA.4 Workshop


Infrastructure – Hardware 1

- Hardware common to our control system platform:
 - 12-slot MTCA.4 Shelf
 - MCH
 - Power Modules
 - CPU AMC
 - QUAD Ethernet AMC
 - Timing/Event Receiver Card {on an PMC Carrier}
 - Still no timing on backplane :(

Infrastructure – Hardware 2

AM310/302

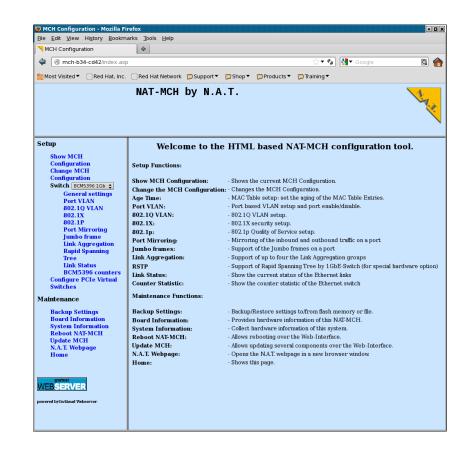

NATIONAL ACCELERATOR LABORATORY

EVR-230

Infrastructure – Hardware 3

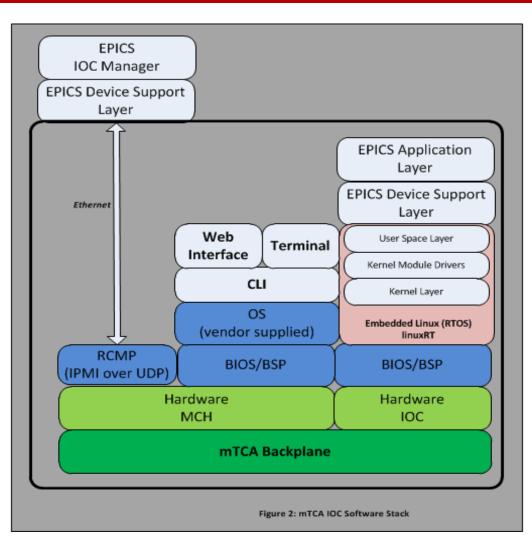
Dec 11, 2013

Infrastructure – Software 1


- Software for SLAC control system platform:
 - Real-time embedded Linux operating system
 - preempt_rt patch
 - EPICS
 - Control system applications
 - MCH Configuration software
 - Command-line tool
 - Web-based Tool.
 - Java-based viewer

Infrastructure – Software 2

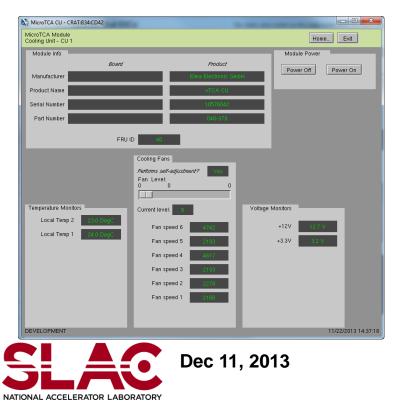
🔊 NATview 2.7	(2013/04/2	23) - Register	ed for N.A.T.	MTCA.4 Trai	ning ONLY -	please purchase v	alid license
<u>Application</u> <u>F</u>	ru <u>S</u> enso	r <u>T</u> ools <u>H</u> e	lp T <u>e</u> st				
/ 🗶 🏓) () ⁽⁾		1 🗟 🔛	🗌 Auto I	Jpdate 10	sec 🔻	
							Net a
	AMC	Struck Innovative Syst SIS8300 Struck Innovative Syst SIS8300	Struck Innovative Syst 3158300 Struck Innovative Syst 3158300	Struck Innovative Syst 3158300 Struck Innovative Syst 3158300	Struck Innovative Syst 3158300 Struck Innovative Syst 3158300		
 Resources [003] N.A.T. [005] Concur 	rent Tech						
 ► [006] VadaTe ► [007] Struck ► [008] Struck 	Innovativ Innovativ	e Systen					
 ▶ [009] Struck ▶ [010] Struck ▶ [011] Struck ▶ [012] Struck 	Innovativ Innovativ	e Sýsten e Systen					
 ▶ [013] Struck ▶ [014] Struck ▶ [040] Cooline 	Innovativ Innovativ	e Systen					
 ► [041] Cooling ► [051] PM-ACC ► [060] MCH-C 	g Unit 300 lock						
 ← [061] MCH-P ← [092->007] S ← [093->008] S 	LAC NATIO	ONAL LAE					
← [094->009] S ← [095->010] S ← [096->011] S	LAC NATIO	DNAL LAE					
← [097->012] S ← [098->013] S ← [099->014] S	LAC NATIO	DNAL LAE					
- [253] ELMA E							
Successfully c	onnected	to host mch	-b34-cd42				I

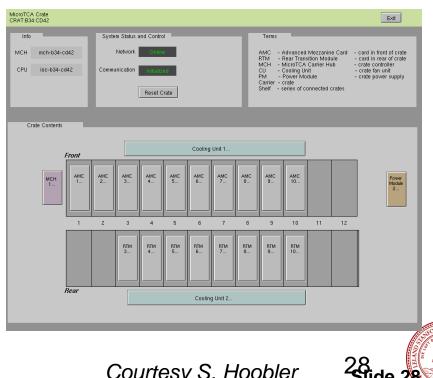

Web-based Configuration Tool

Java-based Shelf Viewing Tool

Infrastructure – Software 3

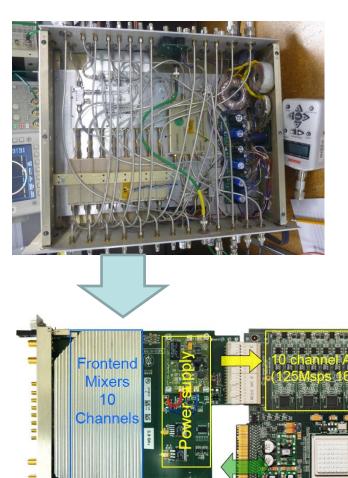
Dec 11, 2013


Using EPICS



SLAC EPICS IPMI Monitoring

- Monitors & controls MicroTCA systems via MCHs.
- Temperature, voltage, current, fan speeds, system reset.
- Available to user via EPICS PVs.
- EPICS IOC process w/ list of MicroTCA systems to monitor.
- Discovers MCH vendor and uses appropriate message protocol


Courtesy S. Hoobler

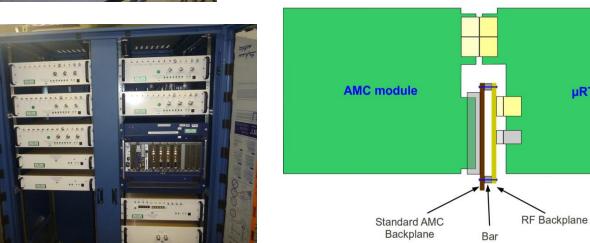
LLRF Development – Potential Transition to MTCA

-

Legacy Down-Converters will transition to DESY-Struck RTM along with RF Local Oscillator distribution system; eliminate expensive chassis & cables.

DESY 2nd MTCA.4 Workshop

Typical LLRF Chassis vs. MCTA.4



REAR

µRTM

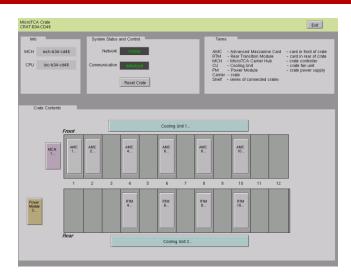
FRONT

Courtesy DESY

Dec 11, 2013

DESY 2nd MTCA.4 Workshop

Klystron Interlock RTM, FPGA AMC


3 sets of RTM-AMC cards replace MKSUII klystron protection chassis. Firmware to be ported from MKSUII.

RTM Fast-Slow ADC Board design by D. Brown Layout by C. Yee TAMC651 by TEWS company

IPMI Screen Shots – S. Hoobler

NATIONAL ACCELERATOR LABORATORY

DESY 2nd MTCA.4 Workshop

-Courtesy S. Hoobler

